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Integration of Foot-Mounted Inertial Sensors into a
Bayesian Location Estimation Framework

Bernhard Krach and Patrick Robertson

Abstract— An algorithm for integrating foot-mounted inertial
sensors into a Bayesian location estimation framework is pre-
sented. The proposed integration scheme is based on a cascaded
estimation architecture. A lower Kalman filter is used to estimate
the step-wise change of position and direction of the foot. These
estimates are used in turn as measurements in an upper particle
filter, which is able to incorporate nonlinear map-matching
techniques. Experimental data is used to verify the proposed
algorithm.

Index Terms— Pedestrian Navigation, Inertial Integration, In-
door Navigation, Map-Matching

I. INTRODUCTION

The use of inertial sensors is becoming widespread for
pedestrian navigation, especially for indoor applications. Ba-
sically two approaches can be distinguished. The pedometer-
approach employs an accelerometer for detecting individ-
ual steps whilst the stride length and stride direction are
themselves estimated using additional sensors, such as global
navigation satellite systems (GNSS), or a priori information.
Given a detected step, its length and its direction, a person’s
position can be determined by dead-reckoning [1] [2] [3].
Other methods have been studied in [4]. The latest approaches
are based on full six degree of freedom (6DOF) inertial
navigation. A foot-mounted 6DOF strapdown inertial platform
comprising triads of accelerometers and gyroscopes is used
to dead reckon via a conventional strapdown navigation al-
gorithm. An indirect feedback extended Kalman filter runs
in parallel to the strapdown algorithm. Rest phases of the
foot, which are detected from the accelerometer signals, trigger
zero-velocity (virtual) measurements that are used to update
the filter (ZUPT). Due to the regular ZUPT measurements we
can estimate and correct the drift errors, which accumulate in
the strapdown solution [5] [6] [7] [8]. It was shown in [5] that
this approach can achieve very good performance even with
today’s low-cost micro-electro-mechanical (MEMS) sensors
because the ZUPTs are so frequent that errors build up only
slowly during each step the pedestrian makes. Nevertheless,
the proposed Kalman filter approach is not optimal, as the
algorithm does not take into account prior dynamic knowledge
about the motion of the pedestrian or the motion of her foot
and there is no mathematically sound procedure when consid-
ering the incorporation of nonlinear map-matching techniques
or additional nonlinear / non-Gaussian sensors typically used
in an indoor scenario.

To address this here we propose a cascaded estimation
architecture: To estimate the navigation parameters of the
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foot we use a state-of-the-art integration filter comprising
a conventional strapdown navigation algorithm along with
an indirect feedback extended Kalman filter and a ZUPT
detection algorithm for the foot/shoe that is suitably equipped
with a 6DOF inertial sensor suite [5]. For each step we
compute foot displacement and heading change values from
the foot’s filter and exploit them as measurements within
a higher-level main fusion (particle) filter, which is able to
consider the nonlinear dynamics of the human by means of
a dedicated pedestrian movement model, including also maps
and building constraints, and which operates at a much lower
sampling rate.

The paper is organized as follows: At first a brief review of
sequential Bayesian estimation and particle filtering is given.
Subsequently our integration approach is motivated and details
on the filter design are addressed, including the choice of an
appropriate proposal density for the upper-level particle filter.
Experimental results conclude the paper.

II. SEQUENTIAL ESTIMATION

A. Optimal Solution

The task of a navigation system is commonly to estimate
successively a set of navigation parameters, here referred to as
the hidden state xk, based on an evolving sequence of noisy
measurements zk (over the temporal index k). If the future
state given the present state and all its past states depend
only on the present state (and not on any past states), the
temporal evolution of navigation parameters can be modeled
as a first-order Markov process as illustrated in Figure 1.
If it is also assumed that the noise affecting successive
measurements is independent of the past noise values, such
that each observation depends only on the present state, the
optimal solution is given by the application of sequential
Bayesian estimation. The reader is referred to [9] which gives
a derivation of the general framework for optimal estimation
of temporally evolving (Markovian) parameters by means of
inference; and we have chosen similar notation. The entire
history of observations can be written as

Zk=̂{zq, q = 1, . . . , k} , (1)

