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Numerically simulated turbulent pressure fields in a plane channel and an annulus with a 5 : 1 ratio of radii are used 
to evaluate the spatial structure of pressure fluctuations at the walls. Wall-pressure correlation functions in the axial 
and azimuthal directions, spectra, correlation functions and angular correlations of the forces acting on the cylinders 
of the annulus are considered. It is found that no correlation exists between the pressure values at two points which 
are diametrically opposed to each other in the annulus. The spectrum of the forces starts with a zero value for small 
wave numbers, reaches its maximum at about unity wave number and then decreases, as a -7/3rd power of the wave 
number. 

1. Introduction 

The turbulent flow of incompressible fluids in an 
annulus and a plane channel has been simulated by 
means of a finite difference scheme [ 1, 2]. Here, the 

resultant three-dimensional and time-dependent press- 
ure and velocity fields are used to investigate the spatial 
structure of the fluctuating pressure at the walls. The 
resultant forces acting on the inner and outer cylinders 

of the annulus can be found from these pressure fields 
by proper circumferential integration. 

These forces are able to induce vibrations of the 
inner and outer cylinders. Such vibrations are expected 
for fuel rods in nuclear subassemblies and might cause 

serious damage. This problem has been studied by 
many authors [3-7] .  Because of the need for an inte- 
grating device there seems to be no direct way of 
measuring the forces experimentally. This can be done 
very easily numerically once the pressure field at a 
specific time is known. The pressure fluctuations in the 
numerical model are the consequence of turbulent 
motion only. So we are not confronted with the prob- 
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lem of discriminating the fluctuations caused by the 
experimental test loop [7]. In fact, the results presen- 
ted here may help to distinguish between these types 
of pressure fluctuations. The main point to be proven 

in this paper is the feasibility of the numerical approach. 
Some limitations in accuracy do exist, however, as will 

be discussed below. 

2. Specification of the computer experiments 

We consider a plane channel and one concentric annulus 
with R2/R  a = 5 as the ratio of radii. The flow is assumed 

to be incompressible, highly turbulent and steady state 
in its statistics. The mean flow direction is axial. The 

coordinates are (x l, x2, x3) for the plane channel and 
(x, ¢, r) for the annulus ;x i  andx  are the axial, x3, r 
the cross-stream and x2, ¢ the azimuthal directions. All 
dimensional variables are scaled by the friction velocity 

u0 = ((two)) q2 and the distance D = R2 - Ra between 
the walls. Here, (rw0)is the algebraic mean of the time- 
mean wall stresses (rw) and (rw2) (each divided by 
density) at the inner and outer wail (r = R 1, R2): 

(rw o) = (Rl(rw~) + R2(rw~))/(R1 + R2). (1) 

The Reynolds number defined by the distance D, the 
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kinematic viscosity Vo and the mean axial velocity is 
equal to 3 x l0  s. The viscous diffusion is negligible, 
except for a thin sublayer adjacent to the walls. 

The method is a finite difference scheme as described 
in ref. [ 1 ]. It integrates the Navier-Stokes  equations 
directly, giving the gross scale structure of  the turbulent 
flow as defined by the resolution on a grid. The sub- 
grid scale (SGS) motion not resolvable by the grid has 
to be described by some SGS theory [1, 8]. This theory 
is based mainly on the assumption of local isotropy 
and Kolmogorov's energy spectrum. Since the power 
spectrum of the pressure fluctuations decreases as k -7/3, 

where k is the wave number [9], we neglect contribu- 
tions of the SGS motion to the pressure fluctuations. 

