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Countergradient heat flux (CGHF) transports heat from low to high temperature regions. The reasons for this paradoxial 
behaviour are explained in this paper. We report on three examples for which CGHF has been observed either experimentally 
or in direct numerical simulations. The examples concern vertical heat flux in convective or stably stratified layers with or 
without shear. It is shown that CGHF arises in stably stratified parts of the flow if the dissipation of temperature fluctuations 
is too small to balance source terms for such fluctuations. In such cases, CGHF converts potential energy into kinetic energy. 
By means of an eigenanalysis of a second order model we support this explanation and show that CGHF appears in particular 
for high Prandtl number flows. 

1. Introduction 

Turbulence is an important  process in many applica- 
tions, be it nuclear engineering or atmospheric physics. 
The common understanding of turbulence is that turbu- 
lence mixes momentum or temperature fields much 
more effectively than molecular diffusion. Classical 
gradient transport models describe turbulence like 
molecular mixing with the molecular diffusivity re- 
placed by an effective turbulent diffusivity. A promi- 
nent example of such models is the Prandtl mixing- 
length model. This class of models always assumes that 
temperature, e.g., is transported down the gradient from 
regions with high temperature to regions with low tem- 
perature. Such models cannot account for cases in which 
turbulence transports heat counter the gradient of tem- 
perature from low to high temperature regions. 

Starr [1] has described several examples from geo- 
and astrophysics where momentum or heat is trans- 
ported counter the gradient. He gives qualitative ex- 
planations of this effect and shows that countergradient 
fluxes are indications for exchange between different 
forms of energy. Deardorff  [2] shows that countergradi- 
ent heat flux arises in the lower atmosphere and in 
laboratory experiments and explains this effect in terms 
of the second-order equations for temperature variance. 
He shows that vertical diffusion of such variance is 
responsible for countergradient heat flux in these cases. 

Komori  et al. [3] found countergradient heat flux in 
stably stratified, quasi homogeneous turbulence. In this 
case diffusional transport effects are small and cannot 
be the reason for the effect therefore. Komori  et al. 
explain the effect in terms of wave pumping. 

In this paper three examples of countergradient heat 
flux ( " C G H F " )  in stratified flows are reported and its 
origin is explained in a unified manner. The examples 
concern vertical heat flux in buoyant or stably stratified 
layers, with or without shear, being either homogeneous 
or inhomogeneous. The examples are based on previous 
laboratory or  numerical investigations of the turbulent 
flow fields [3-9]. Here, the results are supported by 
applying a second-order closure model which allows to 
determine quasi-steady flow states in a decaying turbu- 
lence. 

It will be shown that a C G H F  arises if dissipation of 
temperature fluctuations is too small to balance sources 
of such fluctuations. This leads to the hypothesis that 
C G H F  is typical for high Prandtl number flows where 
conductive dissipation of temperature variance is small. 
Indeed it will be shown that a C G H F  is turned to 
standard gradient heat-flux if the Prandtl number is 
reduced. 

2. Examples of eountergradient heat flux 

2.1. Stratified turbulent shear flow 

* Dedicated to Prof. Dr. D. Smidt on the occasion of his 60th 
birthday. 

Komori,  Ueda, Oginu and Mizushina [3] measured 
turbulence intensities and fluxes in stably stratified 
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shear flow. The shear flow was generated by the flow of 
water in a flat channel. The water in the open channel 
was heated from above by condensing steam. This re- 
sulted in a flow with Richardson number 

Ri = c ~ g ( d T / d z ) ( d U / d z )  : > 0 

varying between about zero at the bottom of the chan- 
nel and one near the surface. Here a = -Oi; i ( 3 0 / 3 T )  
is the volumetric expansion coefficient, d T / d :  and 
d U / d z  are the vertical temperature and velocity gradi- 
ents. The coordinates are x in the direction of the flow 
with mean velocity U, y is the cross-stream direction 
and z is pointing vertically upwards. The corresponding 
t ime-dependent turbulent velocity-fluctuations are u, ~, 
and w. Brackets < ) denote ensemble averages and 
primes as in u'  denote root-mean-square fluctuations. 

