

DLR Workshop DIV 1 "Diagnostik in Verbrennungen" Göttingen, 5. bis 6. Oktober 2005

Untersuchungen zur Wechselwirkung von Akustik und Verbrennung an einer LOX/H2-Modellbrennkammer

Bernhard Knapp, Silke Anders, Michael Oschwald

DIV 1 2005-10-05-Knapp et al.ppt

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Raumfahrtantriebe 74239 Hardthausen

Motivation und Ziel

Motivation

- HF-Verbrennungsinstabilitätsprobleme bei fast allen Entwicklungsprogrammen in USA, Japan, Russland, Europa
- bis heute keine befriedigendes Verständnis der der grundlegenden Wechselwirkungen von Akustik und BK-Prozessen (Zerstäubung, Verdampfung, Verbrennung...)

Ziel

- Verstehen der physikalischen Prozesse und Kopplungsmechanismen bei Verbrennungsinstabilitäten in Raketentriebwerken mit flüssigen Treibstoffen
- Entwicklung von physikalischen Modellen und "Vorhersage-Tools"
- Konstruktive Maßnahmen zur Stabilitätsverbesserung (Baffles, Cavities, ...)

Mechanismus für akustische Verbrennungsinstabilitäten

Optische Diagnostik

- 2 Hochgeschwindigkeitskameras
 - Spray
 - Photron Ultima 1024 C
 - 16000 *Bilder/s*
 - Auflösung 256x32 pixel
 - OH-Flammenemission
 - Photron Ultima I2
 - Interferenzfilter 307 nm
 - 27000 *Bilder/s*
 - Auflösung 128x64 pixel

Photomultiplier (OH-Flammenemission), (35 *kHz*)

Videokamera (50 Hz)

Auswertung

Antwort der Brennkammer auf eine Störung (Anregung)

- Druckschwingungen (dyn. Drucksensoren 35 kHz)
 - Druckspektrum (Druckschwankung $p' = \Delta p/P_C$)
 - gleitende FFT-Analyse
 - Spektrogramm
- Wärmefreisetzungsschwingungen (HS-Videos 27 *kHz*)
 - Grauwerte (Intensitätsschwankung $q' = \Delta I / I$)
 - FFT-Analyse
 - Spektrogramm

Orientierung der Moden

Responsefaktor N=q'/p'

Unterschied ohne / mit Cavity

- ohne Cavity: keine ausgezeichnete Orientierung
- mit Cavity: "Aufspaltung" der 1T Mode

Kaltversuche (1)

Orientierung der Moden

dynamischer Druck (bar)

DIV 1 2005-10-05-Knapp et al.ppt

Kaltversuche (2)

Resonanzprofile (hochaufgelöst)

- T und R Mode sind gut anzuregen
- Lorentz Profil
- Profile stark strukturiert durch
 - zusätzliche Resonanzkörper (Bohrungen, Vertiefungen, Spalte, …??)
- Halbwertsbreite Γ als Maß für Dämpfung
- gleiche Profile in Heißtests

Heißversuche

Messung der Wärmefreisetzung: OH-Flammenemission und externe Anregung

Anregung 90° relativ zum Injektor

Anregung 180° relativ zum Injektor

Sekundärdiise

Druckknoten

hotomultipl

Unterstützung der OH-Analyse mit Photomultiplier

Punktmessung in zusätzlichem Fenster

Interferenzfilter (306 – 315 nm)

Antwort der Brennkammer

- Rampe sichtbar
- $1T\sigma$ und $2T\sigma$ Mode sichtbar
- Oberschwingung regt 3T Mode an

Vergleich Druck- und OH-Intensitätsschwankung

OH-Emission bei 1T Resonanz

- gute Übereinstimmung der FFT-Druckund Intensitätsspektren, φ=0
- Lage der Druckknotenlinie bekannt
- I(t) schwache OH Amplitude
- externe Anregung 90°
 - Einspritzvorgang unterhalb der Druckknotenlinie
 - → keine oder schwache Druckkopplung
 - gleiche Frequenz von OH und p_{dyn}

nicht verträglich mit Kopplung an Geschwindigkeitsfeld – da ...

1 2005-10-05-Knapp et al.ppt

 \geq

Druck- oder Geschwindigkeitskopplung?

90° Anregung \rightarrow p vs v-Kopplung

- Betrag der Geschwindigkeit $|v| = 2\omega$
- doppelte Frequenz bei der Geschwindigkeit
- Antwort der Brennkammer: doppelte Frequenz von $I^{\cdot} \rightarrow \mathbf{nein}$

^{1 2005-10-05-}Knapp et al.ppt ≥D

Lokale OH-Intensität

△I/I als Funktion des Injektorabstands mit Variation der Anregungsposition

Intensität

Hinweise auf Druckkopplung

- 180° Anregung zeigt hohe Intensitätsschwankung
- 90° Anregung zeigt geringe Amplituden
- relative Intensitätsschwankung nimmt ab mit zunehmendem Injektorabstand

Response Faktor N $N = \frac{V}{V} \frac{1}{0}$

Antwort auf eine Störung

 $\iint_{\to} p'(V,t) \cdot q'(V,t) \, dt \, dV$

 $\int_{V}\int_{0}^{2\pi} [p'(V,t)]^2 dt dV$

 $p' = p'_{\max} \sin(\omega t)$ $q' = q'_{\max} \sin(\omega t + \varphi)$

$$N = \frac{q'_{\max}}{p'_{\max}} \cdot \cos \varphi$$

$$N = k \cdot \frac{I'_{\max}}{p'_{\max}} \cdot \cos \varphi$$

 Verhältnis der relativen Intensitätsschwankung zur relativen Druckschwankung

$$N = k \cdot \frac{\frac{\Delta I_{OH}}{I_{OH}}}{\frac{\Delta p}{P_{CRC}}} \cdot \cos \varphi$$

- k wegen unterschiedlicher
 Abtastraten von p' und I'
 (FFT)
- Hinweis auf Druckkopplung

Fehler durch Übersteuerung

Programm Gaincheck

- ▶ 8 Bit Informationsgrenze
- Bilder im schwarzen Bereich zu hell und im weißen Bereich zu dunkel
- Verfälschung von $\Delta I/I$, da zu hohe Helligkeit $\rightarrow \Delta I/I$ wird zu klein

Verbesserung

- 1. Gain verkleinern
- 2. Blende vergrößern

Störfrequenzen bei HS-OH-Videos

Überlagerung von Störfrequenz und Rampe

- auch ohne Verbrennung sichtbar
- Elektronisch bedingt (Bildverstärker)
- mit zunehmendem Gain sinkt Störfrequenz [§]
- mit zunehmender Frame Rate steigt Störfrequenz

Zusammenfassung

Ergebnisse

- Orientierung der Moden in Kalt- und Heißversuchen nach Position der stärksten Anregung
- Rückschlüsse auf Wärmefreisetzung während Resonanz über OH-Eigenleuchten
- klare Hinweise auf Kopplung der Wärmefreisetzung mit dem Druck
 - Anregung 90° relativ zu Injektor: $\omega_{Flamme} \neq 2 \omega_{Druck}$ (keine Geschwindigkeitskopplung)
 - lokale Intensitätsschwankung bei 180° Anregung in Injektornähe am höchsten
 - Responsefaktor bei 180° Anregung am größten
- Verifikation der Ergebnisse durch Hochgeschwindigkeitsaufnahmen mit großem Fenster (gesamter Brennkammerdurchmesser)