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Homogenized Equations of Motion
for Rod Bundles in Fluid with Periodic Structure

U. Schumann, Karlsruhe

Summary: “Homogenized” or averaged equations of motion are deduced for linear dynamic fluid-structure
interactions of rod bundles immersed in an acoustical fluid. The equations define an effective density tensor
which couples the fluid and rod accelerations. In the pressure wave equation a sound speed tensor arises. The
theory assumes that the bundle consists of a periodic lattice of cells with diameters which are very small in
comparison to the bundle diameter and that cell averages are smooth fenctions in space and time, The derivat-
ion is based on Hamilton's principle. For the specific case of circular cylindrical rods in & square pattern the
tensors are given numerically and the fluid-structure interaction effects are discussed.

Ubersicht: Es werden , homogenisierte” oder gemittelte Bewegungs-Gleichungen fitr lineare, dynamische
Fluid-Struktnr-Wechselwirkungen von Stabbiindeln in einem akustischen Fluid abgeleitet. Die Gleichungen
definicren einen Tensor der effektiven Dichten, der die Flnid- und Stabbeschleunigungen koppelt. In der Wellen-
gleichung f6r das Druckield tritt ein Schallgeschwindigkeits-Tensor auf. Die Theorie unterstellt, daf das Biindel
aus einem periodischen Gitter von Zellen besteht, deren AbmaBe sehr klein sind im Vergleich znm Bfindel-
durchmesser und daB Zellen-Mittelwerte glatte Funktionen in Raum und Zeit sind. Die Ableitungen gehen ans
vom Hamiltonschen Prinzip. For den Sonderfall von kreisférmigen, zylindrischen Stiben in quadratischer
Avcrdoung werden die Tensoren zablenm#Big angegeben und die Effelrte der Fluid-Struktur-Wechselwirkungen

diskutiert.

1 Introduction

The problem of dynamic fluid-structure interactions in large rod bundles arises, e.g., in nuclear
teactor safety analysis [1]. Here one has to establish computer models to analyse the forces on
the internal structures due to pressure waves. As yet, a model for the motions in the reactor
core itself is missing which is defined in terms of not too many parameters so that it can be
incorporated in a more general code like those described in [1, 2]. There exist analytical models
{3] which describe the motion of some rods in incompressible potential flow. Such models as
well as similar numerical approaches [4] are applicable for a limited number of rods but not for
some 50000 rods, typical for present pressurized water reactors.

Therefore, we are looking for a set of “homogenized’’ partial differential equations which
describe appropriate smooth mean values of the fluid and structural motion such that these
equations can be solved numerically with modest amount of discretization parameters. Thus
we consider the rod bundle in fluid like a porous medium or like a two-phase flow.

Reviews on homogenization are given in [5—9]. Asymptotic analysis tools for periodic
structures in continuous domains are described by Bensoussan et al. [8] and have been applied
by Ohayon [¢] to harmonic vibrations in heterogeneous elastic bodies. Cioranescu & Paulin
[10, 11] and Berdichevskii [7] have treated elastic bodies with periodic holes or incompressible
flow ({both inviscid and viscid) around periodically distributed fixed cavities. The present
approach follows the arguments of Berdichevskii [7] but extends to the case of interacting rods
and fluid and compressible flow.” .
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The main assumptions, which are employed in the subsequent theory, are

a) the configuration of fluid and structure (rods) forms a periodic lattice of quadulateral
cells with length of periodicity of order ¢ which is very small in comparison to the “diameter”’
D of the whole domain taken by the bundle. .

b) the applied forces within the domain or at the boundary and initial values, averaged ovel
individual cells, are smooth functions of space and time.

c) the fluid behaves locally like an “acoustic fluid”’, which means, the flow velocities are
very small in comparison to the speed of sound and so that convective accelerations are
negligible; the flow is inviscid and the speed of sound is a constant.

d) the sturcture behaves locally like "“rods”, which means the local deflections are approxi-
mately constant across the cross section.

Formal statements of these assumptions are given below.