It can be shown that the sequential estimation algorithm is
recursive, as it uses the posterior PDF computed for time in-
stance k−1 to compute the posterior PDF for instance k . For a
given posterior PDF at time instance k−1, p(xk−1|Zk−1), the
prior PDF p(xk|Zk−1) is calculated in the so-called prediction
step by applying the Chapman-Kolmogorov equation:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 , (2)
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Fig. 1. Illustration of the hidden Markov estimation process for three time
instances. Our measurements are the sequence zq , q = 0, . . . , k}, and the
parameters to be estimated are xq , q = 0, . . . , k}

with p(xk|xk−1) being the state transition PDF of the Markov
process. In the update step the new posterior PDF for step k is
obtained by applying Bayes’ rule to p(xk|zk,Zk−1) yielding
the normalized product of the likelihood p(zk|xk) and the
prior PDF:

p(xk|Zk) = p(xk|zk,Zk−1)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(3)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
.

B. Suboptimal Solutions

The optimal estimation algorithm relies on evaluating the
integral (2), which is usually a very difficult task, except for
certain additional restrictions imposed on the model and the
noise process. Thus beside the restricted optimal algorithms
such as the Kalman filter or the grid-based methods, a large
number of suboptimal algorithms exist, e.g. the extended and
the Sigma-Point Kalman Filter, which are nonlinear adapta-
tions of the generic Kalman filter concept [10].

A further family of suboptimal algorithms are the Sequential
Monte Carlo (SMC) filters [9] [11]. In these algorithms the
posterior density at step k is represented as a sum, and is
specified by a set of Np particles:

p(xk|Zk) ≈
Np∑
j=1

wj
k · δ(xk − xj

k) , (4)

where each particle with index j has a state xj
k and has a

weight wj
k. The sum over all particles’ weights is one. The

SMC filters are not restricted with respect to the model and
the noise process, but the number of particles is a crucial
parameter, as only for Np → ∞ does the approximate
posterior approach the true PDF. The particles are drawn
according to a so-called proposal density, q(xk|xj

k, zk), such

that their respective weight is calculated using

wj
k ∝ wj

k−1

p(zk|xj
k)p(xj

k|xj
k−1)

q(xj
k|xj

k−1, zk)
. (5)

The selection of the proposal density is crucial for the per-
formance of the particle filter. Although the optimal proposal
density can be derived theoretically [9], it is in practice often
both impossible to actually draw from this density and very
difficult to compute the corresponding weight according to (5).

C. Incorporation of Independent Sensors

This section deals with the case where a range of M
sensor outputs makes up the overall measurement vector zk.
Separating the measurement vector zk into sub-vectors for
each sensor

zk=̂{zm,k,m = 1, . . . , M} , (6)

and writing z−m,k for zk after omitting zm,k, i.e. z−m,k =
zk\zm,k. If we assume independent perturbations of the sub-
vectors then this is equivalent to writing

p(zm,k|xk, z−m,k) = p(zm,k|xk) , (7)

so that given the actual state, the measurements z−m,k will
not affect the measurement zm,k. In this case the overall
likelihood function can be written in product form according
to the factorization of Bayes’ rule [12] as

p(zk|xk) = C ·
M∏

m=1

p(zm,k|xk) (8)

with C being a normalizing constant. In other words, the
sensors can be incorporated into the weight update (5) by
simple multiplication.

III. INTEGRATION OF INERTIAL SENSORS

A. Motivation of Cascaded Approach

The most widespread approach to integrate strapdown iner-
tial sensors into a navigation system is to use a direct/indirect
extended Kalman filter together with a strapdown naviga-
tion computer [13] [14] [15]. The combination of the two
algorithms may be interpreted as a ”probabilistic” inertial
navigation system (INS) and allows one to calculate an ap-
proximation of the posterior PDF of position, velocity, attitude,
and sensor errors based on the sequence of measurement
received from the sensors of the 6DOF inertial platform. The
approximated posterior/prior PDF is a Gaussian, whose mean
is given by the strapdown solution corrected by the Kalman
filter state vector and whose covariance matrix is given by
the covariance matrix of the Kalman filter. The advantage
of this approach is that the resulting Gaussian PDF can be
joined analytically with linear/linearized Gaussian likelihoods
of further sensors during the filter update step (5) as described
in the previous section.

