Application of Visualization Techniques and Quantitative Optical Diagnostics for the Investigation of Supercritical Jet Atomization

M. Oschwald, G. Schneider, W. Clauss

German Aerospace Center
Institute for Space Propulsion, Lampoldshausen
D-74239 Hardthausen

8th International Symposium on Fluid Control, Measurement and Visualization
Chengdu, China, August 22-25, 2005
conditions in high power cryogenic liquid rocket engines

- propellants: LOX/H2
- pressure: ≈ 11 MPa
- injection temperature: ≈ 100 K
- hot gas temperature: ≈ 3500 K
- propellant injection by about 500 injectors
- atomization by shear-coaxial injection

\[v_{\text{LOX}} \approx 20 \text{ m/s} \]
\[v_{\text{H2}} \approx 400 \text{ m/s} \]
thermo-physical properties of oxygen

- $P_{\text{crit,LOX}} = 5.04 \text{ MPa}, T_{\text{crit,LOX}} = 154.6 \text{ K}$
- injection at supercritical pressure and subcritical temperature
 - sensitive dependence of density on temperature
 - maximum value of specific heat
 - minimum thermal diffusivity
 - high compressibility
 - high diffusivity
optical diagnostics at high pressure

high pressure:
- high densities
- high density gradients
- high refractive index gradients

interaction of light with matter at high densities:
- beam steering, beam reflections
- interaction of light with molecules influenced by collisions
 - quenching
 - collisional line broadening
- high signal intensities, non-linear effects

at injection conditions (10 MPa, 100 K):
- \(\rho_{O_2} = 1116 \text{ kg/m}^3 \)
- \(\rho_{H_2} = 23 \text{ kg/m}^3 \)
- \(\rho_{O_2} / \rho_{H_2} = 49 \)

density ratio between supercritical jet and background gas (typically)
- \(\rho_{\text{jet}} / \rho_{\text{gas}} \approx 10^{-16} \)

Gladstone-Dale relationship
- \(n - 1 = k \cdot \rho \)
cold flow tests
cryo-injector test facility

N_2-injection at sub- and supercritical conditions:

- $P_{N_2} = 0.1 \ldots 6$ MPa \quad (0.03 < P_r < 1.8)
- $T_{N_2} = 80 \ldots 140$ K \quad (0.64 < T_r < 1.1)

various injection configurations

- free trans-critical jets (LN$_2$)
- shear coaxial injection (LN$_2$/H$_2$ or He)

optical diagnostics

- high speed photography
- spontaneous Raman scattering
cold flow tests

shadowgraphy LN$_2$ free jet injected into N$_2$-gas with increasing pressure

- vanishing surface tension
- reduction length scales of surface irregularities
- increased spreading angle

LN$_2$: 100 K
GN$_2$: 293 K
v$_{LN2}$: 5 m/s

Pr = 0.3 0.59 0.85 1.18 1.47 1.77
cold flow tests
shadowgraphy coaxial LN$_2$/He injection

- spray formation at subcritical pressure
- vanishing surface tension at critical point
- turbulent mixing of dense and light fluid components at supercritical pressure

$\begin{align*}
\nu_{\text{LN}_2} &= 5 \text{ m/s} \\
\nu_{\text{He}} &= 100 \text{ m/s} \\
T_{\text{LN}_2} &= 97 \text{ K} & T_{\text{He}} &= 280 \text{ K} \\
P_c &= 1.0 \text{ MPa} & P_r &= 0.3 \\
P_c &= 6.0 \text{ MPa} & P_r &= 1.8
\end{align*}$
cold flow tests
density measurement by spontaneous Raman scattering

inelastic scattering process
- signal photon at different wavelength than exciting photon
- signal is species specific
- \(I_{\text{Raman}} \propto \sigma \cdot \rho \)

high pressure effects:
- signal level benefits from high pressure conditions
- N.B.: at high densities internal field effects: \(\sigma = \sigma(\rho) \)
- high signal levels may result in non-linear effects: use of cw-laser recommended
cold flow tests / Raman scattering
test cases

