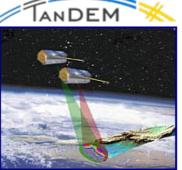


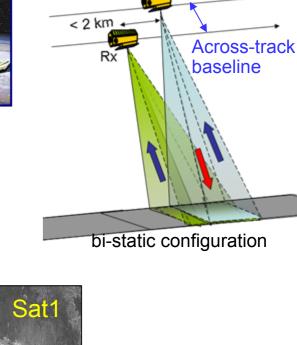
TanDEM-X DEM Calibration Concept and Height References

Jaime Hueso González Markus Bachmann Hauke Fiedler Gerhard Krieger Manfred Zink

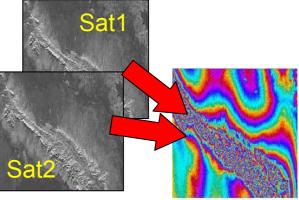
Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen – 06.06.2008

Index


- 1. Introduction
- 2. Objectives DEM Calibration
- 3. Phase and Baseline Errors to Height Errors
- 4. DEM Calibration
 - 4.1. Simulation
 - 4.2. Error Modeling
- 5. Height References
 - 5.1. Types
 - 5.2. ICESat
 - 5.3. ICESat Data Application
 - 5.4. ESAR Campaign Miesbach
 - 5.5. ICESat ESAR SRTM Comparison
- 6. Conclusions Height References
 - 6.1. Summary and Fall-back solutions
 - 6.2. Other recommendations
- 7. Outlook



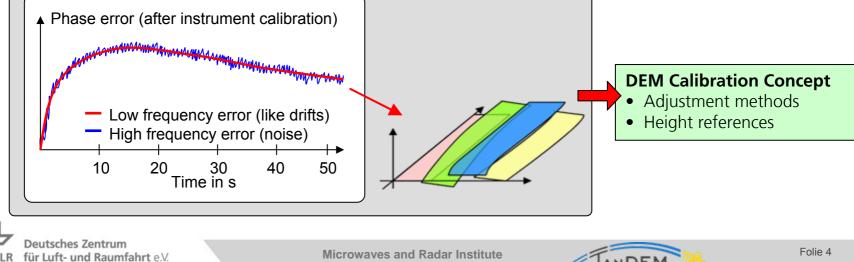
1. Introduction ERRA SAR X


- → Bi-static satellite operation: TerraSAR-X (launched June 2007) and TanDEM-X (previewed for September 2009)
- → SAR-DataTake → Sat 1: Tx+Rx Sat 2[.] Rx
- Synchronisation required
- Calculation of an interferometric image via phase difference of images
- Derivation of DEM
- ✓ Remaining errors after instrument calibration: baseline and phase errors \rightarrow Height errors

Along-track baseline

Tx, Rx

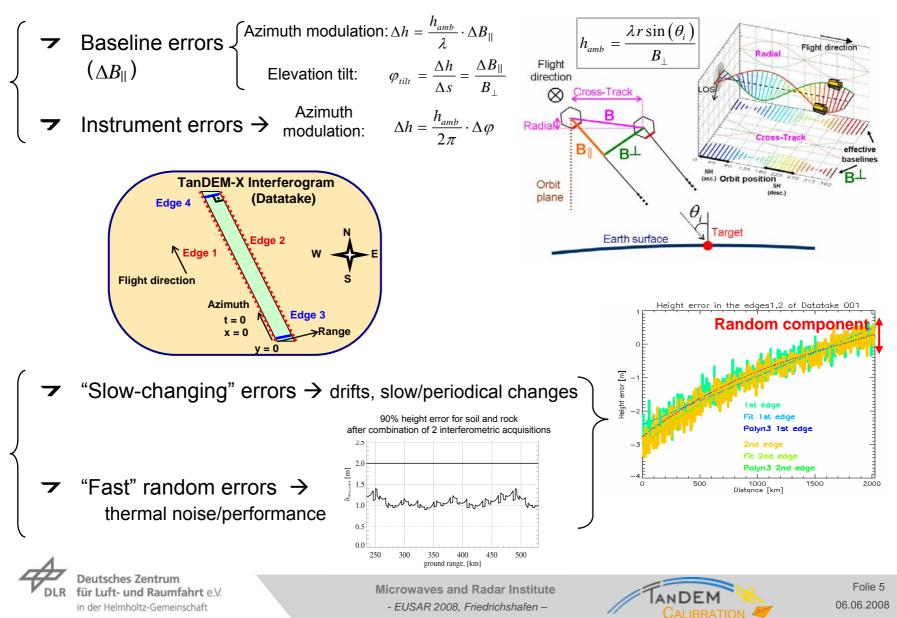
Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen -


2. Objectives – DEM Calibration

✓ Global DEM HRTI-3-"like" within mission time (3 years)

in der Helmholtz-Gemeinschaft

Requirement HRTI-3	Specification	HRTI-3	
Absolute vertical accuracy (global)	90% linear error	10m	
Relative vertical accuracy (100 km x 100 km)	90% linear point-to-point error	2m (slope<20%) 4m (slope>20%)	
Horizontal accuracy	90% circular error	10m	
Post spacing	Independent pixels	12m	



- EUSAR 2008, Friedrichshafen -

3. Phase and Baseline Errors to Height Errors

3. Phase and Baseline Errors to Height Errors (cted.)

- ✓ Random errors (1.5m) almost exhaust all the relative height error specification (2m)
- ✓ Assumptions:
 - ✓ DEM is calibrated in absolute height (Height references)
 - ✓ Processing solves most of the phase unwrapping errors
- ✓ Rest of the remaining errors have a systematic nature

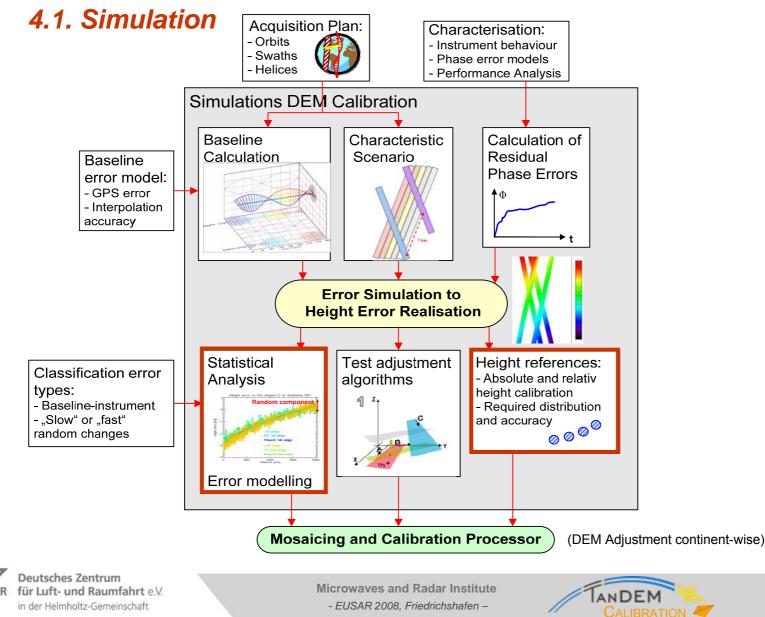
Example:

Incident Angle	Normal	Height Errors (for h _{amb} =35m)			
	Baseline (h _{amb} =35m)	ΔB = 1mm		$\Delta B_{\perp} = 1 \text{mm}$	
		Δh	∆h/∆s (tilt)	∆h (h=9km)	
30°	260 m	1.1 m	3.8 mm/km	3.5 cm	
45°	439 m	1.1 111	2.3 mm/km	2.1 cm	

- The matrix 1 mm ΔB_{||} → height offset of 1.1 m in the datatake
 Translated to specification region (100 km × 100 km) → potential non-compliance
- The vertical displacement and the tilt in range would also directly follow the time evolution of the parallel baseline error

✓ Necessity of DEM Calibration

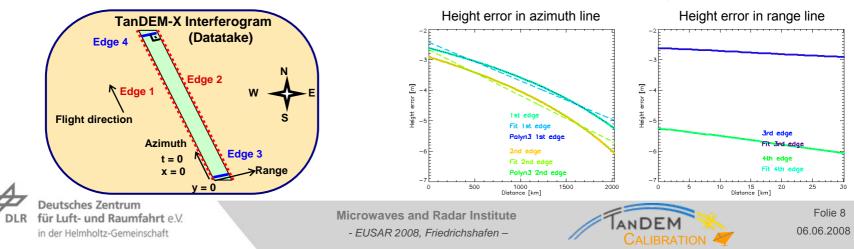
→ absolute : height references
→ relative : overlapping regions of DEMs