Despite the fact that the Kalman filter implements a
Bayesian filter, this integration approach suffers from the
major drawback that it does not follow (2) and (3) straight-
forwardly for two reasons:
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Fig. 2. Bayesian location estimation framework architecture with upper particle filter (dark gray) and lower Kalman filter for stride estimation (light gray)

• The Kalman filter indeed uses a probabilistic state tran-
sition model, but this model is based solely on pure
kinematic relations between velocity, position, attitude,
and sensor errors rather than on a true probabilistic
characterization of the dynamics of the tracked object
(e.g. a person traveling by foot).

• No likelihood function is used to incorporate the ac-
celerometer and gyroscope measurements into the algo-
rithm. Accelerometer and gyroscope measurements enter
the algorithm directly via the strapdown computations
and no explicit use is made of any prior knowledge about
the object’s dynamics. As a consequence the performance
of a conventional INS is mainly determined by the quality
of the inertial sensors.

To overcome this drawback it would indeed be optimal to
formulate a Bayesian estimator whose dynamic model charac-
terizes - besides position, velocity, attitude, and sensor errors
- also accelerations and turn rates of the navigating object
using a Markov chain whose state transitions occur at the
sensor measurement rate, which is relatively high for inertial
sensors. Due to nonlinear state evolution constraints this can be
generally a very difficult task, especially when considering a
Markov-chain characterization of a pedestrian and the motion
of her foot/shoe on which the INS is mounted. Because of this,
currently only the conventional integration approach seems
to be feasible in order to estimate just the foot’s movement
for each step. Indeed, for the considered application of foot-
mounted inertial sensors this is not a major drawback, as the
inertial sensor errors can be constrained efficiently through the
use of ZUPT measurements.

However, it is generally desirable to consider further prior
dynamic knowledge about the pedestrian in an overall naviga-
tion filter. To take benefit of both the accurate foot-mounted
inertial system and a dedicated pedestrian movement model
including nonlinear effects such as building plans, we propose
a cascaded estimation architecture as illustrated in Figure

2. We have decided to employ a particle filter framework
for the upper level fusion filter. This is because we will
include sensors and process models (movement models) that
are nonlinear, and often with non-Gaussian noise models.
In particular the movement model needs to incorporate the
building plan which is highly nonlinear. A lower Kalman
filter is used to provide stepwise computed values of foot
displacement and heading change, here referred to as the step-
measurement, which is used as measurements within the upper
particle filter and enters the algorithm via a Gaussian likeli-
hood function along with the measurements and likelihoods
of further available sensors.

Our framework has been implemented in the Java program-
ming language and can process incoming sensor data in real-
time, allowing live visualization of the location estimate. The
filter will perform sensor fusion roughly every two seconds
or when triggered to do so by a specific sensor - in our case
we will perform an update cycle at the latest once every two
seconds and also upon each step-measurement.

To distinguish the low rate operations of the upper filter
from the high rate operations of the lower filter below, the
terms k-rate and l-rate are introduced. The upper filter is
associated with the k-rate, which is approximately the step-
rate, and the lower filter is associated with the l-rate, which
is given by the rate of the inertial sensors. Corresponding
variables will be indicated by the subscripts (•)k and (•)l.

B. Upper Filter

The particle filter adopts re-sampling of the particles at
every time step. With exception of the step-measurement it
adopts the state transition probabilities as proposal function
and uses the product of the sensors’ likelihood functions in
the weight computation (8), (5) - the standard SIR formulation
[9]. The incorporation of the INS-step-measurement, however,
does not follow this approach, as will be explained later.
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1) State Model: In the particle filter we keep track of the
pedestrian’s position rk and her heading Ψk. To allow the
incorporation of the step-measurement the state vector has
been extended by the step specific states, ∆rk and ∆Ψk, which
relate rk and Ψk to the time index k − 1. We define:

xk =




rk

Ψk

∆rk

∆Ψk


 (9)

Here we have chosen that the new location and heading depend
deterministically on the past state (and on the current state
through the ∆-states). The ∆-states encode the change in
location and in heading during the last step, and allow us to
write:

rk = rk−1 + C(Ψk−1)∆rk , (10)

