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ABSTRACT

A three-dimensional numerical model based on the inviscid and adiabatic primitive equations in the Boussinesq
approximation is used to investigate the retardation of cold fronts by high two and three-dimensional mountains,
approximately the same size as the Alps. Initial and boundary conditions are specified according to an analytical
model for an idealized front with constant potential vorticity. The study covers cases with uniform, neutral or
stable stratification in both the cold and warm air masses. The model results are compared with previous
analytical solutions of a shallow water flow model. A scale analysis and a parameter study identify the conditions
under which a front is strongly influenced by mountains.

For two-dimensional cases, the study shows that the foot of the front is strongly retarded if the kinetic energy
is too small to let the cold air climb over the mountain, The bulk of the front is strongly retarded if the Froude
number and the relative front/mountain height are small, and if the mountain is steep. For Froude numbers
of order one and for high mountains, hydraulic jumps arise in accordance with theories for layered flows. Stable
stratification further enhances retardation of the front and disperses possible hydraulic jumps. In three dimensions,
the front experiences deformation due to anticyclonic motion. This deformation is enhanced by stratification.
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The model explains the magnitude of surface-front deformation for two observed cases where cold fronts are

strongly retarded at the Alps.

o

1. Introduction

This study examines the dynamic modification of a
cold front by a mountain at scales corresponding to
those of the Alps. The influence of smooth orography
is considered within the framework of a three-dimen-
sional numerical mesoscale flow model and the concept
of an idealized cold front introduced by Davies (1984).
The purpose of the study is to provide insight to the
conditions under which a cold front experiences strong
retardation and deformation.

It has long been known, e.g., see the review by Smith
(1986), that cold fronts approaching the Alps from
north or west may undergo severe deformation as they
cross the mountains. This deformation may result in
a number of important weather events including
blocking and splitting of air flow on the upstream side,
penetration of cold air into the northern Alpine valleys,
establishment of the mistral at the western edge of the
Alps and of the bora at the eastern edge, strong winds
along and across the Alps, formation of gravity waves
and foehn-type flows. It has also been observed, e.g.,
see Buzzi and Tibaldi (1978) and Pichler and Steinacker
(1986), that cold fronts may trigger lee cyclogenesis in
the downstream flow. Studies of frontal deformation
by mountains in other regions of the world have been
summarized by Smith (1986) and show qualitatively
similar events.

Observations of cold fronts near the Alps have been
analyzed in 1928 by Bergeron (see Godske et al., 1957)

and more recently by Buzzi and Tibaldi (1978), Stein-
acker (1981, 1983, 1984), Davies (1986), Blumen et al.
(1986), and Hoinka (1986). Hoinka (1985) has per-
formed a climatological study of cold fronts in central
Europe and shows that cold fronts contribute a signif-
icant fraction of the precipitation in this region. Stein-
acker (1983) has analyzed the cold front of 2 March
1982 using data observed during the ALPEX experi-
ment. The analysis of the front’s surface isochrones is
displayed in Fig. l1a and gives an example of a front
which is strongly retarded and deformed by the Alps.
On the other hand, cold fronts have been observed
sweeping over the Alps with little deformation. For
example, an analysis of the case of 4 June 1986 (see
Fig. 1b) based on standard synoptic observations does
not exhibit any indications of a mountain effect. It is
not yet sufficiently understood which parameters are
responsible for the differences.

As summarized by Davies (1984) and Bannon
(1984), few theoretical/numerical studies of orographic
modification of frontal motion have been undertaken.
To yield some insight to the factors influencing retar-
dation, Davies (1984) used a highly simplified cold
frontal model. He employs a shallow water flow model
on an f-plane in which a “free surface” represents the
interface between cold air below and warm air above.
The cold air is modeled as a homogeneous, inviscid,
incompressible fluid. The flow of the cold air layer is
driven by a reduced gravity and a constant imposed
geostrophic pressure gradient. For constant potential
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FIG. 1. Surface isochrones of a cold front passing around and over the Alps. (a) Top: from
2100 UTC 1 March to 1800 UTC 2 March 1982; analysis due to Steinacker (1983). (b) Bottom:

At 1200 UTC for 3-5 June 1986.

vorticity, and assuming semigeostrophic equilibrium,
Davies deduced an analytical solution for the front
moving over a two-dimensional mountain ridge. The
character of this solution is determined by two dimen-
sionless characteristic numbers, viz. a rotational Froude
number and a front-mountain aspect ratio. As a con-
sequence of the semigeostrophic approximation, the
solution is physically realistic only if the front-moun-
tain aspect ratio is larger than a certain value that de-
pends on the rotational Froude number.

Haderlein (1986, personal communication) has
considered the same case by solving numerically the

shallow water equations without making the semi-
geostrophic assumption. If the flow velocity normal to
the front is small in comparison to the wave speed of
gravity waves, his results agree with the analytical so-
lution of Davies (1984). For larger velocities some of
his solutions indicate a tendency to form a hydraulic
jump at the upstream side of the ridge. Haderlein fur- -
ther studied two-dimensional shallow water flow over
circular or elliptical mountains. The model results have
not yet been compared with observed cases.

The study of Davies (1984) is restricted to neutral
stratification and a quasi-stationary front. Bannon
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(1984) has considered the effect of orography on front-
ogenesis in stably stratified atmosphere. His theory is
restricted to semigeostrophic motions and a linearized
surface boundary condition, which is only valid for
low mountains. Bannon found that the cold front is
retarded on the upslope of the mountain, with a max-
imum retardation amounting to half the mountain
height times the ratio of Brunt-Viisild frequency to
the Coriolis frequency. The effect of stratification on
fronts over high and mesoscale mountains has not yet
been analyzed.

The analyses by Davies, Haderlein and Bannon
concentrate on the transient flow of a cold front across
a mountain (as does the present study). But when the
front has passed the mountain ridge, the flow over the
mountain itself becomes quasi-stationary after some
time and resembles the upstream effects that accom-
pany the impulsive initiation of stratified flow over a
mountain ridge. For nonlinear shallow layered fluid
flow, Long (see the review in Long, 1972), and Hough-
ton and Kasahara (1968) have shown that hydraulic
jumps arise if the gravitational Froude number lies
within a certain range of order one. Baines (1980) used
the concept of hydraulic blocking described by this
theory to develop a simple dynamical model, which ex-
plains the southerly buster observed in Australia, in
terms of a gravity current trapped by a mountain ridge
perpendicular to the frontal line of a shallow cold front.
The effect of Coriolis forces on the generation of hy-
draulic jumps has been discussed by Houghton (1969)
and Williams and Hori (1970). Pierrehumbert and
Wyman (1985) studied uniformly stratified fluid flow
over a mountain ridge initiated suddenly from rest.
Frontal motion across mountains has not yet been dis-
cussed in terms of such concepts.

In this paper a model is described, which is still rather
simple but sufficient to explain the essential mecha-
nisms of observed retardation of cold fronts at high
mountains. In the model, the scales of the mountain
represent the Alps but the orography is much smoother
than in reality. These scales require a mesoscale model
because they are too small to be described quasi-geo-
strophically but are approximately in hydrostatic equi-
librium. The frontal model corresponds to that of
Davies (1984) in that his analytical solution is taken
to specify initial and boundary conditions. Aspects of
frontogenesis and lee cyclogenesis are beyond the scope
of the present study. The model is first applied to flows
with homogeneous air masses. Then the effect of strat-
ification and three-dimensional mountains is included
because this is necessary to explain observations. The
numerical model and its initialization are described in
section 2.

