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Abstract. A simple model is deduced for the surface layer of a convective boundary layer for zero 
mean wind velocity over homogeneous rough ground. The model assumes large-scale convective 
circulation driven by surface heat flux with a flow pattern as it would be obtained by conditional 
ensemble averages. The surface layer is defined here such that in this layer horizontal motions 
dominate relative to vertical components. The model is derived from momentum and heat balances 
for the surface layer together with closures based on the Monin-Obukhov theory. The motion in the 
surface layer is driven by horizontal gradients of hydrostatic pressure. The balances account for 
turbulent fluxes at the surface and fluxes by convective motions to the mixed layer. The latter are the 
dominant ones. The model contains effectively two empirical coefficients which are determined such 
that the model’s predictions agree with previous experimental results for the horizontal turbulent 
velocity fluctuations and the temperature fluctuations. The model quantitatively predicts the decrease 
of the minimum friction velocity and the increase of the temperature difference between the mixed 
layer and the ground with increasing values of the boundary layer/roughness height ratio. The heat 
transfer relationship can be expressed in terms of the common Nusselt and Rayleigh numbers, Nu and 
Ra, as Nu - Ra’/*. Previous results of the form Nu - Ra’j3 are shown to be restricted to Rayleigh- 
numbers less than a certain value which depends on the boundary layer/roughness height ratio. 

1. Introduction 

The convective boundary layer (CBL) extends from the ground to the base of an 
elevated stable layer and is characterized by strong vertical mixing driven by 
upward heat flux from the surface. As summarized by Wyngaard (19854, the CBL 
is composed of three layers: the surface layer of height h, the mixed layer at 
height z approximately between h 5 z 5 0.9H, and the interfacial layer enclos- 
ing the temperature inversion at height H. The purpose of this paper is to 
investigate the surface layer for vanishing mean wind over homogeneous rough 
ground. We assume that the roughness can be characterized by a constant surface 
roughness height zO. The height h of the surface layer is usually defined such that 
in this layer the vertical fluxes vary by a small fraction, say 10%. Unfortunately, 
this would imply different values of h for the various fluxes. With respect to the 
vertical heat flux, h/H = 0.1. For momentum flux, h is smaller or even undefined 
if the mean wind vanishes. Therefore, we define the surface layer as that layer 
where horizontal velocity fluctuations are large in comparison to vertical velocity 
fluctuations. 

Turbulence in the mixed layer is driven by buoyancy. As shown by Deardorff 
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(1970) and Wyngaard et al. (1971), the relevant convective velocity and tem- 
perature scales for the mixed layer are 

( > 

II3 
w* = +HO, , r*A 

w*' (1) 

where g is the gravitational acceleration, T is the temperature (l/T represents 
the volumetric expansion coefficient) and Q, denotes the surface ‘temperature 
flux’, Q, = (WIT’),. The over-bar denotes the time or ensemble mean value. The 
suitability of these scales implies that the mixed layer is only weakly sensitive to 
surface roughness and molecular diff usivities. 

If the mean horizontal wind speed U(z) is nonzero, the surface layer can be 
described using the Monin-Obukhov (M-O) similarity theory (e.g., see Dyer, 
1974). This theory relates the mean wind and mean temperature profiles to the 
surface friction velocity and the corresponding friction temperature scales: 

- 7, 
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where 7,/p = ( w’u’), is the turbulent momentum flux close to the surface. 
As has been recognized, e.g., by Businger (1973a, b), the M-O-theory breaks 

down in the windless case. We cite Businger (1973b), p. 81, who argues “that 
when U = 0 and consequently u* = 0, there are still substantial horizontal motions 
near the surface which have been introduced by the large-scale convection”. He 
assumes that the convection causes a local wind profile near the surface which 
achieves steady state at a time scale much smaller than the time scale H/w* of 
the convective circulation. Businger conjectures that “the structure of the profile 
must be approximately the same as in the case when there is large-scale mean 
wind. Consequently, there is locally shear production of turbulence, and locally a 
friction velocity” ii* may be defined. Businger postulates that this minimum 
friction velocity is related to the scales of the CBL and the surface roughness 
height z. according to 

c* H 
-=fH w* zo 

(3) 

where f (H/z()) is a not yet specified function which decreases with increasing 
H/Z@ 

Even though cases with vanishing mean wind velocity are rare in reality, they 
require proper parameterizations for atmospheric circulation models to avoid 
singular results at positions where the mean wind ceases. Deardorff (1972) 
recommends the use of u’, the root-mean-square value of the horizontal velocity 
fluctuation, instead of U if ItiI < u’ to compute ti* from the M-O-equations. The 
present paper supports this recommendation on the basis of a simple model. 