No-slip conditions are used at the wall and period- 
icity is assumed in the x l  x2-planes. Taking the di- 
vergence of  the Navier-Stokes  equations we obtain 

the following Poisson equation to determine the fluc- 

tuating pressure field [ 1 ] : 

3 2 3 3 

3x 2 P - 3x i Oxj (uiuj). (2a) 

Here, p is the pressure divided by density, u i are the 
velocity components  and the summation convention 
applies. From the normal component  of the Navier-  
Stokes equations we get the following boundary con- 

dition for the pressure gradient at the walls: 

3 p _  02u3 3 13u 1 3u21 
/') 3X23 -- --/) 3X~-3~ - 3X 1 + 0X2J' (2b) 3x3 

The non-dimensional viscosity v =- Vo/(Duo) has the 
constant value 1 0 - a  in this simulation. As a consequence 
of eqs (2) the pressure at some point is not a function 
of the local velocities only (which are zero at the walls) 
rather than of  the total velocity field in the surround- 
ings. As the viscosity is small, the normal gradient o f p  
given by eq. (2b) at the walls is small if compared to 
those values in the bulk of  the flow. Therefore, the 
viscous sublayer does not affect the wall pressure 
considerably. 

The finite difference analogue to eqs (2) has been 
solved at each time step using a non-iterative method 
based on fast Fourier transformation [1, appendix 4]. 
The present method is an extension of  that developed 
by Deardorff  [ 1 0]. It is the first of  this kind to be 

applicable to an annulus. 
Three different runs have been performed for this 

purpose; they are termed K3, K4 (plane channel) and 

Table 1. 
Parameters of runs Z3, Z~, K 3 and K4.* 

Z3, Z3 K3 K4 

Length of periodicity in the 
x I direction 4D 4D 4D 

or x2 directions 2n 2D 2D 
Number of grid points in the 

x I direction 32 64 64 
x2 direction 64 32 32 
x3 direction 16 16 32 

Total 32 768 32 768 65 536 

* Grid spacing is equidistant in all directions except for K 4 
where the radial spacings vary between 0.018 and 0.042. 

Table 2. 
Times over which the average is taken; unit: Df(rwo/o)l/2. * 

Z 3 Z] K 3 K 4 

1.776 4.865 0.920 4.069 
2.109 1.338 4.163 
2.482 1.791 4.255 
2.871 2.242 4.353 
3.288 2.684 4.451 
3.676 3.140 4.549 
4.052 3.591 
4.440 3.977 
4.865 

* Z 3 and K 3 started from random initial values and K 4 from 
the result of K 3 at time 3.977 by interpolation. 

Z3 (annulus). Z3 is a special result of  Z3 for one speci- 
fic time. Additional runs denoted by K~, K2, Z~, Zz 
and Z4 have been considered for other purposes [ 1 ]. 
The present cases are preferred because they involve 
longer integration times and a large number of grid 
points. The parameters of  these runs are given in 
table 1. 

Instead of  full time averaging, the averages (denoted 
by ()) are taken at fixed times over planes which are 
parallel to the walls. In addition, these values are 
averaged over at least six results at different times in 
the course of integration. The values of  these times are 
listed in table 2. However, as can be seen from the 
results, there are still statistical fluctuations. The 
figures are unsmoothed reproductions of  computer  
graphics so the statistical errors can be estimated. Some 
of the errors appear because the earlier results used in 
case Z3 are not in the steady state. 
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3. Results 

3.1. Velocity and pressure fluctuations 

Good agreement between numerical and experimental 
results for the r.m.s. (root mean square) values of  
fluctuating velocities and pressure have been found in 
the plane channel [ 1, 2, 8]. Fig. 1 shows the fluctuating 
velocities in an annulus. The general order of  magnitude 
agrees with experimental results. (So far, experimental 
values are not available to the author for this particular 
value of R2/R~, but we may refer to the results of  
Lawn and Elliot [11] forR2/R1 = 5.7.) 