The questions to be discussed are:

¢ which nondimensional parameters control the
character of the mountain’s influence on the simplified
cold front?
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e how do the solutions of the present model compare
with Davies’ results and what are the reasons for the
differences?

e which changes are to be expected from stratifica-
tion for nongeostrophic flow over high mountains?

e what are the effects of three-dimensional moun-
tains compared to two-dimensional ones?

e does the model explain the main characteristics
of observed frontal deformations?

These questions are addressed in sections 3 to 7 and
the answers are summarized in section 8.

2. The mathematical model

This section describes the mathematical model and
its numerical implementation. Since initial and
boundary values are specified according to Davies
(1984) we start with a brief summary of the details of
his model as far as necessary for the present study.
Thereafter, the basic equations and their numerical
treatment are reported.

a. Davies’ model

The flow situation considered is sketched in Fig. 2.
A “free surface” A(x, r) represents the front’s interface.
The height of the front at infinity (x = —o0) is Hp.
The cold air is assumed to have uniform density pg
and flows with vertically uniform velocity 4 normal to
the front in x-direction and v parallel to the front in
y-direction. The constant temperature 6 of the cold air
differs from the temperature 6, of the overlying warm
air by A8 so that g’ = gAd/f, is the effective reduced
gravity. The Coriolis frequency f and the geostrophic
wind components of the warm air mass U and V are
constants. For constant potential vorticity (f+ dv/dx)/
h = f/H the front moves quasi-stationarily over flat
terrain with the geostrophic wind U in the horizontal
direction normal to the front; the height of the front
(Davies, 1984) is

%
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FIG. 2. Schematic sketch of the idealized cold front
approaching a two-dimensional mountain ridge.
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h(x,t)= H{1 —exp[(x— Ut)/R]}, x—Ut<0. (1)
Here
r=S, c-V¢E; o)

f s
are the Rossby radius and the gravity wave speed, re-

spectively. Over flat terrain, the velocity v along the
front is v = V in the warm air and

o(x,t)=V—Cexpl(x— UD/R], x—Ut<0 (3)

in the cold air. Davies has considered this wedge of
cold air approaching an infinitely long orographic ridge
with height profile

{H v sin?(zx/L),

0, elsewhere

O<x<L

hu(x) = CY)

where L is the width and H), the height of the moun-
tain.

The shallow water equations in two dimensions for
the horizontal velocity v = (%, v)7 and the height of
the free surface 4 above ground are

ou , 0
o TV Vus—g (k) 0=V), )

&0 9 _
v Itk ©

oh '
-5+V-(vh)-0.

Davies (1984) considers the one-dimensional case and
applies the semigeostrophic approximation in which

Q)

the acceleration du/dt = du/dt + v+ Vu is neglected in

comparison to other horizontal accelerations. He de-
duces an analytical solution for the height of the front’s
interface A(x, ). If (HgL)/(HyR) is less than a value
- close to =, this solution results in nonreal negative val-
ues for h(x, t) near the tip of the front.

b. The three-dimensional numerical model

A preliminary description of the numerical model
and the solution method (the “MESOSCOP” program)
has been given by Schumann and Volkert (1984) and
Volkert and Schumann (1986). In many respects, the
method follows the proposals of Clark (1977). The
main features are summarized.

Except for buoyancy, the model treats constant den-
sity fluid flow according to the Boussinesq approxi-
mation. Frictional forces are intentionally neglected
for the present application in order to reduce the num-
ber of independent parameters. The method integrates
the dynamic equations for the three velocity compo-
nents v = (4, v, w)7 and two conservation equations,
one for potential temperature # and one for a passive
scalar y. For stably stratified air flow, the model actually
computes the temperature difference 8’ = 6(x, y, z)
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— 8(z), and ¢ is used as a tracer to distinguish between
warm and cold air masses. The variable p denotes the
deviation from the initial warm air pressure distribution
where U and V are the geostrophic wind components.
The respective equations are

V.v=0, 8)
3_:+v.vv=——;—0Vp+c+%§, ©)
c=f-V,U-u0, g=(0,0.9, (10)
%"t'+v.va'+wg§=o, (11)
%‘f_+v-v¢=o. (12)

Terrain-following coordinates are used to represent
orography. The computational domain extends verti-
cally up to z = z,. In most cases (unless specified oth-
erwise) z, = 1.5Hp; this value has been found to be
large enough to avoid disturbances from the top
boundary. The horizontal limits can be identified from
the plots depicting the results. The limits are intended
to be sufficiently large so that reflections at these
boundaries are of small importance.

The numerical method employs second-order finite-
difference approximations in space for advection of
momentum. Advection of temperature is treated with
a second-order upwind scheme proposed by Smolar-
kiewicz (1984). The pressure is determined from a
Poisson equation in order to satisfy the continuity
equation. The computational domain is equidistantly
divided into finite grid cells. In all two-dimensional
cases the horizontal grid spacing is /32 (the number
of grid points is 64 or 96 depending on the lateral limits
of the computational domain), the vertical grid width
is z,/40. Test runs have shown that doubling the grid
spacings diffuses the ficlds near the frontal interface
more strongly but still gives essentially the same results.
Therefore, in three dimensions larger grid intervals are
taken (as specified below) in order to limit the com-
putational work. Numerical stability limits the time
step At according to a Courant condition. Since the
maximum vertical velocity is not known from the ini-
tial conditions, we set At = 0.1Ax/max(U, C) where
Ax is the horizontal grid spacing.

The top boundary condition assumes the radiative
boundary condition according to Bougeault (1983) and
Klemp and Durran (1983). For neutral stratification
this condition implies constant pressure at the top sur-
face. Initial conditions and boundary conditions at the
inflow boundary are set according to the analytical so-
lution of Davies (1984). This means we set ¥ = U and

p=vpect+(1=v)ew (13)

for ¢ = (v, 8, ¥), where ¢¢ is the value valid for z
< h(x, t) in the cold air and ¢y the value for z > A(x,
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1) in the warm air. Here v is given by Eq. (3), and vy
=V, 0= yc = 0y — AG, 8}y = Yy = 0. In principle,
the weight v = vy(x, z, f) is unity in the cold air, and
- zero above. However, in the finite-difference grid this

would imply a stepwise profile of the interface so that

dh/dx is zero for some distance and then very large at
the locations where the height steps by one vertical grid
interval. This discontinuous behavior results in a local
imbalance between horizontal gradients of the hydro-
static pressure and Coriolis forces which causes spu-
rious motions. In order to overcome this problem we
use a value of v which interpolates between the theo-
retical values near the interface over one grid interval
according to

vi=min{1, max[0, (h(x, 1) — zx_12)/Azc]}, (14)

where z_y/; is the height of the mesh cell boundary
between grid points with indices k and k — 1, and Az,
= Zys12 — Zk-152 i the vertical mesh spacing. The initial
field is adjusted by a solution of a Poisson equation in
order to make it nondivergent.

At the outflow boundary, a radiation condition of
Sommerfeld-type is employed. Since this boundary is
sufficiently far downstream of the front for all cases,
details of this boundary condition do not inatter. For
three-dimensional simulations periodic boundaries are
assumed at the lateral sides for all results shown in the
figures. Test runs with open boundaries have confirmed
that the lateral boundary does not significantly influ-
ence the results.

The initial conditions and the boundary conditions
at the inflow side impose discontinuities on the v-ve-
locity (this velocity jumps from ¥ to ¥V — C at the tip
of the front) and the temperature field (jump by A#6).
These discontinuities cannot be represented exactly by
the finite-difference scheme. Instead they are initially
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distributed over two grid cells, and are spread over a
few more grid cells during the course of integration.

