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SUMMARY

MAPLIB is a program system which is able to incorporate the values of the properties of
many materials in a form suitable for computer-aided design. Thus, MAPLIB is a data
bank whose customers are not men but computer programs with their much higher scanning
rate. Therefore in MAPLIB the data are not stored in tables as usual but in algorithms
implemented as FORTRAN functions.

Such a program system should fulfil 2 nuanber of conditions related to standardization,
flexibility, security, effectivity, transparency and compatibility. In this paper these conddi=
tions are discussed in some generality and it is shown how they are implemented in MAPLIB.
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INTRODUCTION

In order to solve engineering design and design evaluation problems on a computer, the
engineer has to provide a program representing the model of the system he wants to simu-
late. In almost all practical cases, this program needs information about the values of
certain properties of certain materials and their dependence upon parameters like tempera-
ture, pressure, etc.

Thus, the engineer is often not interested in the data himself but only for his program.
Therefore the engineer needs a data bank which furnishes the data in a form suitable for
his program.

In this paper it is shown what qualities such a data bank should have and how they are
accomplished in MAPLIB (Material Properties Program Library), a data bank set up in
Karlsruhe. Some of the conditions discussed are postulated by Hoare.?

GENERAL DEMANDS AND THEIR REALIZATION IN MAPLIB

Standardization

For a correct and unequivocal retrieval of the data, a number of conventions has to be
defined with respect to

(1) The form of data storage,

(2) The naming of data.

(3) The documentation of the data.

MAPLIB consists of a multitude of FORTRAN functions, For each property of a
material in MAPLIB a function is integrated, which computes the value of the material
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property according to the values of its appropriate parameters as defined by the user’s
program, All data are defined in one consistent system of units—the SI-units (m, kg, s,
ALK, cd).2 ' o

Properties and materials are identified by unique symbols. Property symbols consists of
two characters (e.g. enthalphy: EH), material symbols consists of up to four characters
(e.g. liquid sodium: NAL). For the symbols implemented in MAPLIB up to now, refer
te Table I and II. The concatenation of a property name and a material name is considered
as the particular material property name.

Table 1. Symbols of materials implemented up to the present time

AIRV Air

B4C Boron-4-carbide

cozv Carbon dioxide

H2C Water, general

H20L.  Water, liguid

H20V Steam

HEV Helium gas

NA Sodium, general

NAL Sodiurm, liquid

NAV Sodium, vapour

NALS Saturated liquid sodium
NAVS Saturated sodium vapour
PUO Plutonium oxide

uo Uranium oxide
UPUO  Uranium-plutonium mixed oxide
4961 4961 Grade steel

4981 4981 Grade steel
49388 4988 Grade steel

Table II. Symbols of properties implemented up to the present time

VP  Saturated vapour pressure
VT Saturated vapour temperature
FT' Melting temperature

FH Xeat of fusion

RH  Heat of recrystallization

VH Evaporation enthalpy

VS5  Ewaporation entropy

EH Enthalpy
ES Entropy
RO Density

VO  Specific volume

CP  Specific heat at constant pressure
CV  Bpecific heat at constant volume
PR Prandtl number

WL Thermal conductivity

ZD  Viscosity, dynamic

ZK.  Viscosity, kinematic

5B  Rupture strength

SD  Elongation strength

SF  Yield strength

EM Modulus of elasticity
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The function for the property CP and the material NAL (as an example) is named
CPNAL.

The documentation is standardized in MAPLIB too. MAPLIB expects that new functions
are accompanied by information related to

(1) The author.

(2) The date of the creation or last change.

(3} The reference to the origin of the data,

(4} The accuracy, and so on.
This information is added to the function on comment cards, which contain the literal C
in the first column (FORTRAN rule) immediately followed by a character, which identifies
the information following on the card. Refer to Table III for these identifications. Figure
1 shows such a function together with the relevant information. This convention makes
each function ‘self-describing’.