In the present paper, a general theory is given to construct the homogenized equations for a
rod bundle with arbitrary periodic cell geometry. As a result effective densities and sound speeds
arise. These quantities are then evaluated and discussed for the special case of a bundle com-
posed of circular cylindrical rods in a square arrangement.

The main idea in the construction of the homogenized equations is the following. We write
down (in Section 2} the local equations and show (in Section 3) that an equivalent variational
formulation exists which is basically Hamilten’s principle [12]. We then specify (in Section 4)
the solutions in terms of trial functions which are the product (Berdichevskii {7] used sums) of
periodic local functions and smooth global functions. Equations for the local functions are ob-
tained by extremizing the variational functional for fixed global functions. Thereafter (in
Section 6) the global functions follow from the variational principle for fixed local functions.
An important aspect is the introduction of the averaged pressure as 2 Lagrangian multiplier
[12] in order to account for the cell averaged mass conservation law (deduced in Section 5).

2 Statement of the Problem

The configuration consists of a closed domain ¥ in R® with boundary 8V and diameter D. Let
¥V be composed of rectangular cells ¥,,, see Fig. 1, with side lengths !, %, &* along each of the
Cartesian coordinates x; (£ =1, 2, 3), & = max (&, &, £%) <€ D, min (&', &% &%) >> 0. The cells
are numbered with the integer vector m == (my, m,, #,). The volume ¥ is filled out by a fluid
and a bundle of rods with the rod axis parallel to the x; coordinate. Each cell contains a section
S, of one or some rods such that the cells form a periodic lattice. The rod section Sy, is surround-
ed by the fluid domain F,, = V,, — S, in the cell. The whole fluid domain F = 5_‘_, Fem is
multiply connected. The volume porosity is

e =\Fal/|Val, 0<a<1. (1}

f/ o

107
0Rn=0/p N {x3=const}
Kfﬁnu Sm

Fig, 1. Domain notations
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Let 3V}, be the cell face with outward unit normal in the direction of the coordinate x, and
8Fg, the corresponding fluid part (i = 1, 2, 3). Then we define the surface permeability

Y= pFRliavhl,  0<y <1, (2)
and the surface perméa.biiity tensor
=y, (=1,237=1213). {3)

These quantities are independet of m. The surface of the rod section §,,is 8S,,, that of the fluid
part F,, is 0F,,, both have the common interface 81y, = 8F,, n 8S,,. Examples of such a con-
figuration are sketched in Fig. 2.

For the fluid we assume the acoustic model which means
— inviscid motion
— constant speed of sound ¢, 0 < 1/a <
— equation of state relating local density ¢* and pressure ¢ in the form

0" — e ={2"—p)/a®, Py = const, g = comst 4)
— small local fluid flow velocity components uf(]uf] <€ #) which satisfy the momentum equa-
tion .
004} = —3p"(8%; + pogf (5)
and mass conservation law or continuity equation
0" = —dogu)fox; (6)

with given accelerations gi. All these fields are assumed to be smooth functions in F. We adpot
Einstein's summation convention for repeated lower indices and ¥ = dy/8¢. It is implicitely
assumed that the gradient in the pressure head gy(«{}?/2 is small in comparison to the static
pressure gradient so that the equations are linear.

Rods are characterized by the fact that the local deflections w! = wi{m, %, x,, %, 2) are
approximately constant across the rod section so that w = wi{m, x,, {}, and satisfy

Mt + § pond ds = fim, 5 0) o)

where M7 is a periodic function of x; with periodicity &3, positive definite and symmetric, and
M}; measures the effective mass per unit length of a rod. The line integral is taken over the
“wetted” circnmference in the » — x,;-plane 9R,, = 31, n {#; = const}, and #f is the unit
normal of 9 I, pointing into the fluid as sketched in Fig. 4. At this stage, the forces f2 per unit
length are taken as prescribed. The local rod density g% is assumed to be related to the surround-
ing pressure as

a J;IJ' {02 — &%) aV[i3Sml = JIIV(P‘ — po) 40{1e 1), (8)
a, = const , 0<1fa, < o0,

where 40 is a surface element.

