

A Reliable MAC Protocol for Broadcast VANETs

Cristina Rico García, Andreas Lehner, Thomas Strang Institute of Communications and Navigation

Folie 1 Cristina Rico García. Institute for Communication and Navigation

- ✓ MAC layers in Broadcast Vehicular Ad-hoc Networks (VANETs)
- ✓ Special constraints in highly dynamic VANETs
- ✓ Cell-based Orientation-aware MANET Broadcast MAC layer: COMB
- Conclusions and Outlook

MAC layer in highly dynamic Broadcast VANETs

- ✓ MAC layer: Medium Access Control Layer.
- → No infrastructure available (ad-hoc) → Distributed protocol.
- → No information about the receivers \rightarrow Broadcast.
- ✓ Highly dynamic network → Unknown network configuration.

Automatic Dependence Surveillance- Broadcast

Car2Car

Automatic Identification System

✓ MAC layers in Broadcast Vehicular Ad-hoc Networks (VANETs)

- ✓ Special constraints in highly dynamic VANETs
- ✓ Cell-based Orientation-aware MANET Broadcast MAC layer: COMB
- Conclusions and Outlook

MAC layers for Broadcast VANETs

Protocol group	Disadvantages
Based on CSMA/CA	Assume static networks and/or a priori knowledge of the network
Based on TDMA or CDMA	Hidden and exposed terminal problem

No optimal MAC layer protocol for broadcast VANETs

SOTDMA. Self Organized Time Division Multiple Access

in der Helmholtz-Gemeinschaft

- ✓ MAC layers in Broadcast Vehicular Ad-hoc Networks (VANETs)
- → Special constraints in highly dynamic VANETs
- ✓ Cell-based Orientation-aware MANET Broadcast MAC layer: COMB
- Conclusions and Outlook

Problems in highly dynamic VANETs.

Nodes in different geographical zones produce the Hidden terminal problem.

- ✓ MAC layers in Broadcast Vehicular Ad-hoc Networks (VANETs)
- ✓ Special constraints in highly dynamic VANETs
- ✓ Cell-based Orientation-aware MANET Broadcast MAC layer: COMB
- Conclusions and Outlook

Some extra information that we could use

- ✓ Periodic beacons

- ➤ Direction (GNSS)
- ✓ Speed (GNSS)

ORIENTATION

A Solution for the hidden terminal problem

Number of Necessary Codes

•Minimum number of codes that avoid the hidden terminal problem \rightarrow Relation cell size – minimum tx range.

•In a range of at least 4R there must not be any repeated code.

Q

.6'

All the nodes inside a cell must "hear" each other. The range should be at least the maximum diameter of a cell = 2R.

Conclusions and Outlook

Conclusions

- ➤ No optimal MAC protocol for high dynamic broadcast VANETs.
- COMB uses additional information. It avoids all collisions in ideal conditions.
- → Outlook
 - ➤ Analyze the effect of the near-far problem in the protocol.
 - ✓ Optimization of the cells dimension.

Thank you for your attention

Questions?

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

BACKUP

Folie 15 Cristina Rico García. 01.02.2007

Nodes crossing to a new cell

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Nodes crossing to a new cell

The nodes infer to which cell they are going to cross from their speed, direction and position information.

They observe at least two target SOTDMA frames, and one frame of the neighbors.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

They reserve the first free slot in the target cell according to their cell priority.

Number of Necessary Codes

A map can be painted with four colors....

How many colors (codes) do we need? In a range of at least 4R there shouldn't be any repeated code.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Consideration about the range: Minium-maximum range