Table II1. Information identifications

CNAME Name of routine

CAUTHOR Name(s) of author(s)

CDATE Date of creation or last change
CLITERATUR References

CPARAMETER Explanation of parameters
CEMATERIAL Explanation of material
C$PROPERTY Explanation of property
CBESCHREIBUNG  General description

CINPUT Input description
courrPUT Output description

CFILES Specification of external data sets
CSUBROUTINES List of sub-programs needed
CERROR Error messages

CREGION Memory storage requested

C Additional information

Flexibility

The design program should be ﬂemble with respect to both materzals and properties for

which it can be used

In MAPLIB the flexibility in material and property is achieved by a s‘pecml retrieval
system. The user’s program can obtain access to the functions on three different levels. The
program will be most flexible when the highest level is used.

On the lowest level the functions are called directly by their name together with their

parameters needed: e.g.

CPNAL(T, P)

In this way the material and the property to be used are fixed at the time the program is
written. Alternatively, at the higher levels the property, the material or both can be specified
dynamically at program execution time, This is done by providing functions (‘master
functions’) whose names correspond to the standard pattern, with § replacing the fields
that will be supplied at execution time by the first one or two arguments, Thus the follow-
ing function calls all have identical effect:

CPNAL(T, P)

$SNAL(CP, T, P)

CP$$$$('NAL’, T, P)

$$3848('CP’, 'NAL', T, P)
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MAPLIB=-UTILITY MATERIAL PROPERTY FUNCTION

55$$$SS£$$$$$S$$$S$$$$$$$$$$$$$$$$$$$$SSSSS&SS&S$$$$$$$S$$$$S$$S$$$555555555555555

CARD 1 $ FUNCTION VTCOZVI/PN 7/} VTCO0O0C1S
CARD 2 sC VTCDOOOZS
CARD 3 $CN k%t M AP LI B k¥ FUNCTIGN VTCO0D03s
CARD 4 sC VTCO0004s
CARD 5 $CD 12.10.70 i VTCOeoO0Ss
CARD -] LA H. SCHNAUDER & W. ZIMMERER VTCOCOOES
CARD 7 sCsP SATTDAMPFTEMPERATUR K VTCO0007S
CARD a SCsM CO2-GAS . VTCOJDOES
CARD 9 $CP PN 1.E5<=5,2BE5<=PNX=T.54E6<=7:8Eé& VTCOQO0Ss
CARD 10 $CP DRUCK N/H2 VTCOQCi0s
CARD 11 sCL H. SCHMAUDER, IRE=-NOTIZ MNR.26/68, PROGRAMMBESCHRE 1BUNG NR.182 VTCOOO11ls
CARD 12 $CS SNUMBR, NUMBR S, RANGE VTCGODO12s
CARD i3 H REAL Al51/2.9B426,=6.229B2E~3,1.05784E~4,-9.21483E-7,3,72320E-9/ VTCOCO13$
CARD 14 SCSF VTCOCD1ss
CARD 15 $ CALL RANGE[VTCOZV,"VTCO2V'y2,5,28E597,54E611.E5,T+8E6,PN4EFFT) VTCO0Q0Ll5s
CARD 16 5 T5= —875.186/{ALOGLO(PN*0.986923E~5}~4.T30091-273.16 VTCO201é%
CARD 17 1 P=PN#*1.019716E~5" VTCOOD17%
CARD 18 ] T= 304.2 VTCODD18%
CARD 19 $ PK=75.379 VTCOD01S3
CARD 20 s & TT= TS5+273.16& VTCODDZ20S
CARD 21 s X= T=TT VTCOGGZ1lS
CARD 2z s B=0. vTC00022%
CARD 23 -3 XN=1. VTCDO023s
CARD 24 5 Do 300 J=1,5 VICDa0248
CARD 25 1 AN=XN*X VICDO025%
CARD 26 $ TN=ALJ)*XN VTCOCO26$
CARD 27 s B=8B+TN VTCOCD27$
CARD 28 4 300 CONTINUE vTeaonzes
CARD 29 H = =B/TT vICconG294
CARD 30 $ DPS=PK*10.%*B=P VTCOO030%
CARD 31 $ T5=T5~DPS . . YTCOQO31s
CARD 32 ] 1F (ABS(DPS} — l.E=-3} 2,244 . VTCO0C32s
CARD 33 $ 2 VTCO02V= T5+273.1é VTCO0023s
CARD 34 $ 999 RETURN VTCO0O34$
CARD as $ END VTCOD035%