X

i
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L
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Fig. 2 a—c. Examples for rod-bundle cells. a rod with a helical “wire", b cell out of a hexagonal rod arrange-
ment, ¢ cell of a square arrangement. Case c is considered further in Section §
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This relationship is particular useful if the rods are in fact thin walled pipes in order to account
for quasi-static compression under pressure load. Some generalizations are discussed in Sect-
tion 7.

At the fluid-rod interface 81, the normal velocity is continuous,

nEE = niwt . (%)

" The outer surface 3V of the domain with inward unit normal #, is composed of cuts through
the rods, 3Vge, and the fluid, 8V,e u 8V,e = 8V — 8V, On these surfaces, boundary con-
ditions prescribe either pressure or the normal motions, e.g.,

P=2p on 3V,
ﬂ..uf = M; on aV,‘a s (10)
naws =1, on V.

We assume that the “forces’ gf and fi as well as the boundary values #,, w, are continuous
functions of time and of space in the sense that the differences of their average values taken
over their definition domains within two neighbouring cells tend to zero for /D — 0. In the
same sense the initial values must be continuous in space. Further, these cell averages must be
slowly varying functions of the cell index so that resultant pressure waves have wave-lengths
which are verv large in comparison to ¢ and so that the differences between the deflections of
two adjacent rods are small in comparison to &.

3 Variational Formulation, Hamilton's Principle

The problem of finding solutions «{, w§ which satisfy (5, 6, 7, 9) is equivalent to finding such
functions which extremize the functional

j {”H P+ gog‘vt}dV + E f [ wiM 5w + fiw } clxa} dt (11)

d%g,m

(9} = u}, dxg m = interval which the cell m covers on the coordinate x,) with respect to virtual
displacements duf, 8w which vanish at ¢ = #, £, which are consistent with the constraints (6, 9)
and boundary conditions {10), and which are taken for fixed density ¢° The integral contains
the specific kinetic energy of motion and work done by external forces. The above statement
corresponds, therefore, to Hamilton’s principle {12].

The proof of this statement is illustrative because its basic arguments will be used later
again. The extremum requires 6] = 0:

ke
=1 {I” [ooif00f + eugt Svi) 4V + 5 [ [Mif dubi + ff 6w dxa}
? m .\‘3 m
Partial integration in time yields
Iy .
6]=‘I {III [—oo¥f + pogf] 8vF AV + X [ [—Miw] + fi] buwf d«»a} dt .

m Ax3m

The virtual displacements are not independent but have to satisfy the constraints {6, 9) which
require, for fixed density,

2(dvi}fox, = 0, n; 0v} = nj dw; .

These constraints are taken into account by means of the Lagrangian multiplier [12] (p* -~ #):

oJ : {IU (2° — 2o} B(00R)j0x, AV + 5 [ G (p* — po) mi(dv] — dw) ds d%s} dt=0.

m dxg m 8Rng
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Partial integration in space gives

o = | {m —(oprfan) AV — [ prnidws dsdx, —
h r

m ALy m B,

- § (P — b dving dO} dt=0.
Ve UV,

Becanse of the boundary conditions {10) the integral over the surface 3V vanishes. The sum of
8] and 87 results

t - : .
o =] {f 15 (et + exet — 0pf0s) 014V +

+3 J [qufffff+f$—55ﬁ'n5d3]5w?dxa}dt=0-
B8Ry

m Ax3v m

Obvicusly we have §] = 0 if the integrands are zero which is equivalent to (5, 7)., qed.

It might be noted, that we have taken virtual displacements for fixed density. This side-
condition can be abandoned by including the specific potential energy ga?(dv;dx;)? in the fluid
integral in {11) and using (4). However, the contributions from this term are irrelevant under
the condition of long pressure waves which we assumed and would unduly complicate the
further analysis.