Accidently, for case Z3 the fluctuating velocities are 
higher close to the inner wall than to the outer wall, 
which shows that the steady state was not yet reached 

t t  
here. Case Z3, where we average over the results at the 
final time only, furnishes more reasonable results. The 
same effects can be seen for the r.m.s, values of the 
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Fig. 1. R.m.s. values of  f luctuat ing velocities normalized by 
the f r ic t ion velocity in an annulus as a funct ion o f  the radial 
coordinate. Z 3 is the average value over nine realizations, not  
all of  which are in the steady state. Z~ is the  average over the 
last realization. {v~, v~, v~} are the componen t s  of  the  fluctuat- 
ing velocity vector in the { x, ~o, r } directions. 
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Fig. 2. R.m.s. values o f  the f luctuating pressure normalized by 
the mean wall shear stress in a plane channel  (K 3 and K4) and 
an annulus  (Z3, Z'~). For the  differences between Z 3 and Z~, 
see fig. 1. 

fluctuating pressure for cases Z3 and Z3 in fig. 2. The 
corresponding results for the pressure fluctuations in 
the plane channel (K3 ,  K4)  show the expected sym- 
metry. The systematic differences between K3 and K4 
cannot be explained satisfactorily, however. 

The wall stresses have been found to be 

Z3 Z3 K3, K4 

<rw, )/(rw 0 > 1.24 1.31 I 
(rw 2 >/(tWo) 0.953 0.94 1 

The r.m.s, value of  the wall pressure normalized with 
these wall stresses is 

Z~ K 3 K4 

<p2>l/2/<r w> r = R1 1.52 2.65 2.28 
r = R2 2.35 2.57 2.24 
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The result <p2)qz/(r w) ~ 2.4 -+ 0.2 for the plane channel 
is in accordance with a large number of measurements 
[12]. This ratio is remarkably smaller at the inner wall 
of the annulus, however. 

Pw1 

I". 0 ~ - - ' - : >  _'-7-,)'ti5S~'_.7_:> ' ~ - C 3 ~ . ~  .......... 

m o , l k l [  I i  

2~r 

t 

3. 2. Pattern o f  the wall pressure f luctuations 

Figures 3 and 4 give isometric contour line plots of the 
pressure fluctuations at the walls. They give us an im- 
pression of  the attainable resolution and the general 
structure of the wall pressure field. The tick marks 
indicate the grid lines and the periodical boundary 
conditions are evident. The minimum and maximum 
values of  the pressure fluctuations are of  the order 

+10 (rw0). The following conclusions, which will be 
seen from the evaluated correlation functions quanta- 
tively (see below), can be drawn. 

The patterns show no clear elongation in the axial 
or azimuthal directions especially for the plane channel. 
Some elongation in the azimuthal direction does exist 
at the outer wall of  the annulus whereas some axial 
elongation seems to exist at the inner wall in this geom- 
etry. However, the latter are connected with the 

peaks of  the pressure fluctuations mainly and it is 
possible that they are a consequence of  the high resolu- 
tion in the azimuthal direction. No significant differ- 
ences can be found between case K3 and K4. From 
corresponding pictures for the velocity components  (in 
the bulk of  the flow) [ 1, 10], we know that there exists 
a clear elongation of  the axial velocity components and 
virtually no elongation for the other components.  This 
suggests that the structure of the wall pressure is deter- 
mined by the radial velocity components  as one would 
expect. 

3. 3. Spatial pressure correlations 

We consider the normalized wall pressure correlation 
function 

PP(x,  ~0, r) =- (p(zl ,  z2, r)p(zl + x, z2 + ~, r))/(p2), 

o 
o 4 

X---~ 

Fig. 3. Contour plots of the fluctuating pressure at the inner 
(PW1) and outer (PW2) wall of an annulus (case Z~). Dashed 
lines indicate negative values. The numbers beside are the 
values of the pressure at the corresponding contour lines in 
units of <rw0>. 

r = R x ,  R2. (3) 

Here the averaging operator < ) includes integration 
over all zl,  z2. For a plane channel we use a correspond- 
ing definition for PP(x 1, x 2, r), r = R l, R 2. Fig. 5 shows 
this correlation as a function of the azimuthal coordin- 
ate ~o for Z3. Fig. 6 shows the corresponding result 
PP(O, x2, r) for the plane channel (K3). The axial varia- 
tions are given in fig. 7. 