Therefore, tests must be made to ensure that these ap-

proximation errors do not cause the results to deteri-
orate. Figure 3 displays such test results for a two-di-
mensional front propagating on a plane. The param-
eters are taken in accordance with the parameters of
the case PO, see Table 2 (which forms the reference
case for a parameter study reported below), but Hy,
= (). Isotherms at initial and late time are plotted where

the surface front has left the right boundary of the

computational domain (#* = tU/L). The spreading of
the contour lines is a measure of the numerical diffu-

sion. Figure 3 also contains the contours of constant

v-velocity at the late time. The velocity difference be-

tween the cold and warm air is negative and increases

in magnitude from zero to the value C at the front’s

tip. The related Coriolis force just balances the hydro-

static pressure gradient at the surface. The exact so-

Iution according to Eq. (1) is included for comparison.

We see that the numerical scheme describes the ad-

vection of the temperature field with very little nu-

merical diffusion. This demonstrates that the Smolar-

kiewicz scheme is particularly suited for this purpose.

The errors in the advection of momentum due to the

second-order central differences are somewhat larger,

but still acceptable. The zig-zag contours for the ve-

locity v are consequences of the approximation of the
curved frontal interface in the finite-difference scheme

at initial time and at the inflow boundary. Obviously,

these approximation errors are of negligible importance

with respect to the resultant frontal interface.

3. Scale analysis

The independent dimensional parameters of Davies’
model are

FIG. 3. Propagation of a front for case PO without mountains. Left: Isotherms at times t* = tU/
L = 0 and 1.25 in comparison to the exact solution (dashed curve). Several isotherms with
increments A#/6 represent the frontal interface. Right: Contours of the velocity v (increment
C/10) parallel to the front at time * = 1.25.
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Thus, dimensional analysis suggests that five indepen-
- dent, nondimensional characteristic numbers can be
formed. One possible set of characteristic numbers is
¢ = L/R, the rotational Froude number; H = Hg/H,,,
the height aspect ratio; F = U/C, the (gravitational)
Froude number; G = H,,/L, the mountain slope; and
W = V/U, the velocity ratio. Here C and R are as de-
fined in Eq. (2). We will see that other combinations
of characteristic numbers as given in Table 1 might be
informative, as well. For stratified flow, the Brunt-
Visiild frequency, N = (g8, 'df/dz)"?, and in three
dimensions the horizontal length scale L, of the moun-
tain in y-direction, are additional parameters from
which we form the (inverse) stratification Froude
number Fy = NHy,/U and the scale ratio M = L/L,.
Not all of the characteristic numbers are equally im-
portant. Subsequently, scale analysis is used to identify
the characteristic numbers which are relevant for the
interaction of a cold front with orography. For this
purpose, first the shallow water equations for flow over
a mountain ridge and then the full three-dimensional
nonhydrostatic equations are investigated.

a. Shallow water flow over a mountain ridge

We introduce nondimensional variables (denoted by
an overbar) that are of order unity:
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u=Un, v—V=Cv, x=LX, y=L,j,
t=1L/U, h=Hgh, hy=Hhy. (19)

The grouping v — V' = C7¥ is suggested by Eq. (3) and
used instead of v = C¥ because this eliminates the in-
fluence of V if the flow is independent of the y-coor-
dinate. Substituting (15) into Egs. (1)-(7) vields the
following system:

h=1—-exp[(x—1)e], x-1<0, ~(16)
b=—expl(Xx—7el, Xx—1<0, 17
hy=sin¥(xx), 0<x<1; hy=0, eclsewhere, (18)

du  _du oh 19dhy
2y =M
F{ai”af] % Hox T U9
a—”-+ua—_—e(1—a) (20)
oh  &ah) )
=+ =0, 21)

Several conclusions can be drawn from these equa-
tions: As a consequence of the hydrostatic equilibrium
implied by the shallow water equations, the shallow
water flow is independent of the steepness G = Hy,/L
of the mountain. The motion of the front is also in-

TABLE 1. Nondimensional characteristic numbers.

" Rotational Froude number:
Height aspect ratio:
(Gravitational) Froude number:
Mountain slope:

Velocity ratio:
(Inverse) stratification Froude number:
Horizontal scale ratio:

Rossby number:

Ratio of inertia relative to Coriolis forces:

Ratio of kinetic to potential energy:

Saﬁe as N, for stable stratification:

Ratio bf mountain/frontal steepness:

Measure for importance of non-hydrostatic accelerations:

Measure for importance of uniform stratification:

e=L/R
H = Hg/Hy
F=U/C
G=HylL
W= VU

U2 U%Hp
2
Na= FH 2g’HM 2C2HM

U2 N,
Zg'HM-f-NzH’M I+N5

2-—-[(F2H)“+F A1t =
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dependent of the velocity ratio W = V/U in the present
case where the surface front is paraliel to the mountain
ridge. The acceleration dit/dt is small in comparison
to other accelerations in direction normal to the front,
i.e., the flow is semigeostrophic, if

Ni=F%e¢ and N,= %FzH (22)
are both much smaller than unity. (The factor ¥ is
included so that N, denotes the ratio of kinetic and
potential energy, as discussed in section 4.) The flow
gets geostrophic in both velocity components if in ad-
dition, ¢ > 1. The slope of the front d/dx is of order
¢, the mountain slope H~'9h,,/dx is of order /H; thus,
the steepness of the front is small in comparison to
that of the mountain if

Ny=(eH)Y '<7™", 23)

In fact, Davies’ solution is strictly valid only if all three
characteristic numbers, N;, N,, N; are small. It is in-
dependent of the Froude number F = U/C.

b. Three-dimensional stratified flow

Equations (8)-(11) together with their initial and
boundary conditions in terms of Eqgs. (1)-(4) can be
turned into a nondimensional set of equations for vari-
ables of order unity by introducing

v—V=C0, w=wUHy/L,
x=Lx, y=L,j t=tL/U,
p=poC*p, 0'=A00", h=Hgh, hy=Hyhy (24)

The scaling of w accounts for the vertical velocity in-
duced by horizontal flow over the mountain profile.
The scale of the pressure incorporates the hydrostatic
surface pressure deviation ppg'Hr = po C? far upstream
in the cold layer. The reference scales resemble the
scales of a given front approaching a mountain of
comparable height (Hr ~ H)) driven by large tem-
perature differences Af (large values of g'). For strongly
stable stratification (N2Hy > g'), for strongly rotating
flows (f LU/Hr > g') or for mountain flows without a
front (Hr < H),) other reference scales, e.g., those used
by Pierrehumbert and Wyman (1985), would be more
appropriate. The present selection suits the idealized
front concepted by Davies (1984) and its modifications
by mesoscale orography and moderate stratification.
The resuitant nondimensional equations read

u="Uli, v = (i, D, w)7,

z=Hpz,

v-9=0, 25)
~F23p/0% + %% B
P v Vi WM =
ai VYV WMGET | —MFiop05+ (1 -
(F?’G’H)"(—ap/az +8"),
(26)
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—+5:-V0'+ WM—=—F\*F2Hw 7
6t+v 0+ May N FHW, 27
where -
= d i) ¢]
V=—=,MF'— H'—}.
( )E’M af’H az‘) (28)

Thus, in contrast to the two-dimensional case, W= V/
U does influence the three-dimensional flow state, Its
effect is weighted by the scale ratio M = L/L,. Also,
the steepness of the mountain G = Hy,/L arises for-
mally, but its effect is small in the hydrostatic limit
where

N,=F?G*H<«]1. (29)

Vertical motion in stratified fluid causes large temper-
ature changes if
N5 = FNZFZH (30)

is large. If both numbers, N, and N, are small, then
the shallow water equations become valid approxi-
mations. In general, however, the three-dimensional
stratified flow is controlled by seven independent char-
acteristic numbers, e.g. F, ¢, H, W, M, G and Fy or
combinations thereof (see Table 1).