For  low Richardson numbers, the measurements, see 
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Fig. 1. Turbulence fluctuations and fluxes versus local gradient 
Richardson number, comparison of measurements (©) of 
Komori et at. [3] with results of a direct numerical simulation 
(+)  [5]. The brackets < ) denote ensemble averages, the 

primes denote root-mean-square values. 

fig. 1, resulted in negative turbulent heat fluxes ( w T )  in 
the vertical direction, which is consistent with a gradi- 
ent transport model. For large Richardson-numbers,  
Ri > 0.5, however, the heat flux changes sign so that a 
C G H F  appears. 

Komori  et al. showed that these tendencies are 
qualitatively in agreement with the results of a linear 
spectral model of homogeneous turbulence. They con- 
clude that intermittent upward motions of advected 
eddies with positive spikes of temperature fluctuations 
cause upward heat flux against the temperature gradi- 
ent. The intermittent spikes are attributed to the ob- 
served wavelike motion under stable stratification. 

We note that the magnitude of the heat flux m 
horizontal direction < ~T3 is comparable with the verti- 
cal heat flux although the horizontal gradient of mean 
temperature is negligible. This is another example where 
gradient models fail. 

Elghobashi, Gerz and Schumann [4,5] have per 
formed direct simulations of turbulence under condi- 
tions which represent a small cube inside the water 
channel investigated by Komori  e[ aI. [3]. The cube with 
side length L is taken to bc large enough in order to 
capture all energy containing eddies but small in corn 
parison to the depth of the water channel so that the 
flow can be approximately considered as being homoge- 
neous in all space directions. 

The simulation scheme uses a combined finite-dif- 
ference and pseudo-spectral method to numerically in- 
tegrate the full three-dimensional Navier-.-Stokcs equa- 
tions on a 64 ~ grid. Periodic boundary conditions are 
used in the horizontal directions (:~-y), and "shear- 
periodic" boundary, conditions in the vertical [5]. 

The parameters of the simulation (to which we refer 
later again) arc: 

Reynolds number Re = uL/u  = 58050 
- Prandtl number Pr = ~'/7 = 5 (water) 
-- Shear number Sh = ( d U / d z ) l / t ,  = 4 
- Taylor micro-scale X / L  = 0.026 
- Richardson-number Ri = c~gATL/L ,2 = 0 to 1 
Here L is the size of the computational domain, U -  
L ]dU/dz] ,  A T =  L l d T / d z  I, l is the integral length 
scale of turbulence, and v the root-mean-square velocity 
fluctuation. 

Starting from random initial conditions, integration 
is performed until a quasi-stationary state is reached for 
which correlation coefficients like < w T ) / ( w ' T ' )  be- 
come approximately steady. 

The results are shown together with the measure- 
ments of Komori  in fig. 1. The general agreement 
supports the validity of the simulation. Both, experi- 
ment  and s imulat ion show, negat ive values of 
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- ( w T ) / ( w ' T ' ) ,  i.e. a CGHF,  for strong stable stratifi- 
cation with Ri > 0.5. Since the simulation applies for 
homogeneous conditions, the results show that a C G H F  
arises also for purely homogeneous flows without any 
advective or diffusive sources. 

2.2. lnternaEv heated fluid layer 

Gr6tzbach [6] numerically simulated the turbulent 
flow in a channel between two horizontal plane walls 
driven by a spatially constant internal heat source. The 
heat is transferred to the walls which are kept at con- 
stant temperature. The numerical simulation integrates 
the Navier-Stokes  equations on a finite difference grid 
with 64 × 64 × 32 grid points. The simulation mimics 
heat removal from molten fluid of nuclear reactors and 
for this purpose the Prandtl number is set to Pr = 6. 
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Fig. 2. Profile of mean temperature (T),  vertical heat flux 
(wT), root-mean-square (r.m.s.) velocity fluctuations, u~= 
(u2) 1/2, and r.m.s, temperature fluctuations T' versus vertical 
coordinate z (normalized by channel height H) in an inter- 
nally heated fluid layer [6]. The region with countergradient 

heat flux (CGHF) is indicated. 