4 Averages and Local Sclutions

Let X = (%, %y, %a) € Fpm, %3 € 4%3 m, then we introduce the approximative ansatz

wi(x, §) = u(x, &), wim, %, 1) = wj(m, %, £), (12)
with . '
W%, 1) = gy(x) Blm, ) + py(x) wi{m, ), wilm, x, i) =w,(m, 1), (13)
where we will define @, %, y, w such that suitable averages of u} — u,, w! — w; taken over the
cell vanish for e/D — 0 and such that #, @ are “‘smear” velocities and deflections. For later
reference in the mean continuity equation (Section 3) it is convenient to define cell-face aver-
ages: For any quantity y valid in F we define surface averages

5 = I[ y 40/|F %l (14)
art
and require —_ . .
;= P+ Py, =y {15a)

At the fluid-structure interface, {9) implies
nlu; = nip.h, + ufrp,-,{_:vi L ot = nio, . (15b)
From these requirements we obtain the conditions
iﬁ'—i =8y, ’yT,, =0, (16a)
ni@ilarg, == 0, NWiflor, = M - (16b})
These conditions serve as boundary conditions to determine g;; and ;. In addition we require
@;; and y;; be periodic in x, {16¢c)

" with length of periodicty equal to &*.
Due to this condition, 4; becomes a continuous function in the fluid domain for £/D — 0.
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According to the prerequisite of large pressure wave lengths we may assume that the ve-
locity field behaves locally incompressible so that

acp,-;,-/ax;zo. aw;ﬁ’axgzor j=1: 2,3, x€ Fp. (17)

For short waves one would have to introduce extra terms g{f'#® in (13) where the ¢{f are
dependent on the wave length or frequency of the pressure waves, see [7].
In terms of the ansatz-functions (13), the functional {11) becomes

&
T=[ 2 [][2 0w + asttois, + vid) | a7 +
PO

L3

+ f [% M, -+ ffﬁ,.] dzgy dt, 1.=1,. (18)
dr3m
Now we determine g;;, ; under the constraints (15, 46, 17) such that they extremize (18) for

fixed 7,, @; and zero forces. Because of the periodicity and the time independence of ¢,;, v;;,
it suffices to consider one fluid cell F, for any time instant where we have the condition

8Jm 1= i‘ ) Qu(‘Pij:;),' + V’i1'_£;’,') (Opaty, + Spu,) AV = 0.
The constraints (17) are taken into account by Lagrangian multipliers @, ¥';:

= 2 — @ - :
0Jm 1= fjf Qﬂ(dji”,‘"i" ’:E’,.w:.) 3%; (puv; + Spw) &V = 0.
'Fm

Partial integration in space yields

= E = = K R
8w = [ [ [ = o5 @+ B ) G, + oy av —
Fm
— [ [ (@, + 25 nitogud, + dpais) 40
ar

Here, the surface integral is zero because g;; and y;; have to satisfy (16b). The sum § Tm + 6]t
vanishes if

@y = 3P[0z, , yi; = 0¥ ox, (19)
and, again because of (17),
*d Joxf =0, 2P foxt =0, i=1,23, xeF,. (20)

We note that (19) is consistent with irrotational motion but we did not use this assumption.
We see that gy, ,;; are determined by solutions of Laplace equations (20} with periedic bound-
ary conditions and prescribed normal gradients at the fluid-rod interface (16). After suitable
transformations, see appendix, these solutions can be computed with standard numerical me-
thods.

The local solutions @;, y; extremize the functional for zero forces. In this sense they are
. local eigensolutions of the differential equations with zero eigenvalues and (164, b) appear as
normalization conditions on these eigenfunctions.
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5 Averaged Continuity Equations and Equations of State

A prerequisite for the next step, namely the determination of equations for #;, w,, is the esta-
blishment of a pendant to the local continuity equation (6) in terms of averaged quantities.
This averaged continnity equation defines the constraint which will be satisfied by means of
the cell averaged pressure. Also we have to establish relations between the averaged pressure
and averaged densities from the equation of state {4) and (8). :

For smooth fluid fields the local continuity equation (G) is a consequence of the integral
mass conservation principle

‘—:?jjf g dV = — ﬁ nfulg® 40 {21a)
Fm oF,

m"”m

(#f = outward normal on the surface 3Fy, of the fluid cell Fy). Here, Fr, and S, are time-
dependent according to the moving interface 81,,. For the same reason the flux acress 81, is
zero and this part is excluded from the surface integral, therefore. Likewise we have for the

structyral {rod-) density g .
2 [[fear=- ﬁi wSintel dO . (211b)
S 85,

m_l“m
Because of the assumed long pressure waves and for e/D — 0, p* = p, = const, g; = @ == const
within each cell so that

I g dV = o |Vl , £II o 2V =gt — o) |Vl , (22a)

where « is the porosity defined in (1). The surface integrals on the right of (21) can be taken as
the sum of integrals over the different faces 2Fg,, 89Sk, of the considered and adjacent cells.