4. Influence of orography on cold fronts in two dimen-
sions

Scale analysis identifies which forces are important
but does not tell us how these forces affect the flow.
Subsequently, the influence of a sinusoidal mountain
on the idealized cold front is investigated by means of
a parameter study. In this section, we discuss two-di-
mensional flows with neutral stratification in both the
warm and cold air masses.

For this purpose, cases are considered which differ
from a reference case in just one dimensional param-
eter. The reference case PO is selected such that all
forces, i.e. those due to horizontal inertia, hydrostatic
pressure gradient and Coriolis forces, are of comparable
magnitude. Hence, the rotational Froude number ¢ and
the Froude number F are unity. Moreover, the frontal/
mountain aspect ratio H, the mountain slope G, and
the reference scales (e.g., L and U) are chosen to rep-
resent meteorological fronts as they are typically ob-
served approaching the Alps (Hoinka, 1985). At these
scales the flow is effectively in hydrostatic equilibrium
(N4 < 0.0032). The actual parameters are listed in Table
2. The parameters are varied by factors of 2 or 4 in
order to get large differences. Cases P1 and P2 show
the effect of varying the horizontal velocity in x-direc-
tion. In case P3 the temperature difference, which de-
termines the reduced gravity g’, is enlarged. In cases
P4, P5, and P6 geometrical parameters are varied. In
case P7 the Coriolis frequency f has been doubled; this
value—although somewhat larger than found on
earth—is taken to make case P7 significantly different
from PO.

Both Davies’ model and the numerical model de-
scribed in section 2 are applied to identify the differ-
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TABLE 2. Parameters of two-dimensional cases. A blank entry denotes the same value as in the first line.
Inallcases: g=10m s 6p=300K,po=12kgm™3, N=0.
Physical parameters
Hy L Hp Ab U v 104 C R

Case {km) (km) (km (K) (ms™") (ms™) s (ms™) (km)

PO 2 © 200 4 3 20 0 1 20 200 .

P! . 40

P2 5

P3 ] 12 40 400

P4 50 )

P5 0.5

P6 1 10 100
P7 . 2 100

Nondimensional numbers
¢ H F G M A N, ~10°N, Ro

PO 1 2 1 0.01 1 1 0.5 20 1

P1 2 4 . 4 80 2

P2 0.25 0.0625 0.0625 1.25 0.25

P3 0.5 0.5 0.5 0.25 1 5

P4 025 0.04 4 : 2 320 4

PS5 8 0.0025 4 0.125 5

P6 2 0.5 2 2 1

P7 2 0.5 0.25 0.5

ences. Figure 4 displays the results of Davies’ model
and Fig. 5 the results of the numerical model in terms
of the isochrones of the interface between the cold and
warm air masses at a sequence of nondimensional times
t* = tU/L. Subsequently, first the semigeostrophic re-
sults from Davies’ model and then the results from the
numerical model are discussed.

a. Semigeostrophic results from Davies’ model

Davies’ analytical solution is independent of the
Froude number F, and this explains why cases PO,
P1, and P2, which differ only by the amount of the
velocity U, give identical results in nondimensional
coordinates. As discussed by Davies (1984), the retar-
dation is strong if N3 = (He)™! is large. For N3 > =/,
i.e., for cases PO, P3, P4 and P6, the solutions break
down at a critical nondimensional time £¥ in that the
front’s interface undercuts the mountain profile. The
values of #* and the related position x, of the surface
front are * = (0.912, 1.392, 2.383, 1.123), x /L
= (0.569, 0.529, 0.514, 0.486), for cases PO, P3, P4,
P6, respectively. For N; < 7™}, cases P5 and P6, the
retardation is less pronounced and the surface front
succeeds to cross the whole mountain ridge. The an-
alytical solution of Davies is restricted, however, to the
time period where the surface front has not yet passed
the downstream side of the mountain. For this reason,
solutions for * > 1 are not plotted in these cases. As
noted by Davies (1984), the front is retarded on the
upstream side and accelerated on the downstream side
of the mountain. It appears that this effect is mainly

of geometric origin in that the volume of cold air dis-
placed by the mountain is spread horizontally. The
disturbance induced by the mountain spreads upstream
over a distance of order R, the Rossby radius. This can
be seen by comparing the sequence of cases P4, P3,
PO, and P7 for which the values of ¢ = L/R increase
from 0.25 to 2 while the height ratio H = Hp/H); = 2
remains constant.

b. Nongeostrophic results from the numerical model

The results from the numerical model, which does
not assume semigeostrophic equilibrium, are depicted
in Fig. 5. As identified in section 3, both the charac-
teristic numbers N, and N, have to be small to admit
the semigeostrophic approximation. For the cases con-
sidered, these numbers are smallest for case P2 (N,
= N, = 0.0625). In fact, the results of both methods
exhibit only small differences for case P2 (see Fig. 5).
For all other cases, at least one of the two numbers is
not small and this explains why the two methods give
large differences in most cases. In the following the
results are interpreted in terms of elementary physical.
processes and order of magnitude estimates.

1) CONVERSION OF KINETIC INTO POTENTIAL
ENERGY '

The cold air mass arrives at the mountain with spe-
cific kinetic energy U?/2 per unit mass. For small Co-
riolis forces (large values of ;) this kinetic energy is
converted into potential energy. In order to climb over
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FIG. 4. Semigeostrophic results from Davies’ (1984) analytical so-
lutions in terms of isochrones of the frontal interface at times r*
=tU/L = 0, 0.25, 0.5, . .. ; PO is the reference case; PO, P1 and P2
give identical results. In all other cases, one of the dimensional pa-
rameters is changed as indicated (e.g., A9 has been guadrupled in
case P3). H denotes the height of the front at infinity, L the width
of the mountain ridge. The values of the rotational Froude number
¢, and the height ratio H are as indicated.

the mountain, the foot 6f the front has to gain a po-
tential energy g'H),. If

28'Hyy 2C*H,, 2 (31)
is less than one, the foot of the cold front will be re-
tarded because it lacks sufficient kinetic energy. This
is exemplified by cases P2 and P3 (see Table 2 and Fig.

. 5). On the other hand, P1 and P5 are examples where
the kinetic energy is large enough to lift the cold air
over the mountain.

