i DLR

Application of Visualization Techniques and Quantitative

Optical Diagnostics for the Investigation of Supercritical
Jet Atomization

M. Oschwald, G. Schneider, W. Clauss

German Aerospace Center
Institute for Space Propulsion, Lampoldshausen
D-74239 Hardthausen

8th International Symposium on Fluid Control, Measurement and Visualization
Chengdu, China, August 22-25, 2005

Institute of Space Propulsion
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conditions in high power cryogenic liquid rocket engines

» propellants: LOX/H2

» pressure: ~ 11 MPa

» injection temperature: ~ 100 K

» hot gas temperature: ~ 3500 K

» propellant injection by about 500 injectors

» atomization by shear-coaxial injection

f Viox~ 20m/s
H, vy, ~400m/s
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thermo-physical properties of oxygen
} PCI"it,LOX - 5.04 MPa, Tcrit,LOX - 154_6 K

DLR

» injection at supercritical pressure and subcritical temperature
e sensitive dependence of density on temperature
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optical diagnostics at high pressure

high pressure: at injection conditions

» high densities (10 MPa, 100 K):
» high density gradients » po,= 1116 kg/m3
» high refractive index gradients > pyy =23 kg/m?

> Poy/ Py =49

interaction of light with matter at high density ratio between

densities: supercritical jet and background
» beam steering, beam reflections gas (typically)
» interaction of light with molecules > Pjet/ Pgas = 10-16

influenced by collisions
e quenching
e collisional line broadening

Gladstone-Dale relationship
» n-1=k-p

» high signal intensities, non-linear effects
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cold flow tests
cryo-injector test facility

N,-injection at sub- and supercritical conditions:

» Py, =0.1..6MPa (0.03<P,<1.8)
» T, =80..140K (0.64<T.<1.1)

various injection configurations

» free trans-critical jets (LN,)

» shear coaxial injection (LN,/H, or He)

optical diagnostics
» high speed photography
» spontaneous Raman scattering
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cold flow tests
shadowgraphy LN, free jet injected into N,-gas

with increasing pressure

» vanishing surface tension LN,: 100 K
» reduction length scales of surface irregularities GNy! 293 K
Ving. 5m/s

» increased spreading angle

I
u
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cold flow tests
shadowgraphy coaxial LN,/He injcetion

Ve = 100 m/s The =280 K

» spray formation at subcritical
pressure

» vanishing surface tension at
critical point

P.= 1.0 MPa
P.=0.3

» turbulent mixing of dense
and light fluid components at
supercritical pressure

P.= 6.0 MPa
P.=18
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cold flow tests
density measurement by spontaneous Raman Scattering

A

inelastic scattering process

» signal photon at different wavelength
than exciting photon

» signal is species specific

> IRaman oC Gp N2'jet " |
high pressure effects: I i 4
gh p : | A
» signal level benefits from high pressure u T . |
conditions piisms
» N.B.: at high densities internal field filters ——

effects: o = o(p)

» high signal levels may result in non-linear
effects: use of cw-laser recommended

ICCD-camera
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cold flow tests / Raman scattering

test cases
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raw data

case A4
Ty,=140K
n,,= 1.025

case C4
Ty, =100 K
n,,= 1.157
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cold flow tests / Raman scattering

LN, free jet
centre line density decay centre line temperature decay
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cold flow tests / Raman scattering
LN,/H, coaxial injection

» colder N,-jet: less efficient atomization

» increased H,-rmomentum flux: no pronounced
increase in atomization efficiency

» heat exchange between LN, and H,

v
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hot fire tests at P8 test facility

test bench P8
» F/G research and technology test bench
» LOX-supply system
» GH,-, LH,-, CH,-supply systems

DLR combustor “C"
» single coax injector head

» P.up to 10 MPa, combustion at
supercritical O,- and CH,-pressures

» optical access
e shadowgraphy
e (OH-imaging
e CARS

Institute of Space Propulsion




hot fire tests
DLR  shadowgraphy of LOX/H, supercritical injection

LOX-jet disintegration:

(b) Supercritical Pressure 10 MPa Combustlon

LOX-jet at subcritical (a) and supercritical (b) pressure conditions (from Mayer and Tamura)

» subcritical:

e disintegration into LOX-

droplets
» supercritical:

e disintegration into O,_
clumps of larger size than
typical liquid entities in
subcritical case

Gfmm | 72n'||m I(SOmm

Visualization of O,-jet disintegration with varying chamber pressure (Mayer and Smith)

results from tests at NAL (Mayer/Tamura) and DLR (Mayer/Smith) 13
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hot fire tests
flame visualization by OH-imaging
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» detection of flame emission in spectral range of
OH chemiluminescence

» optical components have to be transmittive in UV
(standard optics blind below 350nm)

» strong thermal emission of H,0 at high pressure



DLR

1,00+ Theoretical spectra T=2800, p = 3 Amagat
hOt fire tests ) ] —— without broadening model
CARS thermometry 1] R I
2
@ 0,50 (\
Coherent Anti-Stokes Raman spectroscopy g | |
» non-linear 4-wave mixing process 0254
» determination of ro-vib level population - L J L
» temperature determination by fitting 000 =
simulated to experimental spectra pixels
adaptation of laser systems - e g
» modeless dyelaser for increased accuracy % e Data of Berger et al Hzic_)z
H,-CARS spectra simulation 4 o= pd
» broadening coefficients for H,/H,0 9 0@ A1
collisions (V. Smirnov et al., IOFAN, GPI, v a5 ¥ R0 2 E
RAS Moscow) % . P
adaptation of experimental set-up g o T {
» hardening of optical mounting against ;i 1 ,; o N
vibrational load at test facility o8
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» remote control Temperature, K
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hot fire tests

CARS at combustor "C" at 6.3 MPa

» beam steering observed, but not prohibitive
to signal generation

» reduced signal validation rate
e in the near injector region
e in the central spray region

» at high pressures reduced transmission due
to H,0 condensation in recirculation zone

» spatially and temporally resolved
temperature data

e progress of combustion and state of mixing
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hot fire tests

CARS at combustor "C" at 6.3 MPa
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conclusions

optical diagnostics in supercritical conditions
» high densities and density gradients
» molecular spectroscopic properties change due to collisions

shadowgraphy
» qualitative characterization of atomization process
» derivation of geometric jet properties, like jet spreading angle

spectroscopic methods

» necessary to take collisional interaction into account

» high signal intensities may favour parasitic non-linear interactions
» signal may suffer from beam steering
>

quantitative results obtained at pressures up to 6 MPa in reactive
cryogenic flow!
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