EESESE 5555555555 b S e E st s ESsSEESSS ST SS PSS ESSSERITISIILRESES

Figure 1. Example of a data function

The data bank must be easily extendable for including new functions

MAPLIB consists of two parts (see Figure 2):
(1) A dataset which contains the data functions to gether with some library control routines.

l Data function input l

 J

MAPLIB utility

MAPLIB library

User’s program

Figure 2. Flow of information in MAPLIB
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(2) A utility program which incorporates new functions and control routines in the data

set or scratches old ones.

If data for new property-material combinations are to be integrated in MAPLIB, the
corresponding functions are coded in FORTRAN. This set of source functions is the input
to the utility program. The utility program tests the correctness of the functions in various
respects, catalogues the new materials and properties together with the information delivered
on the comment cards, completes the functions with the necessary standard control routine
calls and then submits the functions to the compiler.

Security
Two aspects of security are considered.

Any incorrect function call must not result in an unpredictable error

In MAPLIB an extensive error control system is built in (see Figure 3). In a normal case
each retrieval request is checked with respect to the following possible errors:

(1) The data function requested could be missing.

(2) Too few or too many arguments are passed to the function by the calling program.

Operating system

Set error control | i
User's parameters
program Error register
Error message
output

Get error control
indicators

tly

User's || i
messages | Y

Messages
——————— X%

Master
functions

f 3
Y

MAPLIB \

» data functions

¥

o — =  CALL
—— . RETURN

— e Information flow (parameter)

Figure 3. MAPLIB error control system
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(3) The values of the parameters could be out of the validity range for which the function

is established. :

Whenever an error has been detected, MAPLIB normally prints out an error message
in English plain text and the first error results in termination of the program execution,
But the user has the possibility of varying this standard reaction in several ways. It is
especially possible to raise the number of permissible errors {default: 0). Then the system
offers special routines which enable the user’s program to inquire how many and what kind
of error occurred so that the program itself can decide how to behave in a case of error at
execution time.

The data function must be protected from unintentional changes

In the utility program an attempt was made to avoid all possibilities of unintended or
erroneouschangesas far as possible. Since MAPLIB utility is executed under operating system
control, no safeguards can be taken within this program against inadvertent loss or change of
information due to errors or breakdown on the operating system level.

Figure 4 shows the data flow of the utility program. The ‘SOURCE’ data set contains all

I
REGISTER

1

!

Eo

fnput Output
E— COMMOCN "

MAPLIB - utility

| 4

SQURCE

External
data set

dzta set
_...—.._*_
—_——

Normal
data flow

Data flow at utility start
and for permanent updating

Figure 4. Data flow in utility program
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previously integrated data functions in the FORTRAN source version. The ‘REGISTER’
data set contains the pointers to the functions on the source data set. At the beginning of
the utility execution the pointers are read into the COMMON memory. When a new function
is found in the input to the program, the completed function is written on the source data
set behind the last old record and the pointers in the COMMON are changed. But only
when no errors are detected by the utility program and the user has passed thé correct
password, are the COMMON data rewritten on to the register data set and the source
data set is compressed. Thus, in a case of error at the next utility execution all permanent
data sets contain the same information as at the beginning of the first faulty execution.

Effectiveness

The data retrieval time must be as low as possible _

The demand for effectiveness and the other demands such as flexiblity and security
cannot be compatible; the function call takes the least time when the call is done on the
lowest level-—the most inflexible level. The function furnishes the value quickest when the
function call is not checked with respect to the possible errors.

