

Application of Visualization Techniques and Quantitative Optical Diagnostics for the Investigation of Supercritical Jet Atomization

M. Oschwald, G. Schneider, W. Clauss

German Aerospace Center Institute for Space Propulsion, Lampoldshausen D-74239 Hardthausen

8th International Symposium on Fluid Control, Measurement and Visualization Chengdu, China, August 22-25, 2005

Institute of Space Propulsion

conditions in high power cryogenic liquid rocket engines

- propellants: LOX/H2
- ▶ pressure: ≈ 11 MPa
- injection temperature: $\approx 100 \text{ K}$
- ▶ hot gas temperature: ≈ 3500 K
- propellant injection by about 500 injectors
- atomization by shear-coaxial injection

thermo-physical properties of oxygen

• P_{crit,LOX} = 5.04 MPa, T_{crit,LOX} = 154.6 K

injection at supercritical pressure and subcritical temperature

- sensitive dependence of density on temperature
- maximum value of specific heat
- minimum thermal diffusivity
- high compressibility
- high diffusivity

optical diagnostics at high pressure

high pressure:

- high densities
- high density gradients
- high refractive index gradients

interaction of light with matter at high densities:

- beam steering, beam reflections
- interaction of light with molecules influenced by collisions
 - quenching
 - collisional line broadening
- high signal intensities, non-linear effects

at injection conditions (10 MPa, 100 K):

• $\rho_{O2} = 1116 \text{ kg/m}^3$

•
$$\rho_{H_2} = 23 \text{ kg/m}^3$$

•
$$\rho_{02} / \rho_{H2} = 49$$

density ratio between supercritical jet and background gas (typically)

•
$$\rho_{\text{jet}} / \rho_{\text{gas}} \approx 10-16$$

Gladstone-Dale relationship

• $n-1 = k \cdot \rho$

cold flow tests cryo-injector test facility

N₂-injection at sub- and supercritical conditions:

- ▶ P_{N2} = 0.1 ... 6 MPa (0.03 < P_r < 1.8)
- $T_{N2} = 80 \dots 140 \text{ K}$ (0.64 < $T_r < 1.1$)

various injection configurations

- free trans-critical jets (LN₂)
- shear coaxial injection (LN₂/H₂ or He)

optical diagnostics

- high speed photography
- spontaneous Raman scattering

cold flow tests

shadowgraphy LN₂ free jet injected into N₂-gas

with increasing pressure

- vanishing surface tension
- reduction length scales of surface irregularities
- increased spreading angle

5 MP:

 LN_2 :

V_{LN2}:

 GN_2 :

100 K

293 K

5m/s

cold flow tests shadowgraphy coaxial LN₂/He injcetion

- spray formation at subcritical pressure
- vanishing surface tension at critical point
- T_{LN2} = 97 K v_{He} = 100 m/s T_{He} = 280 K Α $P_{c} = 1.0 \text{ MPa}$ $P_{r} = 0.3$

v_{LN2} = 5 m/s

turbulent mixing of dense and light fluid components at supercritical pressure

cold flow tests density measurement by spontaneous Raman scattering

inelastic scattering process

- signal photon at different wavelength than exciting photon
- signal is species specific
- $I_{Raman} \propto \sigma \cdot \rho$

high pressure effects:

- signal level benefits from high pressure conditions
- N.B.: at high densities internal field effects: σ = σ(ρ)
- high signal levels may result in non-linear effects: use of cw-laser recommended

cold flow tests / Raman scattering test cases

raw data

cold flow tests / Raman scattering LN₂ free jet

pseudo boiling due to maximum of specific heat

cold flow tests / Raman scattering LN₂/H₂ coaxial injection

- colder N₂-jet: less efficient atomization
- increased H₂-momentum flux: no pronounced increase in atomization efficiency
- heat exchange between LN₂ and H₂

hot fire tests at P8 test facility

test bench P8

- F/G research and technology test bench
- LOX-supply system
- ▶ GH₂-, LH₂-, CH₄-supply systems

DLR combustor "C"

- single coax injector head
- P_c up to 10 MPa, combustion at supercritical O₂- and CH₄-pressures
- optical access
 - shadowgraphy
 - OH-imaging
 - CARS

hot fire tests

shadowgraphy of LOX/H₂ supercritical injection

LOX-jet disintegration:

(a) Subcritical Pressure, 1.5 MPa Combustion

(b) Supercritical Pressure, 10 MPa Combustion

LOX-jet at subcritical (a) and supercritical (b) pressure conditions (from Mayer and Tamura)

• subcritical:

- disintegration into LOXdroplets
- supercritical:
 - disintegration into O₂₋ clumps of larger size than typical liquid entities in subcritical case

Visualization of O_2 -jet disintegration with varying chamber pressure (Mayer and Smith)

hot fire tests flame visualization by OH-imaging

- optical components have to be transmittive in UV (standard optics blind below 350nm)
- strong thermal emission of H₂O at high pressure

hot fire tests CARS thermometry

Coherent Anti-Stokes Raman spectroscopy

- non-linear 4-wave mixing process
- determination of ro-vib level population
- temperature determination by fitting simulated to experimental spectra

adaptation of laser systems

modeless dyelaser for increased accuracy

H₂-CARS spectra simulation

 broadening coefficients for H₂/H₂O collisions (V. Smirnov et al., IOFAN, GPI, RAS Moscow)

adaptation of experimental set-up

- hardening of optical mounting against vibrational load at test facility
- ► remote control Institute of Space Propulsion

hot fire tests CARS at combustor "C" at 6.3 MPa

- beam steering observed, but not prohibitive to signal generation
- reduced signal validation rate
 - in the near injector region
 - in the central spray region
- at high pressures reduced transmission due to H₂O condensation in recirculation zone
- spatially and temporally resolved temperature data
 - progress of combustion and state of mixing

hot fire tests CARS at combustor "C" at 6.3 MPa

conclusions

optical diagnostics in supercritical conditions

- high densities and density gradients
- molecular spectroscopic properties change due to collisions

shadowgraphy

- qualitative characterization of atomization process
- derivation of geometric jet properties, like jet spreading angle

spectroscopic methods

- necessary to take collisional interaction into account
- high signal intensities may favour parasitic non-linear interactions
- signal may suffer from beam steering
- quantitative results obtained at pressures up to 6 MPa in reactive cryogenic flow!