Eg.,
8
§ ATulprd0 =3 % [” ufdo — ff dO]. (221)

BF g —8ly, i=1| gFi, Fm s
The integrals over 8F%, are related to the velocities %; defined in (15a)
[f 6 dO = u; |3F| = yiu; Valle . (22¢)
aFh
Similarily,
[ @ d0 = w; |85k
5%,
= (8 ~ vi) ©; |VanlfE . (22d)
From these relations together with the definitions of finite differences

Ay = [y(x; + £)2) — y(x, — &2}/, (23}

and #f = —af, nful = slw®, one obtains
a — - -
o o] = —edyu;, - (24
8 - - -
7 (1 —a) o] = —o. A6 — vi) ] . (25)

For abbreviation, we define the ‘‘connectivity’” tensor
:"C,'j = 6,'_.,' — Yij - (26)
From (24, 25) one can eliminate da/d¢ and obtains
_‘la_E (1 — o) dgs

e o s o

+ Ay, + mw] = 0. (27)
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In the limit &/D — 0 one can replace the discrete functions %, ®,, g, p, by fields u;, w,, g, p,
which have the following properties: they are defined everywhere in ¥, are “maximally
smooth” interpolations of the discrete fields as defined in [7], and, for a certain x' ¢ V, they
satisfy -

(w12, 0, 0,) (m, 8} = (1, @5, 0, 0,) (X, 8) . {28)

In the same limit, finite differences become differentials so that the averaged continuity
equation becomes
-1 ag {1 — o) 8o,
3 o

3 .
+ e [vaite; + mw] = 0. (29)

Finally we need averaged equations of state. From (22a) and (4) follows

i—o=x|[[ & — s aviFal. 303)
Fm
and from {22a) and (8)
a—d =5 | [ @ ~sddomral. (301)
#/m

As $f is a smooth function in the fluid,
b= 1] p*aV(|\Fml = [] $* d0/13 ] (31)

and the discrete function p(m, #) approaches the smooth function p(x, #) for e/D — 0 in the
sense of (28). Therefore, for ¢/D ~+ 0, the averaged equations of state are

¢ — 0y = (p — po}la®, {(322)
g, — o = {p — pofas . (32b)

6 Homogenized Momentum Equations

We now have the tools to establish the homogemzed momentum equations. We requu-e that

the discrete functions u;, respectively v; with #; = v, and #; extremize the functional J g
ven in (18} with respect to variations 61: dw; which vanish at ¢ = ¢ and ¢ = 4, and are con-
sistent with the averaged continuity equation {29). By the same way, we also will obtain

liomogenized boundary conditions. The variation of J, after partial time integration, yields

87 —f T{ 111 [—colpsity + i) + 008D (nd?, + pandiey) AV +Af [— M, + f7] dy GW}dt
33)

As gy, 4, are now known functions, we introduce abbreviations which have the meamng of
“‘effective” densities and forces per unit volume.

olf == |V_1ml IJJQU’PM?’H av, (34a)
o= [m v dV + | M fzx._‘] (341)
gl o= ﬁ’-.;-l J-JJ‘ 2Pt AV . ofl = o (34¢)
Fm
Bl =i | j [ eotisav . (34d)

Film, g = [moog,w,. v+ [ f dxs} (34¢)

433, m
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The densities in (34a—c) are independent of &/D. Because of (17, 19), the volume integrals in
(34a—c}, by Green'’s theorem, convert into surface integrals, e.g.,

I5F ouips; AV = § Pk (0F ;/0%,) dO . : (35)
P F
With the definitions (34), Eq. (33) reads

— [

6] = [8]di=0,
. . (36)
6f 1= T lel{[—Q{;UJ -'-VQ’E‘}W,—I—g,-] 6“;+£“"Q:}!v;_92;w"+ﬂ‘} dw, .