The Rayleigh number is 107 times the critical one. The 
simulation is run over a long integration time so that 
the results can be considered as stationary. Some of the 
resultant vertical profiles of horizontally averaged quan- 
tities are reproduced in fig. 2. Gr/Stzbach showed that 
the resultant heat flux at the walls, the maximum tem- 
perature, and the spatial structure of the convective 
motion does well agree with available experimental data. 

The internal heating results in a vertical temperature 
profile with a maximum at z / H - -  0.75 where H is the 
channel height, z = 0 at the lower wall, z = H at the top 
wall. So the fluid is stably stratified for z < 0.75H. The 
vertical turbulent heat flux ( w T )  is positive for z > 
0.27H and negative below. Thus we find C G H F  in the 
region 0.27 < z / H  < 0.75. 

As will be seen later it is important to note, that the 
kinetic energy of turbulence is large in the interior 
domain with a maximum at z / H  = 0.7, while the tem- 
perature fluctuations have a local minimum at z / H - -  
0.3, i.e. near the position where ( w T )  vanishes. 

2.3. Convective bounda~ layer 

The convective atmospheric boundary layer is observed 
over warm surfaces for small wind speeds. It can be 
considered as an initially stably stratified fluid layer 
heated from below, The heat supply drives convective 
turbulent motion in the boundary layer up to an inver- 
sion height H which gradually entrains into the stable 
layer aloft. The flow is t ime-dependent but profiles 
normalized with the inversion height H behave quasi 
stationary. 

This flow has been investigated experimentally by 
Deardorff  and Willis [7] in a laboratory experiment 
using a water tank heated from below. The situation has 
been analysed with second-order turbulence models by 
Finger and Schmidt [8], see fig. 3. Model M1 uses the 
full second order equations with parametrisations for 
third order moments. Model M2 uses the second-order 
equations with algebraic approximations, i.e. neglects 
the time differentials and diffusional transports of the 
anisotropic parts of the second-order moments. Pre- 
liminary results of a large-eddy simulation for this case 
[9] support the results of model M1. 

Experiment and theory show that the turbulent verti- 
cal heat-flux is positive from the ground up to a height 
z / H  -- 0.8 but the temperature gradient is more or less 
zero or even slightly positive for approximately z / H  > 
0.4 indicating stable stratification. Again, this is an 
example of C G H F  in the domain 0 . 4 H <  z < 0.8H. 
Note  that model M2 does not predict a CGHF.  

The kinetic energy is large inside the boundary layer 
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Fig. 3. Profiles of mean temperature (T) ,  at a sequence of times A-D,  vertical heat flux (wT) ,  vertical velocity variance (w 2) and 
temperature variance (T 2 ) versus vertical coordinate z (H  = inversion height) in a convective boundary layer using convective scales 
[8]. The curves represent results from models M1 and M2 and experimental data from Deardorff and Willis (DW) [7]. The region 

with CGHF extends down to the position of minimum mean temperature (not measured). 

wi th  a max imum at z / H = 0 . 3 .  The tempera ture  
f luctuat ions are large near  the g round  and  near  the 
invers ion height  bu t  show a p ronounced  local m i n i m u m  
near  z /H---0.8 where the heat  flux vanishes. We will 
see tha t  this is typical for the appearance  of C G H F .  

As men t ioned  in the in t roduct ion,  Deardor f f  [2] has  
explained the appearance  of C G H F  for this case. The 
subsequent  discussion generalizes his explanat ion.  

3. Discussion using second-order closure models for 
homogeneous stratified turbulence 

3.1. Interpretation of the unclosed equations 

F r o m  the Nav ie r -S tokes  equat ions ( including the 
first law of the rmodynamics  for heat  t ranspor t )  one can 

deduce t ranspor t  equat ions  for the Reynolds  stresses 
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{u iu j ) ,  temperature fluxes ~uiT) ,  with u i = (u, v, w), 
and the temperature variance (T  2) [10,11]. 