Characteristic length scales for these correlations 
are those separation values ll and 12 (or ~02 = 12/0 for 
which PP(ln, O, r) or PP(O, 12, r) are equal to 0.5. The 
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Table 3. 
Characteristic length scales of correlation functions I l and 12 in 
the axial and azimuthal directions. 

Case ll/D 12/D ¢2 ~ 12/r 

Z3, r=R1 0.11 0.09 0.37 ~ 22 ° 
Z 3, r = R 2 0.14 0.22 0.18 ~ 10 ° 
K 3 0.075 0.1 - 

values of these length scales are given in table 3. We 
see that Ii and 12 are of the same magnitude as esti- 
mated from the flow patterns (figs 3 and 4). The length 
scales 12 are different for the inner and outer walls of 
the annulus and not proportional to the radius. Al- 
though we cannot expect a high accuracy for these 
values, because they are of the same order as the finite 

difference grid spacings, we must conclude that the 
wall pressure correlation functions at the inner and 
outer walls are not similar. So, the replacement of 
measurements at the inner wall by those at the outer 
wall [5] or, even more so, the use of a pipe [13] instead 

of an annulus cannot be justified. 
From fig. 5 we see that there is virtually no correla- 

tion between the pxessure at two points which are 
diametrically opposed to each other. The correlation 

PP(O, ~, r) is already very close to zero for ~ ~> n/2. 

This result can be assumed to be generally valid for all 
annuli with R2/R~ ~< 5. We therefore obtain the rela- 

tionship 

<[p(z ,  z2, r) - p ( z , ,  z2 + ~, r ) ] [p(z l ,  z2 + ~, r) 

- p(z l ,  z2 + n + ~o, r)]) ~ 2(p(zl, z2, r )p(zb  zz  + ~, r)), 

0 ~< I~1 ~< 7r/2, R2/R, ~< 5, (4) 

where the former quantity has been measured by 
Gorman [5]. On the other hand, Appelt et al. [7] 
measured (plz), (p~) and ((Pl - P2) 2) in an annulus 

(R2/RI  = 2.77)where Pt and P2 were the fluctuating 
pressures on opposite sides of the internal cylinder. 
From their measurements the correlation coefficient 
PP(O, 7r, Rl) can be calculated from 

PP(O,n,  R1) = 1 - 2( (p , -pz)e) / ( (p2)+(pZg)) .  (5) 

This results in the values 0.476 for the loop with a 

settling chamber and 0.949 without a settling chamber. 
Both values differ greatly from zero. This indicates that 

the pressure fluctuations in this loop are not caused by 
turbulence alone, but also by external sources which 
give rise to pressure waves travelling through the 
channel in an axial direction. The above values of 

PP(O, n, R1) furnish the relative fraction of the contri- 
bution of these pressure waves to the pressure fluctua- 

tions. 
The axial correlation ['unctions (fig. 7) show some 

oscillations around zero for large values of the separa- 

tion distance Xl in case K 3 and at least one overshoot 
in case Z3 (fig. 7). Oscillations of the same order of 
magnitude have been found by Gorman [5] in an 
annulus (R2/R~ = 1.67) and even larger ones by Bake- 

well [13] for a pipe, but they did not appear in a 
boundary layer flow [12]. Hence, it must be concluded 
that these oscillations are strongly geometry-dependent 
and equations based on measurements for one specific 
geometry, such as those used by Reavis [4], are not 
sufficient. No significant oscillations are to be seen in 
the functions PP(0, ~, r), which is as found experi- 
mentally. 