Ψk = Ψk−1 + ∆Ψk , (11)

where C(Ψk−1) is the rotation matrix, where we have assumed
that the rotation Ψk−1 is always in the horizontal plane:

C(•) =


 cos(•) − sin(•) 0

sin(•) cos(•) 0
0 0 1


 . (12)

2) Measurement Model: The step-measurement zk, which
will be the only used measurement within the scope of this
paper, is assumed to depend only on the current state xk and
a noise term n∆:

zk = h(xk,n∆) . (13)

In particular we use

zk =
(

∆rk

∆Ψk

)
+ n∆ , (14)

with n∆ being zero-mean element-wise uncorrelated Gaussian
noise. The variances are adjusted to reflect the uncertainty of
the step-measurement.

3) Movement Model: A probabilistic movement model is
used to characterize the temporal evolution of a state xk. Given
that this evolution follows a Markov process the movement
can be characterized by a transitional density p(xk|xk−1), and
our model follows the Markovian approach. The movement
model used here aims to reflect the physical constraints that
are imposed on the movement of a pedestrian, in particular
in an indoor scenario, where walls can have a large impact.
Formally, the new state xk is assumed to depend only on the
previous state xk−1 and a noise term nd:

xk = f(xk−1,nd) . (15)

Recall from (10) that the new location and heading depend
deterministically on the past state and on the current state
through the ∆-states. However, the probabilistic part of the
movement movement model is incorporated into the temporal
evolution of the displacement states ∆rk and ∆Ψk:

∆rk = f(xk−1,nr) , (16)

∆Ψk = g(xk−1,nΨ) , (17)

Fig. 3. Dynamic Bayesian network illustration of the pedestrian model used
in the upper particle filter. The arrow joining two time slices and pointing
diagonally and upward encodes the nonlinear probabilistic dependency of the
pedestrian’s step on the presence of walls at or near a certain location. The
other arrows encode deterministic relationships.

which depend only on the past state xk−1 and the noise terms
nr and nΨ. The nonlinearity that is imposed by the walls is
included in (16) in that the displacement of the location ∆rk

depends on the presence of nearby walls and obstacles.
An illustration of the pedestrian model used here in terms

of a dynamic Bayesian network is shown in Figure 3.
A very simple movement model is used here: Given that

a displacement ∆rk intersects with one of the walls that
are stored in the map database, we assign it the probability
p(xk|xk−1) = 0. In other situations, if a wall has not been
crossed, we want to draw according to:

∆rk = nr , (18)

∆Ψk = nΨ , (19)

where nr and nΨ are drawn from mutually uncorrelated zero-
mean white Gaussian noise processes, whose variances are
adapted to the movement of a pedestrian. Despite the fact that
this model is suitable for the case of a wall crossing, it is
quite coarse otherwise, as is does not adequately represent the
probability with which a pedestrian will move, given a known
building layout or map [16]. To alleviate this, future work will
incorporate more accurate movement models than the one used
here.

C. Lower Filter

As the integration method proposed in [5] was shown to
have both good performance and low complexity, we also
follow this approach for the step estimation algorithm. The
lower filter operates at the rate given by the output of the
6DOF sensor suite, which is in the range of 100–500 Hz,
depending on the hardware settings.

1) Algorithm Fundamentals: A strapdown navigation algo-
rithm [14] processes the vector of acceleration and turn rate
measurements zl = [al ωl]T , which is provided by the inertial
sensors, to compute position rl, velocity vl, and attitude Ψl.
In parallel an extended Kalman filter is used to estimate the
errors of the strapdown calculations. Typically 15 states are
estimated by the filter [5], [13]: position errors δrl, velocity
errors δvl, attitude errors δΨl, accelerometer biases δal, and
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gyroscopic biases δωl. The error estimates δrl, δvl, and δΨl

are perturbations around the filter operating point rl, vl, Ψl

that is calculated by the strapdown algorithm.
Recalling from section III-A that the lower filter provides

estimates of position, velocity, attitude, and sensor errors in
the form of a Gaussian PDF. In the subsequent processing
only position and heading are states of interest and we write
for concise notation:

xl =
(

rl

Ψl

)
, (20)

whereby Ψl is the yaw angle derived from Ψl. From the
posterior PDF of the lower filter the (marginalized) posterior
p(xl|Zl) can be derived in a straightforward manner. Note that
we are addressing the Bayesian estimation only at the lower
level here, and have not yet included other sensors than the
INS or the pedestrian specific movement model.