Especially for homogeneous stratified turbulence 
with uniform shear d U / d z  and temperature gradient 
d T / d z  these equations, normalized by reference scales 
L, U and A T >  0, are given below: 

O ( u 2 ) / ~ t  = - 2 S ( u w )  + ~11 - En, ( l a )  

a ( v 2 ) / a t  = + ~22 - %2, ( l b )  

a(W2)/Ot  = 2 IRi I ( w T )  + ~33 -- E33, ( l c )  

O ( u w ) / O t =  - S ( w 2 ) +  [ R i l ( u T )  + ~ 1 3 -  El3 , ( l d )  

a ( u T ) / 3 t  = - s ( u w )  - S ( w T )  + ~IT - -  EIT, ( le )  

a ( w T ) / a t  = - s<w 2) + Iml(T 2) + ~3T- '3T, (10 

a ( T 2 ) / ~ t  = - 2 s ( w T )  - EfT + q. ( lg )  

Here the following abbreviations [10,11] are used: 
Ri = s a g L A T / U  2, 
~ij  = redistribution of (u iu j )  by pressure fluctuations, 
~ j r  = redistribution of ~u jT)  by pressure fluctuations, 
E ij = dissipation rate of { uiuj) ,  
E j r  = dissipation rate of ( u j T ) ,  
Err = dissipation rate of ~T2), 
S = ( L / U ) d U / d z  (non-dimensional shear), 
s = ( L / A T ) d T / d z  (non-dimensional stratification). 

The source term q for temperature-variance in eq. 
(lg) has been included for later discussion of the effect 
of such sources. For homogeneous turbulence, q --- 0. 

These equations require closure assumptions for 
several terms if one wants to use them for predictions. 
However, already without closure the equations allow to 
explain the occurrence of CGHF: 

As has been noted by Deardorff [2], eq. (lg), the 
balance for temperature variance is of particular impor- 
tance. It can be solved for the vertical turbulent heat 
flux: 

( w T )  = - (Err + a ( T 2 ) / O t  - q ) / ( 2 s ) .  (2) 

Here s = 1 for stable stratification and Err > 0 because 
the molecular dissipation rate is a positive definite. 

From eq. (2) it follows that for stationary and stably 
stratified turbulence and in the absence of external 
sources for temperature variance, q = 0, the heat flux 
( w T )  is always negative. Thus the heat flows down the 
gradient under these conditions. However, the heat flux 
may change sign and become a CGHF if 3 ~ T 2 ) / 3 t  < 
- E r r  or if a strong positive source q is imposed. 

Obviously, the experiment of Komori and the related 
simulations of Elghobashi, Gerz and Schumann are 
cases with q = 0  but 0 (T2) / /~ t<  - E r r .  Thus CGHF 

arises here if the dissipation rate is too small to balance 
the source from the reservoir of temperature variance. 
In this case, the dissipation Err is small because of the 
large Prandtl number fluid and relatively small Rey- 
nolds number, see below. 

The internally heated layer considered by Griftzbach 
and the atmospheric boundary layer are examples where 
the CGHF is due to large diffusional sources q of 
temperature variance in stationary turbulence. Such dif- 
fusional sources are likely to exist in these cases because 
the temperature variance, see figs. 2 and 3, shows a local 
minimum in the region with CGHF. The reason for this 
local minimum can also be understood from eq. (lg). 
~T 2) gets small where s ~ w T )  takes its minimum. Since 
s > 0, this is the case near the position of minimum heat 
flux ~wT) .  Also the turbulence intensity is large here so 
that turbulence effectively diffuses variance into the 
domain where the CGHF is observed. Hence, CGHF in 
these cases results because the dissipation rate Err is 
too small to balance diffusional sources. This explana- 
tion is further supported by Finger&Schmidt [8] who 
found that the CGHF disappears if the diffusion terms 
are neglected. This can be seen from fig. 3 for model 
M2. 

Since eqs. (1) are a pure consequence of the averaged 
Navier-Stokes equations (including the first law of 
thermodynamics) without any closure assumptions we 
conclude that CGHF is consistent with the Navier-  
Stokes equations. 