If the kinetic energy is small (V, < 1) the front is
retarded until advected cold air replaces the warm air
on the windward side of the mountain. Cold air at
great heights needs only a little or no additional energy
to flow over the mountain. Thus, at times greater than
R/U, the front is retarded only a little if the height ratio
H is large. If, however, both N, and H are small then
a total blocking is to be expected. Such a blocking is
indicated in Fig. 5 for case P3 in the initial period,
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while the height of the front at the foot of the mountain
is small. -

Once the cold air is lifted up to the mountain crest
it is accelerated by gravity down the mountain slope.
For F < 1 we observe downslope velocities which are
much larger than the initial velocity U (e.g., see case
P2). This is a sort of bora effect with strong downdrafts
within the cold air.
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FG. 5. Nongeostrophic two-dimensional numerical results in terms
of isochrones of the frontal interface at times t* = tU/L = 0, 0.25,
..., 1.5. PO is the reference case. In all other cases, one of the di-
mensional parameters is changed as indicated (e.g., U has been dou-
bled in case P1). The values of the Froude number F, the rotational
Froude number ¢, and the height ratio H are as indicated. For case
P2, the semigeostrophic solution is given by dashed curves for £* < 1.
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2) SPREADING OF DISTURBANCES BY GRAVITY
WAVES

Plane waves with wave number K in a shallow layer
of depth H spread relative to the fluid with a wave
speed ¢ = [g'h + f2/K*)"/? (Pedlosky, 1987, p. 73). For
short waves (K > 1/L, as for those waves which are
excited when the front just reaches the mountain or
which form at hydraulic jumps) or for small rotational
Froude number ¢, the effective wave speed is ¢
= (g'h)"/%. This wave speed approaches the value C far
upstream in the cold layer. Thus, we expect very dif-
ferent behavior in cases with Froude numbers F = U/
C larger or smaller than unity. If F > 1, short-wave
disturbances induced by the mountain cannot propa-
. gate upstream. This is typically observed in cases P1
and P6 (see Fig. 5). On the other hand, if F < 1, dis-
turbances induced by the mountain do spread up-
stream. This effect can be seen in cases P3 and P2. In
the latter case, C is much larger than U and the dis-
turbances reach the inflow boundary of the computa-
tional domain rather early. In cases PO and P3 a hy-
draulic jump arises at positions where ¢ = U. On the
. lee side, the downslope wind, which results from the
conversion of potential into kinetic energy, creates a
second hydraulic jump if the local flow velocity exceeds
the wave speed c. See, for example, cases P2 and P7.

3) EFFECT OF CORIOLIS FREQUENCY

The effect of the Coriolis frequency f is twofold: First,
it influences the Rossby radius and thus the initial con-
ditions for the present model-front. Second, for large
Coriolis forces the flow approaches the semigeostrophic
state discussed in section 4.a. Case P7 illustrates the
effect of doubling the Coriolis frequency. Obviously,
the Coriolis force is not large enough in this case to
enforce semigeostrophic equilibrium, and the main ef-
fect of Coriolis forces comes from the changed initial
condition. Due to the reduced Rossby radius, the front
is steeper in case P7 than in case PO. Hence, the cold
air replaces the warm air on the upstreamside of the
mountain more quickly.

4) FORMATION OF HYDRAULIC JUMPS ' AFTER
LONG TIMES

The numerical simulations show that hydraulic
jumps are forming, which was not to be expected from
the results of Davies (1984). Further, case P3 exhibits
oscillations which require further explanations.

The present study concentrates on the initial period
of flow of a shallow layer of cold air over a mountain
for t < 1.5L/U. A quasi-stationary flow state is to be
expected for times much longer than max(R, L)/U be-
cause the front has traveled far downstream of the
mountain. Although the present numerical results are
still nonstationary, some features of the results can be
understood by comparing them with theories on sta-
tionary flows.
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A shallow layer of inviscid fluid flowing at constant
speed over a mountain can create hydraulic jumps.
Figure 6, based on Houghton and Kasahara (1968),
maps regimes with and without jumps as a function
of the Froude number Fr and the height ratio H,,/H
= H™'. The stationary theory predicts the formation
of jumps in pairs, one upstream and one downstream
of the ridge. Our transient simulations show that the
upstream jump is created first and then the downstream
one appears.

The mabp is strictly valid only for nonrotating flows'
(f = 0). No equivalent theory exists for flows over
mountains in a rotating system. Houghton (1969) and
Williams and Hori (1970) consider the transient mo-

tion of a shallow water layer on an fplane without

mountains starting from an initial velocity disturbance
of magnitude U over a length L. They find that Coriolis
forces tend to reduce the amplitude of a hydraulic jump
and to delay its formation but apparently do not totally
suppress its formation. The reduction of hydraulic
jumps by Coriolis forces can be explained as follows:
Behind the upstream hydraulic jump the velocity u is
less than U. As a consequence, the flow downstream
the jump experiences positive acceleration in y-direc-
tion (see Eq. 6). This in turn causes acceleration in x-
direction (see Eq. 5) which tends to reduce the hydraulic
jump. The time scale of Coriolis forces is /!, that of
jump-creating nonlinear forces is L/U. Hence the delay
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FIG. 6. Classification map of flow conditions as a function of Froude
number F = U/C and the relative height of the mountain H,, with
respect to the height of the fluid layer at infinity, Hp, according to
Houghton and Kasahara (1968). The regimes are: (a) swell without
hydraulic jump, (b) jumps traveling up and downstream, (c) upstream
jump traveling, downstream jump stationary, (d) dip without jumps,
(e) total blocking. The flow states are indicated by the crosses for all
cases according to Table 2.



1 DECEMBER 1987

is large if the Rossby number Ro = U/(f L) is less than
a certain number. Williams and Hori (1970) find strong
delay in the generation of hydraulic jumps if the Rossby
number is less than 0.1. For the cases considered in
this study Ro is larger than 0.25 (see Table 2). There-
fore, it is appropriate to compare the present results
with the theory of Houghton and Kasahara (1968).
Baines (1980) used similar arguments to justify appli-
cation of the irrotational theory for determination of
hydraulic blocking. ‘

Crosses in Fig. 6 mark the state of all cases for which
results have been displayed in Fig. 5. The map indicates
that hydraulic jumps are to be generated for all cases
except for P1 which is supercritical in the hydraulic
sense. From the theory of Houghton and Kasahara
(1968), the height A, of the interface behind the jump

has also been determined: h,../Hr= (1.61, 1.04, 1.22,

1.61, 1.29, 2.15, 1.61) for cases PO, P2, P3, ..., P7,
respectively. For cases PO, P3, P6 and P7, the numerical
solutions reflect strong hydraulic jumps in accordance
with the hydraulic theory. Note that this is true in par-
ticular for P7 in spite of the rather small Rossby number
(Ro = 0.5). Cases P4 and P5 have not yet created hy-
draulic jumps because the time period of the simula-
tions shown in Fig. 5 is too small for this purpose.
The computed jump height is within 20% of the pre-
dicted value for cases PO, P6 and P7. Case P2 lies at
the border to subcritical flow where the gravity waves
are quick enough to spread out jump-forming distur-
bances. Case P3 exhibits oscillations after the first hy-
draulic jump. Shortening the time step does not elim-
inate these oscillations. From the theory (Houghton
and Kasahara, 1968) we know that hydraulic jumps
can form only if energy is lost at the jump. Since our
model does not include any friction, this energy seems
to be converted into oscillating motion behind the hy-
draulic jump. Thus it is conjectured that these oscil-
lations are not due to numerical deficiencies. This con-
jecture is corroborated by the fact that similar oscil-
lations start to develop in cases PO and P6 just after
the hydraulic jump is fully developed.

Thus, our numerical results are consistent with the
theory of hydraulic jumps. Figure 6 can be used to
decide on the flow state in the limit of long times if
rotational forces are sufficiently small. From the results
of the present study we can conclude that this is the
case for Rossby numbers larger than 0.25.