2) Rest Phase Detection: The reliable identification of the
foot’s rest phases is crucial for the update of the lower filter.
Different approaches have been proposed to trigger the ZUPT
measurement [5], [6]. Here we basically follow these ideas and
monitor the magnitude of the acceleration vector [6], which is
sensed by the accelerometer triad. If the signal remains within
a threshold interval around earth gravity for a certain time
interval ZUPTs are triggered until the threshold condition is
violated. In our approach the ZUPT detection is also used to
trigger the update of the upper filter. Each time a ZUPT is
triggered in the lower filter the elapsed time since the last
update of the upper filter is checked. If this time exceeds
a certain threshold, for instance one second as illustrated in
Figure 4, a new update of the upper filter is initiated.

3) The Step Sensor: The lower filter is used to process the
high rate inertial measurements. To exploit them in the upper
filter a (virtual) step sensor model is derived from the lower
filter error characteristics in order to provide a probabilistic
estimate of the traveled distance and the change in heading
for each step the pedestrian makes.

To provide the step measurements the following operations
are performed at the interface between the lower filter and
the virtual step sensor: As illustrated in Figure 5 each time
a new upper filter cycle (k-cycle) is triggered (III-C.2) the
expectation of the lower filter x̂l is stored in the variable
x̂L=̂x̂l with L = k. Please note that variables associated to the
lower filter are indicated by the subscript (•)L for those time
instances l for which k-cycles are triggered. Introducing the
step displacement variable ∆xL = xL −xL−1 its expectation
is almost independent from previous steps due to the ZUPTs
that are applied. Thus we have ∆x̂L = E(∆xL|ZL)), and
may write for the displacement with respect to the coordinate
system of the lower filter:

∆x̂L = x̂L − x̂L−1 (21)

=
(

r̂L

Ψ̂L

)
−

(
r̂L−1

Ψ̂L−1

)
(22)

=
(

∆r̂L

∆Ψ̂L

)
. (23)

Also, since ∆x̂L = E(∆xL|ZL)) ≈ E(∆xL|ZL\ZL−1),
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Fig. 5. Relation between upper and lower filter scheduling

we have independent measurements from step to step.
Finally, the displacement with respect to the heading at

the previous k-cycle is computed and we have our step
measurement

zk =
(

CT (Ψε)CT (ΨL−1)∆r̂L

∆Ψ̂L

)
. (24)

The average heading misalignment of the inertial sensor plat-
form with respect to the pedestrian’s heading is given by the
angle Ψε, which has to be fixed initially.

D. Choice of an Appropriate Proposal Density

As mentioned in II-B the selection of the proposal density is
crucial for the performance of the particle filter algorithm and
it showed up to be an apparent problem for the design of the
upper filter in our location estimation framework. If it is not
possible to use the optimal proposal density a suitable choice
is often the transition density. In this case the update step
of particle filtering essentially incorporates the latest sensor
evidence at each step in the form of the particles’ weights
through the likelihood function (SIR particle filter [9]). As
the optimal choice for proposal density has been shown to be
not appropriate here for complexity reasons, we followed the
simple transition density approach in our framework initially.
Despite the fact that the transitional density p(xk|xj

k−1) is a
convenient choice, it is not optimal, since the latest evidence
zk is not incorporated in the proposal function the particles are
drawn from. For instance, if the likelihood function is narrow
compared to the density after the prediction step, then only
a few ”lucky” particles will subsequently receive significant
weights. The result is usually sample impoverishment which
degrades accuracy significantly for a given finite number of
particles. As the likelihood function for our step-measurements
is comparatively narrow due to the high accuracy of the step
measurement, it is crucial to choose the proposal density other
than the state transition density in order to avoid this problem.
In other words it should be avoided to draw particles that do
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not follow the accurate step-measurement, because they will
receive low weight from the step-likelihood during the update
step anyway and hence are a waste of computational resources.