All axial correlation values are very close to zero 
for an axial separation ofx  = 2D. The periodical bound- 
ary condition in the axial direction with a length of 
periodicity equal to 4D (see table I) is therefore 
acceptable for this kind of investigation. 
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3. 4. Forces acting on the outer and inner cylinders (Z3) 

The components of  the forces per unit axial length on 
the cylinders in two orthogonal directions caused by 
the pressure fluctuations are given by 

2 ,  

FX(x, r) = f p(x, ~, rXcos ~0)r de 
o 

and (6) 

2 .  

FY(x, r) = f p(x, ~, r)(sin ¢)r de. 
o 

To give an idea of  the behavior of  these forces we 
show one of  their realizations in fig. 8 above (Z'~). The 
average power spectrum S(K) of both components at 
this time and corresponding ones for other times (Z3) 
are shown below in a linear and again in a logarithmic 
plot. S(K) is defined by 

S(K) = (U(K)U(K)*), (7) 

where U(K) is the Fourier transform o fF(x )  defined 
by a finite difference counterpart of  

U(K) = ; F(x) exp (-i27rKx) dx, (8) 
_ o o  

in which U(K)* is the conjugate complex value of  
U(K), K is the wave number and F(x) is either FX(x) 
or FY(x). From the linear plot we find S(K) to be zero 
for K = 0, which is the consequence of the zero mean 
of the forces and the one-dimensional nature of F(x). 
From the logarithmic plot we see that the spectrum 
follows a - 7 / 3  power law over some region of the 
larger wave numbers which agrees with the spectrum 
of the pressure fluctuations [9]. The spectra reach their 
maximum values at a wave number K ~ 1/D. The cor- 
relation function 

FF(x, r) = ½(FX(z, r)FX(z + x, r) + FY(z, r) 

x FY(z + x, r))/(F z) (9) 

is given for r = R],R2 in fig. 9. The value 
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( F  z) = ~(FX(z, 0 2 + FY(z, r) 2 ) 

was found to be as follows (unit ( (rwo)D)2):  

z3 z~ 

1.2 0.68 r=R1 
10.3 21.3 r=R2 

From these values we are able to compute a ' rat io 
of the effective diameter to the actual diameter fro'  
[4, 5] which is defined by 

~D = (F2)1/2  /( 2 r ( p 2 ) l / 2 )  • (10) 

We find 

z3 z'3 

ffD =0.85  0.81 r = R l  

Therefore, we normalize with 

7r 

N o - ( Q ( ° ° ) 2 )  = f QP(Q) dQ = ~r2/3. (15) 
o 

In fact, we see from fig. 9 that the value thus normal- 
ized of  4~ approaches unity for large x. 

We find [1 ~q~(x, r)] to be very similar to FF(x, r). 
For both we find a correlation length 11 defined by 
FF(ll, r) ~ ~q~(ll, r) = 0.5 which is roughly equal to 
that Ii which was found for the axial pressure correla- 

tion functions in the Z3 case. As FF includes the inte- 
gration over both ~0 and x,  the similarity between 
FF(x, r) and PP(x, O, r) provides a solid basis for the 
assumption that PP(x, ~, r) can be separated in space 
according to 

PP(x, ~, r) ~ PP(x, O, r)Pe(O, ¢, r). (16) 

This assumption was made earlier [4, 5] and the results 
of the present work may be taken as confirmation. 

0.63 0.85 r=Rz  

These values are about the same for both walls. This 
must be assumed to be accidental. The values are rather 
high. As we expect ffD to be zero for R2/R1 ~ 1 as well 
as R:/R l -+ 0% these values found for R2/R 1 = 5 might 
be very close to a maximum value. 