Now, we take the limit ¢/D — 0 so that the sum over all cells becomes the integral over ¥ and
the discrete fields are replaced by continuous ones according to (28) and similarily g,(m, f),

fim, 4 by g(x. 9), fi(x, 9
aj =1 15 ity — eliio + gl v + [—oifi; — offio; + f) bw;} aV . (37)
The virtual displacements 8v,, dw; have to satisfy the constraint

[ysidv; + 70w ]/ox; =0, {38}

resulting from (29). This constraint is taken into account by a Lagrangian multiplier i{x, f).
It appears to be consistent to identify 2 with the averaged pressure, A(X, £) = p(X, t) — $q.
Partial integration in space as in Section 3 yields

6 1= {, [1 (b — po) Blyiibu; + mbw))jox, dV
= —[If (@pfox) [yadu; + 7 6w,) 4V — & (b — po) milysyd; + mijdewy] 4O (39)

The surface integral vanishes if the homogenized boundary conditions have the form

p—p=0 on 3V,ciV, (40a)
nas, =wu, on 3V —aV,, (40Db)
nw;, =w, on 3V —3aVv,, (40¢)
where
#, 1= lim { i %l d0/|6Fmn avz}, (40d)
&/ D+0 |8Fgy nal
wi=1lim | [] w@d0/|3Smn aV|} : {40¢€)
e/D—+0 |85y, ndV
From the sum 5_7 + Jj' < 0one finally obtains the homngenizéd momentum equations
olfit; + efsiv; = & — y: 8p/0x;, (412)
oifie + ofjie; = f; — m; 2p)ax; . {41D)

7 Discussion

Equations (29, 32, 40, 41) specify the homogenized probler: in terms of smooth functions which
are defined everywhere in ¥. These equations can be solved with much less numerical effort
than the original equations. Moreover, the equations offer some interesting physical insight:
Equations {41} show that the effective density is essentially different from the local scalar
-densities or their volumetric mean values, the "‘smear density”

e =gy + (1 —a)es. (42)
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“Virtual” or effective tensors arise. This means that the acceleration vectors of the fluid and
rods may have directions which differ from each other and the direction of the pressure gra-
dient. Moreover, there will generally be a slip in the accelerations between fluid and rods (or
structure).

From (29, 32, 41) one can eliminate the velocities and density changes so that one obtains
a-wave equation for the pressure in the form

= a[(a¥), (9p/ox)) + kdfex;, (43)

where effective speeds of sound 4 appear. We do not write down explicitely the lengthy ex-
pressions which define these quantities and the “sources” k; but note that the effective speed
of sound is a tensor as one might have expected for a nonisotropic body.

The “connectivity” xy;, defined in (26) in terms of the permeability y,; can be zero, which
is the case for rods which have a geometry like “beads’’ on a string and where the cells are
defined such that the beads are completely internal to the cell (35 n 8V, = C). In such cases
the pressure gradient has formally no direct impact on the structural motion rather than only
by means of the induced fluid accelerations. This example also points out the fact that the
homogenized densities and connectivities change if we change the definition of our cells by all
shifting them by fractions of ¢ in any, direction. For example, one can define the cells such that
the rod centerline passes through the cell mid point or through the cell corners. On the other
hand, if the cell contains rods which have the form of many small particles of more or less
random distribution and characteristic diameters which are small in comparison to £ then the
permeabilities »* become all equal to the porosity « as has been shown by Bear [13, p. 20]. For
such porous bodies the sensitivity to the geometric definitions dlsappea.rs

This dependence on shifts in the cell definition has its reason in the fact that ' is defined
by (15a) such that it represents the surface-mean fluid-velocity. This definition was technically
necessary for the deduction of the averaged continuity equation (27). Also, boundary conditions
at 2V are more naturally expressed in terms of surface mean values. The surface mean values
differ from the volume mean values unless * = a, £ = 1, 2, 3 (in which case m; = 8;(1 — a)).
The difference is due to a nonzero-volume-mean fluid displacement velocity implied by a unit
rod motion within the cell. The transformation to volume mean velocities with equations which
are independent on cell shifts is possible and will be given in a subsequent paper.

