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Comments on “A Fast Computer Method for Matnx
Transposing™ and Application to the Solition of
. Poisson’s Equation -

ULRICH SCHUMANN

In ﬂle above conespcmdence, am algorithm has been described ﬂnt
allows the transposing of a 2" X fmmbymdmgmdwnhngn_
times &t the most via direct access rows of the matrix and by permuting
its data elements. The generalization to arbitrary square matrices has
not beea described, and the generalization to nonsquue matrices hu
bean reported to be impossible.

. Fhe algorithm proposed is very siinilar to one deucn'bed and proved
mmpletely in'[1}, which needs only two sequential data sets: it has

been developed to transpost arbifrary square and nonsquare matrices.
The idea of this algorithm is as follows: The M X ¥ matrix is assumed
to be stored by row on a sequential data set. The number N is the
‘product of its prime factors P, = 1,2, -, n. Thenn steps are needed
o transpose the matrix. In every step (=1, n)thedatae.lemenum
‘fead from the data set in the following order: 1,1+ P, 1+ 2P+
A+MN-P;2, 24P« 2+MN Py ;P Pi+ P Py+ 2Py -,
H X N and written on the second data set ssquentially. In doing this, the
,ﬁrst data s=t must be read P; times, and the second must be written
sonce. Then the data sets are interchanged and the ith step is finished.
ﬁ,‘L:t'tm.' all n steps, the last output data set contains the matrix, now
;tnmd by column, and for the total process the data have to be read as
“often as the sum of the prime factors and written n times; 5o a total of
n+ Zf2y P; transputs (input + output) are needed. In the case of M =
N= 2"ﬂmsum resiilts in 3 s, By combining pairs of 2 to “prime num-
ber™ 4, the algorithm may be refined to reduce this sum to 2.5n.

This is much less than the (¥ + 1) transputs nceded when transposing
‘the matrix stored on a sequential data set in a direct way. Because the
number of transputs approach this bad number if ¥ it 2 prime number
jtself, the matrix s]mnldbeexpandedtoahrgz:onewﬁhrowlength
Nopt in the first step by adding meaningleas data. Using the optimum
numbers Nypy of Table 1, the number of transputs are always less than -
3108z Nopt and equal to 2.5 Jog; Nypy in the Emit [1].

In Eklundh's slgorithm only 2na transputs are nesded, due to the use

of direct access transputs. So his algorithm is superior in this case. But
the algorithm described above is more general since it is applicable to
Anonsquare matrices and arbitrary square matrices, Moreovei the permu-
fation desczibed above and presemted formally in [1. eq. (1)] may be
used to generalize Eklundh's algorithm to arbitrary square matricas.
; Besides the applications mentioned in [1] and those for fast Fourier
ransform (FFT), the rithm has been used for the direct solution of
fhersson equation V'p=d in twomdthreedmmmons over a Car-
tesmn and cylindrical grid with about 105 nodex. This method will be
described shortly for the two-dxmens:onzl case of the discrete Poisson
‘equation.

(Pi1,j - 2pij+ Piea IAX® + (Byjy - 2P0+ Pigra W AY® =dyj
over the Cartesian grid

N j=1,2,--- N

g p=(- 1) Ax yn—(r—l)Ay. i=1,2,---
4with Dirichlet, Neumann, or periodical boundary conditions. The sclu-
‘hon is found in the following way (mathematically according to
Hockney [2]).

Step 1 Expand dy ; for one coordinate (e.g.. x) into “eigenfunktio-
en” dy 5 =T, Ay jexp AL 2x (- 1) (U~ 1Y/NV), and evaluate 4, ;
by FFT (N times for j = constant).

~.Step 2: Expand p; jaccordingly: p; ; ng.ﬂi.;np(\/_h(f 1
jz - 1)/N); substitution into the above Poisson equation results in NV tri-
-d:agoual Lnear equation systems for N unknowns B; ; (i = constant),

which may be solved in a direct way very easily. -
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- Step 3: Compute p;,jout of B; ; by N FFI's, each for j = constant.

ﬂe arrays dj 1 A; j: B i By .7 (£= 1, N;J = 1, N) may overstore one ai-

y S;; successively. For N 2 1000 the elements of § cannot be
!smred m the main. storage of today’s compiters. S must be cut into
3 which are swapped by hardware or software between a back-
ground storage device and the main storage.

Initially it is suitable to design the pages so that just one column .
4 = constant) can be stored in one page. Steps 1 and 3 may be executed
without problems—for each of the ;¥ FFT’s one page is nmded, and the
pages are te be read and written 4 N times.

But in executing Step 2 for each of the N linear equation solntions,
2 row {i+ constant) of § is needed. This means just one data element
Ul-lt of each page. Therafore, this step requires transputs of pages
and, thos, 4N + 2N? are needed for the complete solution.

This unacceptable high number of page swaps can be decreased
‘dramatically by transposing the matrix S according to [1} betwesn
Steps 1,2 and 2, 3. Then-only approximately (exact for N = 2", neven)

8¥ + 5N logy N transputs are required to get the complete solution.
Thus, in the case of N = 1024, by using the matrix transposing algo-
rithms, the number of page swaps are reduced by a factor of about 35.

TABLE1
OPTBATM VALUES Ngopr OF THE ROw LENGTH

1 2 3 4 5
6 7 B 9 10
12 15 - 16 18 20
21 24 25 27 ‘28
30 32 36° 40 45
438 50 54 56 60
64 72 75 30 81
B4 90 96 100 108
112 120 125 128 135
144 . 150 160 .162 168
-180 192 200 216 225
245 243 256 270 288
300 320 324 336 360
375 384 400 405 432
4438 450 480 436 500
512 540 576 - 600 625
640 648 675 720 729
768 800 810 864 900
960 972 1024 1080 1125
1152 1200 1215 1280 1296
1344 1350 1440 1458 1500
1536 1600 1620 1728 1792
1800 1875 1920 1944 2000
2025 2048 2160 2187 2304
2400 2430 2500 2560 2592
2700 2880 + 2916 3072 3125
3200 3240 3375 3456 3600

3645 3840 3888 4096
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