Moreover, we can understand the effect on the basis 
of energy considerations for stable stratification (s = 1, 
Ri > 0). The total turbulence energy is the sum of 
kinetic energy plus potential energy ½g(p'h') [12]. here 
h '  is the vertical displacement of a fluid parcel with 
density deviation O'- Using 

o' = ( O o / o r )  r '  = - ~T'Oo ,  

h ' =  - ( d V / d z ) - l T  ', 

we obtain for the total turbulence energy kto t in nondi- 
mensional units: 

kto t = ( ( u  2) + (v  2) + (w 2) + R i ( T 2 ) ) / 2 .  (3) 

From eqs. (1), i.e. for homogeneous turbulence, we 
obtain (with E ~- ½E,): 

aktot/Ot = - S ( u w )  - E - R iErr /2 .  (4) 

Thus, the total turbulence energy in homogeneous 
turbulence is insensitive to the heat flux { w T ) .  The 
heat flux has the function of converting energy from 
kinetic to potential ( ( w T )  < 0) or vice-versa ( ( w T )  > 
0). (For inhomogeneous cases diffusional sources will 
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contribute to the energy balance.) 
Under  quasi-stationary conditions the ratio of poten- 

tial to kinetic energy should be constant. If, however, 
dissipation of temperature variance %t  is large in 
comparison to mechanical dissipation c than an imbal- 
ance arises and the fraction of potential energy becomes 
too small. In this case (wT)  < 0 is required to create 
additional potential energy for equilibrium. On the other 
hand, if Cvr is small, then the C G H F  serves to recreate 
the equilibrium. Thus a C G H F  is energetically con- 

sistent. 

3,2. A second-order closure model and its' resuhs 

Subsequently we use closure models for the redistri- 
bution and dissipation terms. The closure is based on 
the proposals of Launder [10,11] with extensions to 
account for viscous and conductive dissipation as re- 
quired for moderate Reynolds numbers. The model is 
linearized by keeping the frequency scale r I = c/k of 
turbulent redistribution and dissipation constant. Also 
nonlinear contributions [11] for @,T are neglected. The 
closure model reads as follows: 

(1)1 . = - - C l ' r  l ( < / j . >  _ 3k ) _.~ c 2 4 < . w > S  

+ }c3 I Ri I <wT) ,  

+ ~c~ I R i l < w T ) ,  

~c~ I R i l ( w T ) ,  

~[ )13=- -CIT  I< .W>4- ( ' 2<I4 ;w>S < I R i l < u T > ,  

~ , ,  . . . .  qrr  '<ur>-4-O.S<wr)S, 

¢ 3 T = - - q ~ r  '<wT> 0.2(uT>S C~rlRil<T:>. 

q~ = ~,  ~k + ~(~,/x=)<u.>, 

~ .  = ',~ 'k + < ( , , ' /X= )<w . ,> ,  

(13 = C, ( P ' / ~ k 2 ) ( . w > .  

q~=  ~, (~( ~' + y ' ) / F - ) < . r > ,  

(3T = c , (½(v '  + 7 ' ) /X=)<wT>,  

( r T = r  lPr t l < T a ) + f l ( y ' / X 2 ) < T 2 ) ,  ( 6 )  

k = (<u2) + <v2) + <w2))/2, 

r I = 2 t / 2 c d / S  h = e l k .  (7 )  

The model coefficients are 

q = 2 . 0 ,  ( 2 = 0 - 6 ,  c ; = 0 . 3 ,  ' - ' 1 ; -3 -2 ,  c : ~ = 0 . 5 .  

q = t O . O ,  c d = 0 . 7 .  

Other model parameters are taken in order to model the 
experiment of Komori  according to section 2.1. 

) ,=0 .025 ,  ~' ~ = R e = 5 8 0 5 0 ,  v ' /7 '=-Pr -5 ,  

S h = 4 ,  0 ~ R i _ < l .  

It turned out that the results of the model are rather 
sensitive to q and ~, i.e. with respect to the viscous and 
conductive dissipation terms. Rather arbitrarily we a> 
sume Pr, = 1. 

The resulting set of equations can be written in 
matrix form 

aa/i), = aa, (x) 

where 

,P = < ( . ~ ,  ,,:, w=, .w,  uT. wr .  r~)> ,  (9 

and A is a constant matrix because we assumed ( / k  to 

0.01 0.1 0.5 1,0 
f I , 

1,0  + 

~' 0.8 + 
+ ÷ 0 j 

u' 0,6 0 0 0 [ 

0,4 i 

v' 0,8 + + 4 
- -  F + ~. 
u' 0,6 0 0 0 o 

O,t. i 0.6 
- < u  w> (5 (? 

u' w' 0 4  
÷ 

0,2 . 