The lower part of fig. 9 describes the changes in the 
direction of the forces. We consider the angular direc- 

tion ~F of the total force vector 

0F = arc tan [FX(x)/FY(x)] + zr, 0 <~ ¢F <~ 27r 

( l l )  
and calculate the correlation functions 

(pgo(x, r) = (Q=)/NQ, (12) 

where Q is the smallest amount of  the differences be- 
tween the angles ~v at two axial positions 

Q(x) = min {l~v(z, r) -- ~v(z  + x, r)l, 

27 r -  Iq~v(z, r) - qbr(z +x,  01}. (13) 

For large values o f x  the directions of  the forces are 
independent and so the probabil i ty function of Q is 

P(Q) = (1/lr)Q, 0 <~ Q <~ zr. (14) 

4. Conclusions 

It has been shown that fluctuations of the wall pressure 
can be calculated by means of the finite difference 
scheme [1, 8], which furnishes turbulent channel flows 
in time and space. The accuracy of  the results is limited 
by the size of  the finite difference grid spacings, the 
departure from steady state, and statistical fluctuations 
due to finite sampling. A variation of  the parameter 
RJR1, which took the value 5/1 in this study, is highly 
desirable, but about 20 hr of  computer  time on an 
IBM 370/165 are needed to run one case with 32 768 

grid points, as in case Z3. 
The r.m.s, values of  the wall pressure fluctuations 

generated by turbulence are about 2.4 times the wall 
stress in a plane channel and on the outer wall of the 
annulus, but this ratio is much smaller at the inner wall 
of the annulus. From the flow patterns and the pressure 
correlation functions evaluated at the outer and inner 
walls of  the annulus and at the walls of the plane 
channel we conclude that the axial correlation functions 
are similar in all these cases and show the oscillations 
found elsewhere in channel flows. The azimuthal correla- 
tion functions are not similar in that the characteristic 
length scales are smaller at the inner wall than at the 
outer wall, but not in the same ratio asR1/R> We 
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found that PP(0, ~0, r) is zero at the walls for ~o > rr/2 
and R2/R1 ~< 5. This result can be used to discriminate 

pressure fluctuations generated by turbulence from 
those generated by the test loop in experimental in- 
vestigations. 

By integrating the pressure field we were able to 
compute the resultant forces acting on the inner and 
outer cylinders of the annulus. Spectra and correlation 
functions are shown. The effective diameter, eq. (10), 
was found to be about 0.8 the actual diameter for 
both walls. The shape of the correlation functions is 
very close to that of the axial pressure correlation 
function. 

To the best of our knowledge this is the first ap- 
proach to an evaluation of the wall pressure and force 
correlation functions without specific experimental 

support. The method of direct numerical simulation of 

turbulent flows has been found to be applicable in this 

case. 

Nomenclature 

D 

F 

F F  
F X  

F Y  

K 

Ii 

12 

P P ( x , ¢ , r ) ,  } 

PP(x l, x 2, r) 
P = 

R 1 = 
R2 = 
S(K)  = 
u0 = ((tWo)) 1/2 = 

{ x ~ , x 2 , x 3 )  = 

{x, ~, r} = 

Zl~ Z2 = 

= distance between the walls 

( D = R 2  - R1)  
= force per unit length divided by density 

= force correlation function, eq. (9) 
= force component in x2 direction 

= force component in x3 direction 
= wave number 

= correlation length scale in x, x l  
direction 

= correlation length scale in ~, x2 
direction 

= fluctuating pressure divided by 
density 

= pressure correlation function, eq. (3) 

radial coordinate 
radius of the inner wall 
radius of the outer wall 
power spectrum of the forces, eq. (7) 
friction velocity 

Cartesian coordinates; x 1 axial, x2 
'azimuthal' ,  x3 = r radial 
cylindrical coordinates; x axial, ~o 
'azimuthal' ,  r radial 
dummy variables for integration in 
the axial and azimuthal directions 

Vo = kinematic viscosity 

v = Vo/(uoD) = non-dimensional viscosity 

(tWo) = mean wall stress divided by density, 
eq. (1) 

(rw,) = time mean wall stress divided by 

density at the inner wall (r = R 0  

(Two) = time mean wall stress divided by 
density at the outer wall (r = R2) 

~0 = azimuthal coordinate 

qrP F = angle between the force vectors at 

two points, eq. (11) 

4pq~ = angular correlation function of the 
forces, eq. (12). 
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