5. Influence of stable stratification in two dimensions

In the cases considered up to now, the air masses
have been assumed to be neutrally stratified. For this
reason, gravity waves have been restricted to waves of
the frontal interface. No internal waves have been ex-
cited. Therefore, the shallow water model suits this sit-
uation well. The standard tropospheric atmosphere is,
however, stably stratified. In terms of the Brunt—Viisdld
frequency a typical value (e.g., see Hoinka, 1985, for
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fronts in central Europe) is N = 0.01 s~!. Near fronts
this value varies considerably due to moist processes
and vertical mixing, as discussed by Keyser and Anthes
(1982). Above the tropopause the stability increases to
much larger values. In order to investigate one effect
after the other, in this study we consider the simplified
case of uniform stratification with N = 0.01 s!. The
selected initial conditions imply purely horizontal mo-
tions; therefore, stratification does not alter the quasi-
stationary solution, Egs. (1)-(3), in the absence of oro-
graphic disturbances. This can be seen from Eq. (11),
in which the effect of the vertical mean temperature
gradient vanishes if w = 0. Subsequently, the effect of
stratification on frontal retardation at a mountain is
discussed for a case which otherwise equals the refer-
ence case PO.

The initial conditions represent a flow which initi-
ated impulsively from rest. Even without fronts, this
causes transient mountain waves which propagate away
from the mountain in all directions (Pierrehumbert
and Wyman, 1985). If the front enters this transient
wave field at early times it will be difficult to separate
the effects of nonstationarity, stratification and frontal
motion. For this reason we first simulate the transient
development of the mountain waves in a case without
a front in order to get a reference case against which
one can compare to identify the effect of the front.
Then two runs with a cold front are performed, one
in which the simulation starts at #* = 0 as in case PO,
and one in which the simulation starts at * = —1 where
the front just enters the left boundary of the compu-
tational domain. The comparison will show the effect
of nonstationarity.

As displayed in Fig. 7a, the transient motion in the
absence of a front causes three types of waves to be
formed. The first is a transient wave on the lee side,
which travels downstream in the form of a hydraulic
jump. It is formed by the cold air which is advected
across the mountain crest and replaces the relatively
warm air initially at this position. Due to strong strat-
ification and large mountain height, the cold air tends
to penetrate below the warm air on the lee side. The
second type of wave forms above the mountain and
tends to become stationary after long times. The third
type of wave is an upstream-propagating layer (thick-
ness ~ H,s) of decelerated fluid also discussed by
Pierrechumbert and Wyman (1985). When this wave
reaches the inflow boundary we observe a conflict be-
tween prescribed inflow values and the internal dy-
namics which is responsible for the upward deflection
of the isotherms at the inflow boundary. (Further tests
with increased computational domains have shown
that this conflict is of minor importance; the present
results are used because they differ from case PO solely
by the value of N.)

Figures 7b and 7c contain the results for the two
cases with the cold front. We see that the front changes
the first two types of waves only little. At the upwind
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FI1G. 7. Interaction of stratified flow over a mountain ridge with a cold front. The panels are
plots of the isotherms (increment A8/2) at a sequence of nondimensional times t*. (a) Case
without a cold front; (b) front initiated at * = 0, (c) front initiated at #* = —1.

side, additional internal gravity waves arise which are
trapped below the front’s interface and travel upstream.
~ The main effect of the front is an increased thickness
of the layer of decelerated fluid upstream of the moun-
tain. The differences of the results depicted in Figs. 7b
and 7c are rather small. Thus, the transient of the wave
motion does not seem to influence the frontal motion
significantly. ,

From the plots of the isotherms, however, it is not
easy to identify the exact position of the front because
it is masked by the gravity waves. Therefore, the tracer
¥ has been.included in the simulation which makes
the cold and warm air masses distinguishable but does
not influence the dynamics of the flow (see Eq. 12).
Figure 8 displays the resultant isochrones of the frontal
interface for the two cases where the simulation starts
either at #* = 0 or at t* = —1. The differences between
the two cases are small. This reveals that the transient
formation of gravity waves and the frontal motion are
only weakly coupled by nonlinear forces for the present
parameters. Therefore, the effect of stratification on
fronts with the present parameters can be identified
from simulations which start from initialization at r*
= 0. Presumably, the weak coupling originates from

F1G. 8. Effect of stratification on the frontal interface. Isochrones
of the frontal interface in stratified flow (as in Fig. 7) at times ¢* = 0,
0.25, ..., L.5. Full curves: front initiated at #* = 0; dashed curves:
front initiated at * = —1.
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the fact the temperature difference Af at the front is
smaller than the temperature difference Hrdb/dz, due
to stratification over the front’s height. The ratio of
these differences equals (HNs)™!; it amounts to 0.25 in
this case.

Comparison of the isochrones in Fig. 8 with those
for case PO in Fig. 5 shows that the front in a stratified
atmosphere is more strongly retarded on the upslope
side and more strongly accelerated on the downslope
side than in cases without stratification. This can be
explained by considering the energy balance and the
spreading of waves in stratified layers.

Additional potential energy N2H,? per unit mass is
required to lift the air on the upslope side up to the
mountain crest against the weight of the stratified fluid
above. Thus, instead of N, now

=l U
2 28 Hy+ N2 Hy/
1 v N

2 CYHy/Hp)+ N?H,#2 1+ N; (32)
controls the retardation of the front. For the present
case, we have N5 = 2, which explains the stronger re-
tardation in comparison to case PO where N; = 0.

Due to stratification, long-wave disturbances travel
faster than at velocity C (Pierrehumbert and Wyman,
1985). This explains why the disturbance induced by
the mountain has traveled far upstream although C
= U. This spreading causes a flattening of the interface.
The hydraulic jump which forms for case PO gets dis-
persed because buoyancy forces counteract vertical
motion at such a jump. As can be seen from Eq. (27),
the effect of stratification will be strong in this respect
even if N5 = Fp?F*H is small, since a hydraulic jump
implies very large vertical velocities.

The retardation of the surface front A (defined by A
= xr — Ut where xris the position of the surface front
at time #) takes its maximum value at ¢’ =~ 0.8 when
the tip of the front has reached the mountain crest.
Thus, the value of A is about 0.3L. This value is smaller
than the value (N/ f)H),/2 predicted by Bannon (1984),
which equals 100 km = L/2 in the present case. Note
that Bannon’s estimate for A implies zero retardation
for N = 0. Presumably, the differences arise because

~ he assumes semigeostrophic flow and small mountain
heights, which we do not. Bannon’s results cannot be
compared directly with the present ones because he
considers a mountain profile which changes with time
and a front experiencing frontogenesis due to imposed
horizontal stretching deformation.

6. Three-dimensional effects

In this section the influence of a simple three-di-
mensional mountain on the idealized cold front is in-
vestigated by applying the numerical method to a cir-
cular mountain with an axially symmetric sinusoidal
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height profile. The parameters selected are otherwise
the same as for the reference case PO already discussed.
Cases without and with stable stratification are consid-
ered (N = 0 or N = 0.01 s7). The case with neutral
stratification has also been investigated by Haderlein
(1986, unpublished). For the stratified fluid, the present
case is the three-dimensional variant of the case con-
sidered in section 5.

The computational domain extends over —~L < x
<2L,-L<y< L,0 < z < 1.5Hr. The numerical
method is applied with 72 X 48 grid cells horizontally
and 30 grid cells vertically. Thus, the horizontal and
vertical grid spacings are 25% larger than in the two-
dimensional studies. This was necessary due to storage
restrictions of the computer used. Parameter studies
in two dimensions have shown that this resolution still
gives sufficient accuracy.