In the present theory we have assumed that the local fluid and structure motions in each
cell in each coordinate direction are resolvable by one degree of freedom (%, or ;) only. Thisis
sufficient if only long pressure waves have to be taken into account and if relative motions and
rotations within the rod cross-sections contribute only negligible amounts of specific kinetic
and potential energy, see the note at the end of Section 3. Higher order approximations can be
constructed by introducing extra terms giPu® + ¥z and 7¥w!* in (13) where @i etc.
are the higher mgensolubons of the local ﬁeld equations. Such hlgher order approximations
become necessary if /D is not very small. For example this might be the case if the rod inthe
cell is effectively a rod bundle itself, like the fuel element in a nuclear reactor. It is planned to
investigate these questions further by means of direct numerical integration of the local field
equations for some relevant examples and comparison with the results of homogenized equat-
ions, as has been done for elasticity problems by Ohayon [9].

A further question concerns the treatment of flows with large convective accelerations. We
propose to treat such accelerations like the prescribed acceleration g;.

It should be noted that the present theory is readily extendable to cases where the rods
experience conservative forces which are gradients of a potential U = U(w}(m, #), dwi(m, #)/0x,,
9%wi(m, #}/0x3), e.g. due torod bending, because such a potential is easily included in Hamilton's
principle. Also friction forces, provided that they can be expressed as the gradient of Rayleigh’s
dissipation function [12], can be included in this manner.

In comparison to theories in which the homogenization corresponds simply to averaging the
local equations (see e.g. Sha et al. [14]), the present approach has the advantage that it explici-
tely constructs the effective material properties which account for the local phase interactions;
" it has the disadvantage of being restricted to problems for which a variational principle can
be defined. Ultimately, perhaps both approaches should be merged.
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8 An Example: Circular Cylindrical Rods in a Square Pattern

For the case of cireular cylindrical rods of radius R in a square pattern with center-to-center
distance (“pitch”) d (see Fig. 3), the effective densities (34a—c) are given quantitativelyandin
terms of asymptotic formulae below.
Let the cells be defined as mchcated in Fig.3 with side-lengths ¢ = & = &% = % = 4,
Then we have
a=1—nRd?, pP=yt=1, Y=ua,
By (51, %) = Dolta, — ) = 2wy, m) . Wiy, %) = Palwe, — 51) = 2 (5, %)
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Fig. 3. The considered rod bundle Fig 4, Section of cross-section with definition
(with only a few rads) of boundary parts

The functions ™, & = £, 5, arein principle sclutions of Laplace equations as defined in (16—20).
However, because of symmetry and continuity it suffices to consider a quarter of a two-di-
mensional %, — %,-cross-section of a cell as shown in Fig. 4 with boundary conditions as given
in Table 1.

Tabie 1. Boundary Conditions of g, & = £, 5

boundary, quantity . value for y
see Fig. 4 ;*““——'—"'{ ﬂ e
0B, ny(dgfdr;) = 0 My
3B, X = s 0

0B, u 88, n;(dxfox;) = o o

2
0B, = const, = J. 1 0
85,

Tbe solutions x*™ have been computed using the integral equation method of Papamichael
& Symm {15]. From the results the nondimensional integrals

" 4 . .
L — 7z J- x(l)nkax(ﬂ‘taxk ds (45)
§B,uBB,
are evaluated so that the density tensors, see (34, 35), are

oft = diag (go I, oo 1%, wgy) ,
ofy = diag (g, T, g, I*, 0}, (46)
off = diag (g0 4 (1 — &) 0% eo* + (1 — ) o), (1 — @) @) -
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We could now report the numerical values for I to complete the equations. We prefer,
however, to give these integrals in the form