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

4. DEM Calibration Concept

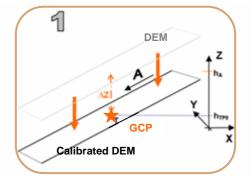

Folie 7 06.06.2008

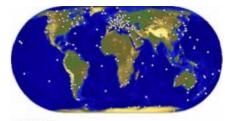
4. DEM Calibration Concept 4.2. Error Modeling

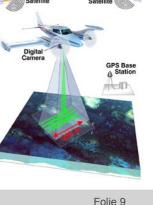
- Statistical study of the systematic height error behaviour in different zones (latitudes)
- ✓ Confirmed assumptions regarding height error evolution (see table)
- ✓ Therefore → 2D height error evolution can be approximated by functional descriptions
- ✓ Statistical analysis → derive coefficients of the following functional model (to be implemented in the MCP)

$$g(x, y) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + b_1 \cdot y + k \cdot x \cdot y$$

- Least-squares adjustment with constraints
- → Principle: heights in overlapping areas should be nearly identical after correction \rightarrow correction parameters can be found independent from terrain types


Height error evolution	Azimuth	Range
Fitting function	3 rd order polynomial	linear


5. Height References 5.1. Types


- Absolute and relative height calibration requires accurate height references:
 - ➤ Adequate distribution depending on data take scenario
 - → Coverage on all significant isolated land masses
 - ➤ Controlled accuracy are pursued
 - Independent from sources used for validation
- - → Good coverage for hooking in the DEM
 - GPS stations, ICESat...: very useful in regions of the planet where local height data are limited/unreliable/unavailable
 - Open terrain height references preferable: uncertainties between terrain and surface models do not need to be considered
- → Local DEMs and references
 - ➤ Airborne Lidar DEMs, GPS tracks...: more accurate, but more cost
 - ➤ Limited coverage
 - Certain interest regions: highly accurate height references required to fulfil a HRTI-4 standard (secondary mission goal)

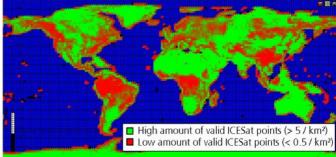
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

06.06.2008

5. Height References 5.2. ICESat

- Satellite with a laser altimeter (GLAS), Launched in January 2003 performing global elevation measurements of land, sea and ice
- Elliptical footprints of 60 m diameter, 170 m in along track distance, 80 km across track separation; 91 day repeat cycle
- ✓ Good absolute accuracy: <<u>< 0.5 m (slope < 3 m)</u>


< 1.0 m (slope < 10 m) Slopes determinable from ICESat products

Bibliography:

- J. Abshire, et al. "Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance", Geophysical Research Letters, Vol. 32, 2005.
- E. Rodriguez, et al. "An assessment of the SRTM topographic products", Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp.,
- ✓ Improved DEM accuracy as a secondary mission goal (HRTI-4 standard)
 → ICESat database can be applied

Global coverage

(actually over 1 billion measurement points)

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

Folie 10 06.06.2008

5. Height References

5.3. ICESat Data Application

- ✓ Main height reference source for TanDEM-X
- → Elliptical footprints of 60 m diameter
- Pulse characteristics
 - Decomposed in 6 Gaussians

 - More peaks (trees, slope, scattering)
- ICESat Data Packet Parameters: Evaluation and classification information for each measurement point
 - DEM height
 - SRTM height
 - N. Peaks
 - Sigma width/saturation
 - Slope
 - Cloud layers
 - ✓ Surface properties
 - Region type
 - Additionally MODIS vegetation coverage data