Institute of Space Propulsion

raw data

case A4
\(T_{\text{N2}} = 140 \text{ K} \)
\(n_{1,2} = 1.025 \)

case C4
\(T_{\text{N2}} = 100 \text{ K} \)
\(n_{1,2} = 1.157 \)
cold flow tests / Raman scattering
LN$_2$ free jet

Centre line density decay

$$\frac{(\rho_{\text{max}} - \rho_R)/(\rho_I - \rho_R)}{x/D}$$

Centre line temperature decay

$$\frac{(T_{\text{min}} - T_R)/(T_I - T_R)}{x/D}$$

Pseudo boiling due to maximum of specific heat
cold flow tests / Raman scattering
LN$_2$/H$_2$ coaxial injection

- colder N$_2$-jet: less efficient atomization
- increased H$_2$-momentum flux: no pronounced increase in atomization efficiency
- heat exchange between LN$_2$ and H$_2$

T_{N2}=140K, T_{H2}=270K

T_{N2}=118K, T_{H2}=270K
hot fire tests at P8 test facility

test bench P8
 - F/G research and technology test bench
 - LOX-supply system
 - GH₂-, LH₂-, CH₄-supply systems

DLR combustor "C"
 - single coax injector head
 - \(P_c \) up to 10 MPa, combustion at supercritical \(O_2^- \) and \(CH_4^- \)-pressures
 - optical access
 - shadowgraphy
 - OH-imaging
 - CARS
hot fire tests
shadowgraphy of LOX/H$_2$ supercritical injection

LOX-jet disintegration:

(a) Subcritical Pressure, 1.5 MPa Combustion

(b) Supercritical Pressure, 10 MPa Combustion

LOX-jet at subcritical (a) and supercritical (b) pressure conditions (from Mayer and Tamura)

- **subcritical:**
 - disintegration into LOX-droplets

- **supercritical:**
 - disintegration into O$_2$ clumps of larger size than typical liquid entities in subcritical case

Visualization of O$_2$-jet disintegration with varying chamber pressure (Mayer and Smith)

results from tests at NAL (Mayer/Tamura) and DLR (Mayer/Smith)
hot fire tests

flame visualization by OH-imaging

- detection of flame emission in spectral range of OH chemiluminescence
- optical components have to be transmittive in UV (standard optics blind below 350nm)
- strong thermal emission of H\textsubscript{2}O at high pressure
hot fire tests

CARS thermometry

Coherent Anti-Stokes Raman spectroscopy
- non-linear 4-wave mixing process
- determination of ro-vib level population
- temperature determination by fitting simulated to experimental spectra

adaptation of laser systems
- modeless dyelaser for increased accuracy

H$_2$-CARS spectra simulation
- broadening coefficients for H$_2$/H$_2$O collisions (V. Smirnov et al., IOFAN, GPI, RAS Moscow)

adaptation of experimental set-up
- hardening of optical mounting against vibrational load at test facility
- remote control

Institute of Space Propulsion
hot fire tests
CARS at combustor "C" at 6.3 MPa

- beam steering observed, but not prohibitive to signal generation
- reduced signal validation rate
 - in the near injector region
 - in the central spray region
- at high pressures reduced transmission due to H_2O condensation in recirculation zone

- spatially and temporally resolved temperature data
 - progress of combustion and state of mixing
hot fire tests
CARS at combustor "C" at 6.3 MPa
conclusions

optical diagnostics in supercritical conditions
 - high densities and density gradients
 - molecular spectroscopic properties change due to collisions

shadowgraphy
 - qualitative characterization of atomization process
 - derivation of geometric jet properties, like jet spreading angle

spectroscopic methods
 - necessary to take collisional interaction into account
 - high signal intensities may favour parasitic non-linear interactions
 - signal may suffer from beam steering
 - quantitative results obtained at pressures up to 6 MPa in reactive cryogenic flow!