I = kI, (47)

where [¥ are approximative values for which we give analytical expressions below, and %
are "‘correction factors” which are plotted in Fig. 5. Approximate analytical formulae are
desirable for further insight. Such approximations are obtained if we replace the quadrilateral

cell by a circular eylindrical one with the same volume, i.e. outer radius &, = d/l/:;, as shown
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Fig. 5. Numerically evaluated correction {actors, seec Eq. {48) Fig. 6. The circularly approximated cell

in Fig. 6. This particular configuration has been considered also by Fritz [16]. Let us define
functions ¥¥, & = f, 5, which are solutions of Laplace equations on the circular cell, analogues
to x™™, and satisfy the boundary conditions

aFh oz}

5 =cosp, 5 =20 at *r=K,,
a7 ayls) _ R (48)
mar=0, 5 = Cos @ at r=R.
The sclutions are
- R2 24 I - R 24 R;i
il = ®_F cosp, Y=g @, o059 (49)
With these potentials, the approximate integrals are defined by
23
~ 1 R
I == ;JT:? J. x(c)(ax(ﬂ/a,,) ¥ dtp];:? , (50)
H
with the results :
We14+1,, I = (1 + I,) RYR2, ‘
v (1 ++ Ip) R¥E:, | 59)

B fte T, I,=iRYE-RY. |

Fig. § shows that for large values of &/(2R) the correction factors tend to unity so that the
integrals I* are the asymptotic values of I for d/(2R) — oo. The sketches in Fig. 7 illustrate
the flow fields which are represented by the potentials x™® or ®: ' is the potential for unit

_flow through the rod bundle in the x;-direction for fixed rods. The quantity x*! is the potential
induced by a unit motion of the rods in x;-direction with zero fiuid flow across the cell bound- -
aries, as regunired in (16). In the x,-direction, the flow field has the same picture.
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Fig. 7. Sketch of flow fields corresponding to potentials /) (left) and xis} (right) for the guadratic cell and its
circular approximation

In case of zero external forces, one can eliminate the rod accelerations from (41 b) and obtains
for the present example, e.g. for the x-components,

aafligl = _aj)l’axl ’ (52{1)
P 1= oy — (efD)¥eil, {52b)
fiy, = —glifeii - (52¢)

Using the asymptotic results, one finds for d/(2R) 3> 1 with » := g}/,

e R + R 2R® 2R2

% H-B E-BaE BRI E (532)
Bt _ RUMRL + Y + RE— RY (53b)
2 R - )+ Rt R R R 3
Wy aR?

T MR+t R (33¢)

Thus, the “‘dynamically effective” density gy, (52b), is essentially different from the “statically
effective’” smear density, (42). For g2 <7 g, the effective density .y is smaller than min (gg, 0);
the rod represents a hole which enlarges the “fluidity’ of the fluid. For g% > g, the effective
density is larger than the fluid density; the rod narrows the flow path and thus enlarges the
effective fluid inertia. For ¢? < g, the local rod acceleration is larger than the mean fluid acce-
leration and vice versa.

The pressure wave Eq. (43), for zero applied {forces, takes the form

- o o2 a2p o %P
B=at| 4+ T+ (542)
where
SRR CINET |
¢ =l ] (541)
s_[& -]l & | (1— a:)]-l .
&= [Eo + o ] [eoﬂ’ + P (54c)

“are squared components of the tensor of effective speed of sound. Obviously, these quantities
are strongly influenced by the fluid-structure interactions and anisotropic.



- Appendix: Computation of &, P,

The computation of the potentials ¢",-,}lfj, 7 =1, 2,3, as defined by (16, 19, 20), is not amenable
to standard numerical procedures, because (16¢c) requires periodicity of the gradients rather
than of the potentials themselves. However, @; and P, can be expressed in terms of a single
potential X4, which is periodic

Xilisg? + 2y, dg® - %y, e® -+ 5) = Xi(my, %, %) (55)
for integers 7, satisfies the Laplace equation, and the boundary conditions
ni(@X[ox) = nf at 8ly. (56)
Let .
by 1= OX*ox; — by (57)

(Often, e.g. for y* = 0 or for planes 3V* through which the rod passes such that the normal %}
lies within this plane, one can show that by == 0 for j == k. This means that in such cases by
is a diagonal tensor. In general this is not the case but we assunie, without proof, det {b,) = 0.)

Then the solution of
b;q'@’v = Xk — Xp, 'tp]. = (961- - @]) (58)

are the requested solutions satisfying (16, 17, 19, 20).
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