To solve this problem, MAPLIB offers the possibility of being used in an inflexible
and dangerous way too; the function can be called on the lowest level with all controls
bypassed, if the user’s program issues the appropriate calls at execution time. In this case,
it is the user’s responsibility to safeguard his program against breakdown and incorrect
results.

Transparency

The system must be able to deliver to the user all information related to the data which are
used by his design program

In MAPLIB the user can ask the utility program for all the information he wants and
which MAPLIB knows; this means all information added to the functions on comment cards.
Moreover MAPLIB supplies summaries of all in MAPLIB integrated data together with
explanations of the symbols defined, the units of the data and the parameters needed by
the functions.

Compatibility
The data bank must be applicable to as many users as possible

For this reason, FORTRAN was used as the base language, because FORTRAN is by far
the most commonly used language in computer-aided engineering design. However, there
exists a great number of ‘FORTRANS’. Though it was the intention to make MAPLIB
applicable on all computers with a FORTRAN IV compiler, MAPLIB cannot comply with
the demand completely. Some restrictions must be accepted:

(1) MAPLIB operates on character strings. Therefore, in the existing version, MAPLIB
is only applicable on machines with at least four characters per word.

(2) The utility program needs direct access space.

(3) Without overlay the utility program needs 220K bytes of memory. This large
amount of memory is needed because the program helps the user in many ways to
implement new functions correctly.

(4) The control of the number of arguments passed by the user’s program to the data
functions is impossible in pure FORTRAN, For this purpose a small assembly-
language function must be used which is described elsewhere.?
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CONCLUSION

It has been shown that MAPLIB accomplishes most, but not all, conditions which should
be fulfilled by a good data bank for computer programs. MAPLIB is documented in detail
in Reference 4. It is implemented on an IBM 360/65-85 in Karlsruhe and contains today
the most important properties and materials requested in the thermohydraulic reactor
design. Its performance has been very satisfactory so far.
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Comments on “A Fast Computer Method for Matnx
Transposing™ and Application to the Solition of
. Poisson’s Equation -

ULRICH SCHUMANN

In ﬂle above conespcmdence, am algorithm has been described ﬂnt
allows the transposing of a 2" X fmmbymdmgmdwnhngn_
times &t the most via direct access rows of the matrix and by permuting
its data elements. The generalization to arbitrary square matrices has
not beea described, and the generalization to nonsquue matrices hu
bean reported to be impossible.

. Fhe algorithm proposed is very siinilar to one deucn'bed and proved
mmpletely in'[1}, which needs only two sequential data sets: it has

been developed to transpost arbifrary square and nonsquare matrices.
The idea of this algorithm is as follows: The M X ¥ matrix is assumed
to be stored by row on a sequential data set. The number N is the
‘product of its prime factors P, = 1,2, -, n. Thenn steps are needed
o transpose the matrix. In every step (=1, n)thedatae.lemenum
‘fead from the data set in the following order: 1,1+ P, 1+ 2P+
A+MN-P;2, 24P« 2+MN Py ;P Pi+ P Py+ 2Py -,
H X N and written on the second data set ssquentially. In doing this, the
,ﬁrst data s=t must be read P; times, and the second must be written
sonce. Then the data sets are interchanged and the ith step is finished.
ﬁ,‘L:t'tm.' all n steps, the last output data set contains the matrix, now
;tnmd by column, and for the total process the data have to be read as
“often as the sum of the prime factors and written n times; 5o a total of
n+ Zf2y P; transputs (input + output) are needed. In the case of M =
N= 2"ﬂmsum resiilts in 3 s, By combining pairs of 2 to “prime num-
ber™ 4, the algorithm may be refined to reduce this sum to 2.5n.

This is much less than the (¥ + 1) transputs nceded when transposing
‘the matrix stored on a sequential data set in a direct way. Because the
number of transputs approach this bad number if ¥ it 2 prime number
jtself, the matrix s]mnldbeexpandedtoahrgz:onewﬁhrowlength
Nopt in the first step by adding meaningleas data. Using the optimum
numbers Nypy of Table 1, the number of transputs are always less than -
3108z Nopt and equal to 2.5 Jog; Nypy in the Emit [1].