In spite of W = V/U = 0, we expect strong three-
dimensional effects because of equal length scales in x
and y-direction [M = 1, see Eq. (26)]. Figure 9 contains
the surface isochrones at a sequence of times and the
horizontal velocity field at #* = 1 near the surface for
both neutral and stable stratification. For stratified
fluid, the isochrones in Fig. 9 are again determined by
the tracer ¢ which marks the interface between the

-cold and warm air masses. The results show that the

front is accelerated on the northern side (the y-coor-
dinate is considered pointing north) but is retarded at
the upslope side near the mountain center and even
more on the southern side. At time * = 1, the maxi-
mum deformation A (magnitude of the displacement
normal to the front with respect to the position the
surface front would take without a mountain at the
same time) amounts to 0.165L for N = 0, and 0.35L
for N = 0.01 s™'. On the downslope side, the front is
accelerated and the deformation remains increasing,
at least for some time,

The velocity field indicates that the flow is deflected
sideways away from the mountain center. This deflec-
tion is due to gravitational forces in the cold layer as
to be expected from the term —g'dh,,/dy in Eq. (6). It
causes the flow to split over the mountain and explains
the observed form of deformation. An alternative ex-
planation of the observed deformation can be given in
terms of conservation of potential vorticity (Pedlosky,
1987, pp. 63-65). It implies that the vertical vorticity
is negative (anticyclonic) for > 0 whenever the vertical
separation of streamlines decreases with regard to their
separation at infinity (also discussed by Merkine and
Kalnay-Rivas, 1976). In the present case, the vertical
separation of streamlines above the mountain is re-
duced if gravity forces cause flow away from the
mountain center. The resultant anticyclonic motion is
large over the mountain but small elsewhere and thus
causes the “anticyclonic deformation™ of the surface
front. This explanation is consistent with the expla-
nation in terms of flow splitting, because both expla-
nations assume gravity forces as the driving mecha-
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F1G. 9. Influence of a three-dimensional mountain on a cold front
in neutrally and stably stratified atmosphere. The mountain is in-
dicated by the dashed circle. Top: Surface isochrones at a sequence
of nondimensional times; full curves: N = 0, dashed curves: N
= 0.01 s~'. Middle: Surface velocity field for N = 0 at * = I; the
actual position of the frontal line is indicated. Vectors are plotted for
every fourth grid point. The velocity magnitude ahead of the front
is 20 m s~'. Bottom: Same for N = 0.01 s™".

nism. The results show that the retardation and accel-
eration effects are increased by the stratification. This
is easy to understand because stable stratification en-
hances upslope deceleration and downslope accelera-
tion.
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The three-dimensional deformation of the front is
also dependent on all those parameters controlling two-
dimensional retardation. Thus it is large for a small
Froude number F, for a small height aspect ratio H,
and for small values of the rotational Froude number
e. The front’s deformation is no longer invariant with
respect to the velocity component V along the front.
Results of further simulations (not plotted) and the
results of Haderlein (1986, unpublished) show that
positive (negative) values of V of order C cause com-
parable magnitudes of the frontal deformation, but the
position of maximum deformation is shifted into pos-
itive (negative) y-direction.

7. Comparison with observed cases

In this section it will be shown that the model suc-
ceeds in describing the essential structure of observed
frontal retardation. For this purpose, the model is ap-
plied to the cases displayed in Fig. 1 with parameters
which are adjusted as to be as close as reasonably pos-
sible to the observed situations. Thus, we still use the
idealized frontal initialization and a simplified oro-
graphic model representing merely the principal scales
of the Alps. The fronts’ heights and the temperature
differences between warm and cold air masses are es-
timated from two successive midnight soundings (see
Fig. 10) obtained before and after the fronts passed
Munich. The fronts are clearly identifiable from the
temperature changes. Also, the dewpoint temperature
can be used to identify the front’s height. The windfields
change less significantly. Obviously, the front on 2
March 1982 is rather shallow while the front on 4 June
1986 fills virtually the whole troposphere. The tem-
perature difference is larger in the second case. Let case
A denote a simulation of the front observed on 2 March
1982, and case B the front of 4 June 1986. For case A,
we see from Fig. 10a that the temperature has dropped
on average by 6 K over a height interval of 4.5 km.
Being aware that these are rough estimates, we specify
A8 = 6 K and Hr = 4.5 km for case A. From Fig. 10b
we obtain the values Hr = 9 km and Af = 7 K for case
B. The geostrophic wind component normal to the
front is estimated from the movement of the front at
the surface according to Fig. 1: U = 12 m s™! for case
A, and U = 10 m s™! for case B. The wind component
along the front is set to ¥ = 40 m s~! for case A and
V =15 m s~ for case B. In view of the vertical shear
(see Fig. 10), this value is very uncertain. The orography
of the Alps is represented by an ellipsoidal mountain
with length 1000 km and width 200 km and a maxi-
mum height H,, = 2.5 km. These parameters are sum-
marized in Table 3. The computational domain covers
a square with 2000 km side lengths and extends ver-
tically up to z, = 11 km, which approximates the height
of the tropopause. The finite-difference grid includes
40 grid cells in each horizontal direction and 30 grid -
cells vertically. In order to allow for periodic lateral
boundary conditions, the front has to be parallel to the
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A
TABLE 3. Parameters for comparison with observed cases. Case A models the front on 2 March 1982; case B the front on 4 June 1986.

In both cases: g = 10 m s72, f =

10*s7%, 8, = 300 K, po = 1.2 kg m™3, and N = O for runs Al and B1, N = 0.01 s™! for runs A2, A3, B2

and B3.
Physical parameters
Hy L He Af U v c " R
Case (km) (km) (km) (K) (ms™) (ms™) (ms™) (km)
A 2.5 200 45 6 12 40 30 300
B 2.5 200 9 7 10 15 45.8 458
Nondimensional numbers for stable stratification

€ H F G N N, Ny N; 10°N, Ns Fy ' Ro
A 0.667 1.8 0.4 0.013 0.24 0.144 0.064 0.833 4.87 1.25 2.083 0.6
B 0.436 3.6 0.218 0.013 0.109 -0.086 0.041 0.636 2.89 1.07 2.5 0.5

inflow boundary of the computational domain. How-
ever, in case A (see Fig. 1a) the front approaches the
Alps from approximately the northwest while it comes
from nearly due north in case B. Therefore, the moun-
tain is rotated by 30° relative to the line of the front
in the model for case A.

For each case three runs have been performed:

e Al and Bl: with neutral stratification and a
mountain having a sinusoidal height profile (as in the
two-dimensional cases) along both principle axes of
the ellipsoidal mountain domain.

e A2 and B2: with stratification (N = 0.01 s") and
the same sinusoidal height profiles.

¢ A3 and B3: with the same stable stratification but
a mountain which has constant height H,, throughout
the ellipsoidal domain and slopes down to zero height
over one grid interval outside this domain. (The oro-
graphic model used in A3/B3 suits the steep Alps better
than the sinusoidal profile and is still simple.)

The results of the simulations are given in Fig. 11. Iso-
chrones of the surface front are plotted at a sequence
of times. The time increments (3 h) correspond to the
analysis shown in Fig. 1a. The full curves are the iso-
chrones for cases A3 and B3, which exhibit.the largest
effects. For the other cases, the resultant surface front
- is plotted only for the final time (15 h after model ini-
tialization). In the simulations of case A the front
reaches the northwest corner of the mountain about 5
hours after initialization. Ten hours later, the front has
not yet reached the mountain center but has by far
passed the western edge. To the first order, this agrees
with the observations shown in Fig. 1a. For case B, the
simulation indicates that this front, too, is strongly re-
tarded initially. This was not expected from the large-
scale analysis reported in Fig. 1b. However, the front
soon climbs over the mountain, and at the final time
of the simulation the front has passed the mountain
and the remaining deformation of the surface, front is
decreasing. Obviously, the time resolution of Fig. 1b
(24 h) is too coarse to resolve the simulated retardation.