The knowledge of the function f(H/zo) is necessary, moreover, to determine 
the difference A0 = & - &,, between the mean temperature of the surface and of 



MINIMUM FRICTION VELOCITY AND HEAT TRANSFER 313 

the mixed layer because this difference depends on ii*. The temperature 
difference drives the heat flux in the CBL and is therefore of great importance 
(Tennekes, 1973, p. 205). On the other hand, it should be noted that the surface 
temperature is not very sharply defined for rough surfaces, difficult to measure 
and might be more of modelling importance than of real meaning. Here we 
assume that & represents the temperature at a height equal to the roughness 
height zo. Panofsky and Dutton (1984), p. 147, suggest that the relevant surface 
roughness height for temperature is p/u*, where p is the molecular diffusivity of 
heat. Monin and Zilitinkevich (1969) distinguish between the temperature 6 = 
8(zo) and &, the temperature at the ground, and propose the relation 

At?,= t&4=-0.13&c 

where v is the kinematic viscosity. 
The physical picture described by Businger (1973a, b) has been sketched 

already by Prandtl (1932). He and Priestley (1954) found A0 - z-“~ by consider- 
ing the dynamics of buoyant elements which are mixing with the environment by 
turbulence on smaller scales. Monin and Yaglom (1971), p. 435, report on the 
results of several Soviet scientists and obtain the same dependence from the 
requirement that the M-O-theory gives a finite temperature difference for U -+ 0. 
They restrict the validity of this result for z/IL1 % 1, where L is the Obukhov- 
length (defined in the appendix). If one applies it nevertheless for z = zo, it gives 

-‘I3 = CT*(E) ‘13. (5) 

The magnitude of the coefficient C is uncertain. Monin and Yaglom (1971), p. 
499, summarize several observations and deduce 2.3 I CI 3.6. The resultant 
temperature difference A0 is independent of molecular diff usivities. 

As noted by Deardorff and Willis (1985), p. 210, “the problem of determining 
a simple, reliable parameterization of the surface heat flux under conditions of 
vanishingly small mean flow is still not satisfactorily solved”. They repeat 
DeardorfI’s (1972) proposal and refer to Townsend (1964) who measured 

for natural convection heat transfer over an ice surface. Deardorff and Willis 
(1985) found large scatter of the constant C, (0.10 to 0.24) and found that Cl, 
decreases in time with growing height of the CBL. This parameterization does 
not account for surface roughnesses and appears to be limited to very smooth 
surfaces therefore. 

In the literature on heat transfer, it is common practice to express the 
relationship between the flux Q, and the effective temperature difference A0 in 
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terms of the Nusselt, Rayleigh, and Prandtl numbers, 

Nu+, Ra =(g’T)AeH3, pr& 
PV P 

With these numbers, Equation (5) becomes 

Nu = C-312 2 (HRaPr)“Z, 

(7) 

while Equation (6) can be written as 

Nu = C s Ra”“. (9) 

The difference in the values of the exponent of Ra suggests that Equations (8) 
and (9) describe different heat transfer processes. It is thus interesting to compare 
with the heat transfer relationship 

Nu = 0.069 Ra”” Pro.o74 for 1.5 1 lo5 5 Ra 5 6.8 . 108, 
0.02 I Pr 5 8750, (10) 

found by Globe and Dropkin (1959) for turbulent Rayleigh-Benard convection 
between two horizontal plane plates with gap H heated uniformly from below. 
The measurements were obtained for 0.025 m < H < 0.13 m. This indicates that 
Equations (6, 10) describe the heat transfer over smooth surfaces while Equation 
(5) is designed for rough surfaces. 

In this paper, a simple model is deduced which connects the physical picture 
envisaged by Businger (1973a, b) with a simple surface-layer model. As a result, 
the function f(H/zo) and a parameterization for A0 will be determined. 
Moreover, we shall give an estimate of whether a surface of a convective 
boundary layer is to be considered as being smooth or rough. 

2. A Simple Model for the Surface Layer 

As sketched in Figure 1, the flow field in the turbulent CBL in the absence of 
mean wind is characterized by a circulation at scales of the order of the height H 
of the CBL with high-speed rising motion in narrow thermals and low-speed 

,1 sinking motion in the relatively large surrounding area. Measurements of w -/ w$ 
(e.g., Caughey, 1982) and of the diameters of updrafts and downdrafts (e.g., 
Greenhut and Khalsa, 1987) show that this asymmetry exists. In the surface layer 
of thickness h, a horizontal motion with velocity U arises for continuity. 