In Eklundh's slgorithm only 2na transputs are nesded, due to the use

of direct access transputs. So his algorithm is superior in this case. But
the algorithm described above is more general since it is applicable to
Anonsquare matrices and arbitrary square matrices, Moreovei the permu-
fation desczibed above and presemted formally in [1. eq. (1)] may be
used to generalize Eklundh's algorithm to arbitrary square matricas.
; Besides the applications mentioned in [1] and those for fast Fourier
ransform (FFT), the rithm has been used for the direct solution of
fhersson equation V'p=d in twomdthreedmmmons over a Car-
tesmn and cylindrical grid with about 105 nodex. This method will be
described shortly for the two-dxmens:onzl case of the discrete Poisson
‘equation.

(Pi1,j - 2pij+ Piea IAX® + (Byjy - 2P0+ Pigra W AY® =dyj
over the Cartesian grid

N j=1,2,--- N

g p=(- 1) Ax yn—(r—l)Ay. i=1,2,---
4with Dirichlet, Neumann, or periodical boundary conditions. The sclu-
‘hon is found in the following way (mathematically according to
Hockney [2]).

Step 1 Expand dy ; for one coordinate (e.g.. x) into “eigenfunktio-
en” dy 5 =T, Ay jexp AL 2x (- 1) (U~ 1Y/NV), and evaluate 4, ;
by FFT (N times for j = constant).

~.Step 2: Expand p; jaccordingly: p; ; ng.ﬂi.;np(\/_h(f 1
jz - 1)/N); substitution into the above Poisson equation results in NV tri-
-d:agoual Lnear equation systems for N unknowns B; ; (i = constant),

which may be solved in a direct way very easily. -
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- Step 3: Compute p;,jout of B; ; by N FFI's, each for j = constant.

ﬂe arrays dj 1 A; j: B i By .7 (£= 1, N;J = 1, N) may overstore one ai-

y S;; successively. For N 2 1000 the elements of § cannot be
!smred m the main. storage of today’s compiters. S must be cut into
3 which are swapped by hardware or software between a back-
ground storage device and the main storage.

Initially it is suitable to design the pages so that just one column .
4 = constant) can be stored in one page. Steps 1 and 3 may be executed
without problems—for each of the ;¥ FFT’s one page is nmded, and the
pages are te be read and written 4 N times.

But in executing Step 2 for each of the N linear equation solntions,
2 row {i+ constant) of § is needed. This means just one data element
Ul-lt of each page. Therafore, this step requires transputs of pages
and, thos, 4N + 2N? are needed for the complete solution.

This unacceptable high number of page swaps can be decreased
‘dramatically by transposing the matrix S according to [1} betwesn
Steps 1,2 and 2, 3. Then-only approximately (exact for N = 2", neven)

8¥ + 5N logy N transputs are required to get the complete solution.
Thus, in the case of N = 1024, by using the matrix transposing algo-
rithms, the number of page swaps are reduced by a factor of about 35.

TABLE1
OPTBATM VALUES Ngopr OF THE ROw LENGTH

1 2 3 4 5
6 7 B 9 10
12 15 - 16 18 20
21 24 25 27 ‘28
30 32 36° 40 45
438 50 54 56 60
64 72 75 30 81
B4 90 96 100 108
112 120 125 128 135
144 . 150 160 .162 168
-180 192 200 216 225
245 243 256 270 288
300 320 324 336 360
375 384 400 405 432
4438 450 480 436 500
512 540 576 - 600 625
640 648 675 720 729
768 800 810 864 900
960 972 1024 1080 1125
1152 1200 1215 1280 1296
1344 1350 1440 1458 1500
1536 1600 1620 1728 1792
1800 1875 1920 1944 2000
2025 2048 2160 2187 2304
2400 2430 2500 2560 2592
2700 2880 + 2916 3072 3125
3200 3240 3375 3456 3600

3645 3840 3888 4096
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