The maximum (positive and negative) deformation
of the surface front has been determined from the
computed isochrones (by comparing with the surface
front which would result without mountains). These
deformations are plotted versus time in Fig. 12 for all

. runs. In the same manner, the observed retardation of

the surface front on 2 March 1982 can be measured
from Fig. 1a by comparing to fictitious frontal lines
which are parallels to that given in Fig. 1a at 0000
UTC 2 March 1982 at distances tU with the given time
differences ¢t and U = 12 m s~!. These values are in-
dicated by circles in Fig. 12. As can be seen, the cases
with the smooth sinusoidal mountain profile (A1, B1)
exhibit rather small values for the deformation of the
front. Stable stratification (A2, B2) does enhance the
deformation but not to the observed magnitude. The
deformation is strongly enhanced, however, if the si-
nusoidal mountain is replaced by a mountain with
constant height and steep slopes (A3, B3). The results
for case A3 compare very well with the observed re-
tardation. A time shift of 2 hours would yield even
smaller differences. For case B, Fig. 12 clearly shows
that the computed front tends to become less deformed
at late times. It appears reasonable that the remaining
deformation is no longer notable from standard syn-
optic observations one day after the front has arrived
at the northern side.

From the estimated input parameters we can eval-
uate the relevant nondimensional characteristic num-
bers (see Table 3) and expect

® semigeostrophic motion for case B because both
N, and N, are small; however, notable departure from
semigeostrophy for case A because NV, is not very small.
e strong retardation of the foot of the front at the
mountain because N, and N are small in both cases.
e Davies’ solution gives physically meaningful re-
sults only for the initial period (#* < 1) because Nj is
larger than 7! in both cases, indicating a mountain
profile which is steep in comparison to the frontal slope.
e hydrostatic flow, because N, is small in both cases.
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FIG. 11. Above: Simulated isochrones of the surface coldfront on
2 March 1982 (cases Al, A2, A3; top) and 4 June 1986 (cases Bl,
B2, B3; bottom). The domain of the mountain is given by the dashed
ellipsoidal curve. The cross identifies the center of the mountain. The
arrow indicates the direction of the geostrophic wind in the warm
air mass. Dashed curves: cases Al and Bl at ¢ = 15 h; dash-dotted
curves: cases A2, B2 at ¢ = 15 h; full curves: cases A3, B3 at time
intervals of 3 h.

e generation of hydraulic jumps in case A but no
jumps in case B, as can be deduced from Fig. 6 for the
estimates of F and H given in Table 3; Figure 6 is
applicable because the Rossby number is sufficiently
large.

o strong effects of stratification because Ns is of order
unity in both cases.

e due to differences in the ratio V/C, the wind behind
the front is westerly in case A but more easterly in case
B; this explains some of the differences in the shape of
the surface front.

These estimates are qualitatively consistent with the
results of the observations and the simulations. The
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results show that not only are the frontal parameters
important, but so is the direction from which the front
approaches the elongated mountain.

8. Summary and conclusions

The effect of simple mesoscale mountains on an

- idealized cold front in a neutrally or stably stratified

atmosphere is studied using a three-dimensional model.
The model accounts for inertia, gravity and Coriolis
forces over high mountains. Many further effects like
friction, surface heating, cloud processes and more
complex initial and boundary conditions, as well as
realistic orography, are still to be investigated. The
present numerical method offers the potential for such
extended studies. In particular, it can be applied to
nonhydrostatic situations. However, it appears impor-
tant for understanding to consider such effects step by
step.

The solutions of the present method have been
compared with results from the semigeostrophic shal-
low water model by Davies (1984). Further compari-
sons with a numerical solution of the shallow water
equations by Haderlein (1986, unpublished) have been
performed and are to be reported elsewhere. The com-
parisons have demonstrated that the numerical method
used to integrate the model equations is well suited to
the present purpose in spite of the discontinuous initial
and boundary values. Also, the appearance of hydraulic
jumps consistent with previous theories supports the
validity of the numerical method.

A scale analysis shows that the semigeostrophic ap-
proximation is valid if the characteristic numbers N,
and N, are both small (see Table 1). For neutral strat-
ification (N5 < 1) the flow is approximately hydrostatic
if N, is small. For fronts parallel to a two-dimensional
mountain ridge, the velocity ratio V/U does not influ-
ence the frontal deformation. As shown by Davies
(1984), the effect of orography on a cold front is de-
termined by ¢ and N;. For small rotational Froude
numbers ¢, the mountain effect is felt far upstream.
For large values of the steepness parameter N;, the
front is strongly retarded and the semigeostrophic
model breaks down after some time.

The semigeostrophic model cannot account for im-
portant flow effects like the upwelling of the foot of the
front on the windward mountainside or the formation
of hydraulic jumps. Moreover, the shallow water model
does not account for dynamic effects of the warm air
mass above and ahead of the cold front. Such effects
are important in stably stratified air and for small-scale
orography with nonhydrostatic flow.

If the conditions imply large deviations from the
semigeostrophic equilibrium, important characteristic
numbers are: N,, deciding on whether the kinetic en-
ergy suffices to let the front just jump over the moun-
tain; and the Froude number F controlling the spread-
ing of disturbances by gravity waves up and down-
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FIG. 12. Maximum surface-front deformation A in positive and negative direction for the
simulations of the front on 2 March 1982 (cases A1, A2, A3; left) and 4 June 1986 (cases Bl, B2,
B3, right). The circles correspond to the observed values deduced from Fig. 1a. Dashed curves:
cases Al and B1; dash-dotted curves: cases A2, B2; full curves: cases A3, B3.

stream. For Froude numbers of order one and suffi-
ciently high mountains, hydraulic jumps are formed
in the interface between cold and warm air masses.
Coriolis forces do not seem to be important in this
respect as long as thé Rossby number Ro = F/e
is larger than 0.25. A front requires additional kinetic
energy to overcome stable stratification with little re-
tardation. Moreover, stable stratification disperses hy-
draulic jumps. The effect of stratification on orographic
retardation of a cold front is large if N5 is large. The
inverse effect of the front on mountain waves ahead
of the front has been found to be small. The maximum
retardation of fronts for high mountains and nongeo-
strophic conditions differs considerably from the result
of Bannon (1984).

For a given mesoscale mountain, the results imply
strong retardation if the front is shallow, if the tem-
perature difference between warm and cold air is large,
if the velocity normal to the front is small and if the
atmosphere is very stably stratified. For a given front,
the retardation is strong if the mountain is high and
steep.

In three dimensions, the front experiences anticy-
clonic deformation. This effect is a consequence of
splitting of the flow above the mountain by gravity
forces. Stable stratification enhances this distortion.
The maximum deformation of the surface front is
larger than in two-dimensional cases. The position of
the maximum distortion depends on the velocity com-
ponent parallel to the front.

The model quantitatively explains the magnitude of
retardation of cold fronts at the Alps as observed by
Steinacker (1983). It was found that the retardation

was very sensitive to stratification and to the steepness
of the mountain profile. Also, the relative angle of in-
cidence of the front on the elongated mountain is im-
portant. The front’s deformation is larger if the front
approaches the Alps from the northwest than if the
front comes from due north.
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