°t 0,0 Q_ 0.0 

-'<w T >  0.4 * 

w' T ~ 0.2 0 0 

" i o.o 0 b o.o 

-0,2 q 
1.0 + ~ 

- < w  T >  I J 
< u  T >  0,8 ~i 

0,6 41 

0,4 . ~ 0 o 

0.2 + 

0.0 ~- 0 0.0 

-0,2 (~ r i I 
0,01 0,t 0,5 1,0 Ri 

o Komori et at. (1983)  exper imentol  dotQ 

• Second - order closure model 

Fig. 4. As fig. t but  results of a second-order closure model 
( + ) in comparison to the measurements  ( 0 )  of Komori  et al 

F I  



U. Schumann / Corn tergradient heat flux 261 

be prescribed as a function of the shear number. For 
solution, we employ 

a = x e x'. ( 1 0 )  

This results in an eigenvalue-problem, 

A x  = )~x. (11) 

The eigenvector x corresponding to the eigenvalue with 
maximum real part is the least damped mode and 
therefore determines the amplitudes of the quasi-sta- 
tionary solution. It turned out that this particular eigen- 
value is always real. This approach gives results which 
are independent of arbitrarily selected initial values. 

The results are plotted in fig. 4, again in comparison 
to the values measured by Komori et al. The agreement 
is not quite as good as in fig. 1. However, the general 
trends including the appearance of the CHGF are well 
predicted. Also the initial decrease of w ' / u '  and later 
increase versus Ri-number is represented by the model. 
It is interesting to note that both the direct simulation 
and the second-order model give much larger values for 
the ratio ~/ /u '  than the experiment. This suggests de- 
ficiencies in the measurements. The comparison shows 
that the present model can serve to investigate the effect 
of model parameters on the vertical heat flux correla- 
tion coefficient. 

Our explanation of CGHF as given in section 3.1 
suggests that a CGHF arises if the dissipation rate q T  
is small in comparison to other contributions to the 
balance for temperature variance. For small to mod- 
erate Reynolds numbers, the rate Or. r is reduced if the 
Prandtl-number Pr becomes large, Therefore, the sec- 
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Fig. 5. Effect of Prandtl number on the heat flux correlation 
coefficient versus Richardson number as computed with the 

second-order closure model. 

ond-order model has been applied for various values of 
the Prandtl-number. Fig. 5 shows that the CGHF in- 
deed disappears for small Prandtl-numbers and is en- 
forced for large Prandtl-numbers. For larger Reynolds 
numbers the flow becomes likewise sensitive to the 
turbulent Prandtl number. This is consistent with the 
explanations given in section 3.1. 

4.  C o n c l u s i o n s  

Three examples of turbulent flows with counter- 
gradient heat flux (CGHF) have been reported. Both 
laboratory experiments and direct numerical simula- 
tions show that such a CGHF exists. From investiga- 
tions of second-order model equations formed from the 
Navier-Stokes equations and on the basis of energy 
considerations the following reasons have been identi- 
fied to cause CGHF: 

CGHF appears in stably stratified turbulence if the 
dissipation of temperature fluctuations is too small to 
balance source terms which might result from either 
diffusional transports or a reservoir of temperature 
fluctuations in decaying turbulence. In these cases the 
CGHF converts potential energy into kinetic energy 
which is then mechanically dissipated. Thus CGHF is 
both consistent with the Navier-Stokes equations and 
with energy considerations. 

Explanations in terms of intermittent wave-pumping 
[3] or 'bubbles' of warm fluid penetrating inversion 
layers give additional insights in the motion mecha- 
nisms but are not necessary, to explain the origin of 
CGHF. 

Increasing the dissipation of temperature variance 
reduces the appearance of CGHF. For moderate Re- 
ynolds numbers where direct conductive and viscous 
dissipation rates are large in comparison to inertial 
dissipation rates such an increase of temperature-vari- 
ance dissipation can be achieved by lowering the Prandtl 
number. This has been shown by means of a second 
order closure model. 

In summary, the origin of countergradient heat flux 
in stratified turbulence has been explained. 
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