To address this drawback the auxiliary particle filter was
proposed [17]. But especially for more extreme situations
where the likelihood is much tighter than the prior, the optimal
proposal comes very close to the likelihood itself. Here we
have often such a situation: The step sensor is quite accurate,
whereas the movement model is governed mainly by the
surrounding walls. Hence for our problem here, it is more
efficient to draw from a proposal function according to the step
likelihood. Recalling the weight equation (5) the likelihood
cancels out - up to a constant - with the proposal if we draw the
displacement from q(∆rk,∆Ψk|zk). We can draw from this
proposal function for each particle because the measurement
zk does not depend on the state components rk, and Ψk, under
the condition of a given ∆rk,∆Ψk. Furthermore, the states
rk, Ψk are computed deterministically using (10), (11). Using
the more efficient ”likelihood”-proposal we obtain the weight
update

wj
k ∝ wj

k−1p(xj
k|xj

k−1) . (25)

In this case the particles follow the step measurement and for
each particle a disturbance of small Gaussian noise is super-
imposed at every step - the variance of this mean-free noise
is equivalent to n∆. The weight is then calculated from the
movement model corresponding to (25). This strategy ensures
that enough particles survive at each step and impoverishment
is avoided. A similar approach referred to as the likelihood
particle filter was proposed in [9].

IV. RESULTS

The performance achievements of shoe-mounted INS as
stand-alone or coupled with GNSS and / or magnetometer has
been widely reported in the literature, for example in [5]. In
this paper we present results that used no initial reference po-
sition, and no source of absolute position information such as
GNSS. The chosen scenario is thus the following: a pedestrian
moves through a building, using only the shoe-mounted INS.
The other information available to the upper fusion filter is
the building layout (floor-plan). We also assume that the user
is within the specified building, and on a certain known floor.

As Fig. 6 shows, the upper fusion filter - a particle filter
- starts with a uniform distribution of particles in the known
area. Each particle, according to (9), includes its location and
current heading. Over time only those particles will survive
which are compatible with the layout of the floor-plan. In
other words, those hypotheses of the state space will survive,
which when moved according to thee lower fusion filter’s
estimate, have not crossed a wall. At first there are many such
hypotheses, some moving in different directions compared to
the true one, but over the course of time, only one hypothesis
(the correct one), survives. In our case this was achieved in
roughly one minute of walking.

Naturally, the rate of convergence and the reduction of
modes will be a function of the actual route which was walked
and of its relation to the floor plan restrictions. In an large hall

without walls there will only be moderate reduction on the size
of the remaining mode compared to the case with many walls.
It should be noted that the surviving modes are ”randomly”
distributed across the layout and bear no relationship to the
correct location (except the true mode, of course). As can be
seen from the third time slice (25 s.) the true mode has already
achieved its steady-state local uncertainty (of roughly the
dimension of the corridor width). This implies that additional
position information can be of significant value even if this is
quite coarse (e.g. on the order of 10-50 meters).

In Fig. 7 we show an exemplary PDF as computed by the
upper particle filter and after smoothing of the particle weights
using a Gaussian kernel function. The user had only been
walking for a short period of time and there are three modes
still surviving.

V. CONCLUSIONS

In this paper a method for integrating shoe-mounted inertial
sensors into a Bayesian location estimation framework is
presented. The approach is characterized by a cascaded filter
architecture, which allows to exploit the synergy between a
conventional shoe-mounted INS and a nonlinear pedestrian
movement model in an indoor scenario. An advantage of
the proposed integration algorithm is that each level of the
cascaded architecture can operate at an update rate appropriate
to the scale: at 100 Hz or higher for the stride estimation
and roughly at step-rate for the upper fusion layer. Based
on experimental data it is shown that a moving pedestrian
can be localized in a building just by using a foot-mounted
6DOF inertial platform and map matching without using
any additional sensors and without the need to determine
the pedestrian’s initial position or heading in an alignment
procedure. Furthermore, the experiment shows that due to the
implicit map matching the uncertainty about the pedestrian’s
location decreases if the movement is suitable, which can lead
to long-term stability in an indoor navigation scenario.
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