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

-Threshold

(nsec

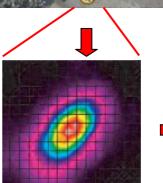
S1869_h=259.388m_6pl

IS1870_h=268.731m_5pk

IS1871_h=270.493m_4pk

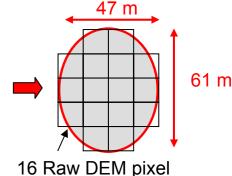
IS1872_h=273.4731n_4pk

191374_1=274.6246_4pt 191375_1=285.132m 1pt 7810 191875_1=268.637m 1pt 5315

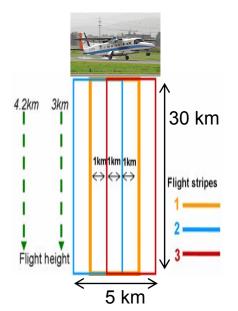

IS1877_h=267.580m_1pk_6010

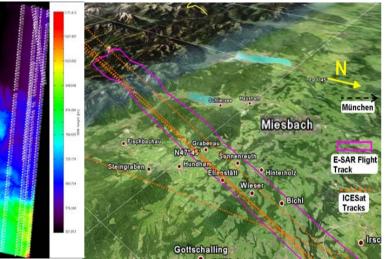
IS1878 h=268.533m 1pk 5520

Folie 11 06.06.2008


no [0]: 5510e

S1873_h=276.445m_5pk

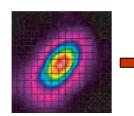

1879 h=272.895m 1pk 0120

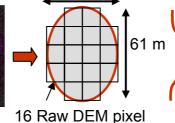

880 h=271.869m 1pk 5900

5. Height References 5.4. ESAR Campaign Miesbach

- Flight campaign of the Experimental Airborne Radar System (E-SAR) close to Miesbach, Munich
- ✓ Acquisition region: flat land, forests and mountainous areas
- Three parallel overlapping stripes of 3 km width and 30 km length (two acquisitions/strip, with different flight heights)
- ✓ ICESat height references available over this area (several tracks)
- ✓ Goals of this campaign:
 - Assess the accuracy of ICESat data
 - Precision over different terrain types
 - Dual baseline phase unwrapping
 - Averaging of the ICESat footprint pattern
 - Averaging of E-SAR/TDX DEMs around tie/control points
 - Height calibration/mosaicing/trend identification
 - Identify highly forested regions with MODIS vegetation coverage data

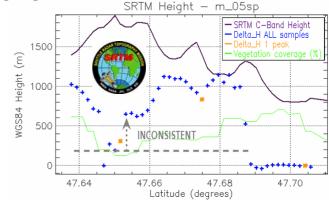
Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

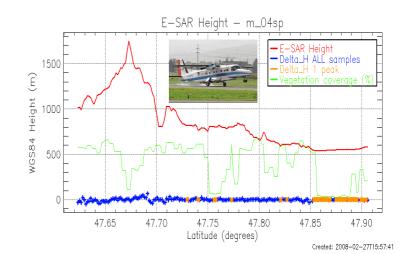



Folie 12 06.06.2008

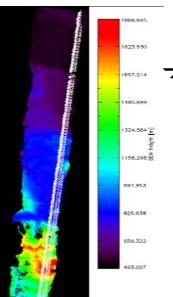
5. Height References 5.5. ICESat – ESAR – SRTM Comparison

- E-SAR DEMs calibrated in absolute height by means of several corner reflector ground control points measured with differential GPS
- First check with SRTM C-band DEM data (90 m resolution and ±8.5 m vertical accuracy at 90%)
 - ✓ Inconsistence of several ICESat points
 - Possible cloud reflections. But NO flag
- Height difference ICESat ESAR/SRTM after averaging ESAR samples with the ICESat footprint model
 47 m



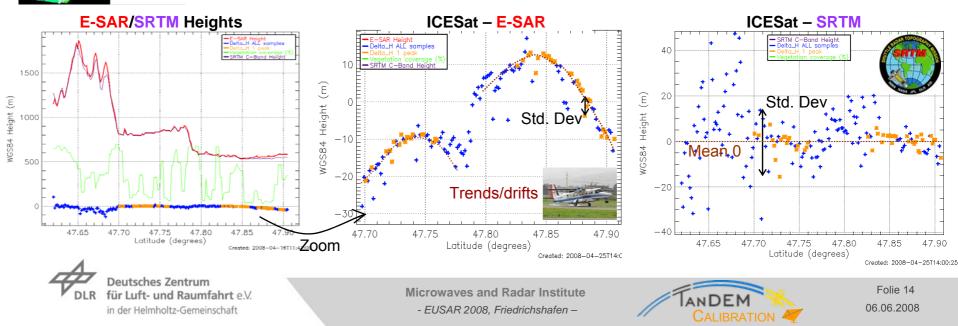


- ✓ Comparison plots with difference points
 - Orange points: "good quality"
 - ✓ Blue points: scattered echo


Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

Folie 13 06.06.2008

5. Height References


5.5. ICESat – ESAR – SRTM Comparison (cted.)

Results ICESat (track Autumn 2005) – ESAR / – SRTM comparison :

Drift in the E-SAR DEM, due to plane motion compensation methods

- → SRTM DEM mean differences are \approx 0 (shows no trends)
- ➤ However stddev of I-ESAR differences (~2m) < I-SRTM (~10m)</p>
- If drifts solved, accuracy of ESAR is higher, more suitable for ICESat accuracy study

5. Height References

5.5. ICESat – ESAR – SRTM Comparison (cted. 2)

→ Statistic SRTM Differences

- "Good" points have much better results than scattered
- Better than accuracy specifications

	Δ ICESat – SRTM C-Band Heights (m)			
	Reliable points (1pk)		All points	
Track	Mean	StdDev (1 σ)	Mean	StdDev (1σ)
All	-0.002	3.5	-0.061	10.0

- ✓ Validates ICESat height values, but not exact accuracy
- → Selection criteria for ICESat Data:
 - Inconsistencies pre-selection with SRTM C-Band; threshold : 200m difference (Web SRTM Database is more accurate than the parameter in ICESat data package)
 - 2. Only good echoes with 1 peak and narrow sigma (threshold)
 - 3. If not enough "good" ICESat height samples available in a certain region: the best "scattered" samples can be extracted by relaxing the *n.peaks* and *sigma* thresholds
 - 4. Vegetation, terrain type, saturation, cloud layer parameters as a quality selection criteria (work ongoing)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

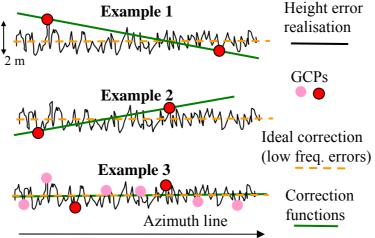
Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

6. Conclusions Height References 6.1. Summary and Fall-back solutions

- ✓ SRTM (C-Band, X-Band) for coarse absolute height offset calibration of the TanDEM-X DEM
- ✓ Main source of height references in the fine DEM Calibration: ICESat

Function	GCP source	Coverage	Accuracy	Quality parameters	
PRELIMINARY absolute height calibration	SRTM	C-Band: almost Global (56°S-60°N) X-Band: 56°S-60°N , but big gaps	8.5 m ~ surface slope and roughness	Height specifications	
MAIN absolute and relative height calibration	ICESat	Global	0.1 m - 1 m (weather/ terrain)	Accuracy info/sample HRTI-3 (even HRTI-4) – after pre-selection	
SECONDARY absolute and relative height calibration	Ocean-land	Global (theory); restricted to optimal along-track distance and no ocean currents	0.5 m	TBD	
	Lidar/Airborne DEM	Local	0.1 m – 0.5 m	HRTI-4	and the second
VALIDATION	GPS tracks	SRTM campaigns; selected regions	0.5 m	Height specifications HRTI-3	18TN

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft


Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

Folie 16 06.06.2008

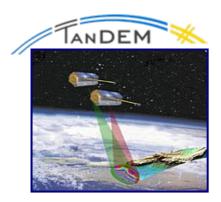
6. Conclusions Height References 6.2. Other recommendations

- Max distance between GCPs: 200 km Regions with lower density of high quality height references: crossing orbits
- Averaging of GCP height values: increase their stability minimizing the random height error

 Flat areas: TanDEM-X heights can be averaged with neighbouring pixels to compare its height with ICESat (implicitly done: ICESat footprint has a bigger surface than the TanDEM-X DEM resolution)

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

7. Outlook


- ✓ Improvement in the ESAR DEM: more reliable ICESat accuracy study
- imes ESAR analysis → ICESat selection criteria
- ✓ Other validation activities related to the ESAR experiment:

 - Mosaicing
 - Test Mosaicing and Calibration Processor execution chain (functional correction model)
 - ➤ Assessment of the X-Band height accuracy over forests.
- → Laser DEM

End of the presentation

Questions? Suggestions?

Microwaves and Radar Institute - EUSAR 2008, Friedrichshafen –

Folie 19 06.06.2008