This picture would result from observations if we perform conditional sampling 
such that we obtain an average over an ensemble of thermals with suitably 
defined origins (xi, yi), i = 1,2, _ . . , n, n % 1. If fi = f(x:, y\, z, 6) is any com- 
ponent of the flow field of the i-th realisation of a convective cell, in which 
xi = x - xi, y: = y - yi refer to the horizontal coordinates relative to the centre of 
the rising motion at time ti, then the conditional ensemble average f is the mean 
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Fig. 1. Sketch of the circulation in the convective boundary layer (CBL) and the profile of the mean 
potential temperature 6 versus height z. The surface layer extends from the ground (z = 0) to the 

height h and is topped by the mixed layer extending approximately up to height H. 

value over all statistically independent fields fi. Note that the resultant velocity ti 
is non-zero and space-dependent even if U is zero. Greenhut and Khalsa (1987) 
used similar definitions of conditional averages to evaluate the structure of a 
CBL. 

In the surface layer, the fluid is heated from the surface by the constant 
temperature flux OS = Q,. This causes the temperature in the surface layer to rise 
from 6, at the foot of the sinking motion to & at the foot of the rising thermal. 
The temperature variations cause buoyancy forces which result in hydrostatic 
pressure differences j3, - p2. Moeng and Wyngaard (1986) have shown that about 
half the pressure fluctuations near the surface are caused by hydrostatic forces 
while the remainder is caused by turbulent interactions. It appears reasonable 
that the contribution of turbulent interactions are of smaller scale and contribute 
less to the horizontal pressure gradients. Moeng and Wyngaard (1986) have 
shown also that buoyancy-induced pressure fluctuations are small in the middle of 
the CBL. Thus we may estimate the horizontal pressure difference in the surface 
layer to be equal to 

Here, (YH measures the height over which the thermals rise and sink with 
vertically constant temperatures & and 8i, respectively; (Y is the first of a series 
of as yet undetermined model parameters which we shall introduce in this section 
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and determine thereafter. The mean horizontal separation between the axis of 
rising and sinking motion is PH where p is a further parameter of the present 
model. 

In order to define heat and momentum balances, we consider a control volume 
of height h for the surface layer together with heat and momentum fluxes as 
shown in Figure 2. This figure is consistent with the definition of the surface layer 
as that layer where horizontal motions dominate relative to vertical ones. To 
simplify the analysis, we assume that all parameters shown in Figure 2 are 
constants. For example, ti corresponds to the mean value of the conditional 
ensemble average of the horizontal velocity in the control volume. Moreover, we 
assume that the convective motion is close to steady state. As a consequence, the 
horizontal temperature difference & - 8, is determined by the heat balance 

hti(& - 8,) = HP(Os - C%,,), (12) 

where o,, is the temperature flux leaving the top of the surface layer by means of 
both fine-scale turbulence and convective-scale transport G(? averaged over the 
surface at z = h. The flux o,,, is a certain fraction (1 - r,,)Q of the surface flux. 
Again, yh, t) < yh < 1, is a free model parameter. For Small entrainment at the top 
of the CBL, yh = h/H (Wyngaard, 1985). Thus 

hzi(& - 6,) = HPy&. (13) 

The horizontal momentum balance for steady state is 

(j-j, - Pdh = (%n - 7s) PH, (14) 

where the difference of the stresses at the interface to the mixed layer (?,,,) and at 
the bottom (is) balances the pressure force. Note that these stresses are non-zero 
in the conditional ensemble average while the corresponding standard mean 
values ?,,, and 7, are zero. 

Now, we relate the conditional ensemble averages to the standard mean values 

Fig. 2. Sketch of the control volume representing the surface layer of the CBL. 
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(denoted by the over-bar) and the corresponding root-mean-square values 
(denoted by primes): 

(15) 

Here, the first two equations assume that the turbulent fluctuations are caused 
mainly by the convective circulation. The second equality is quantitatively 
supported by results of Greenhut and Khalsa (1987) who determined tem- 
peratures in updrafts and downdrafts by conditional sampling from aircraft 
measurements. The third equation describes a reasonable approximation because 
turbulent temperature fluctuations are small relative to the temperature 
difference A8 = & - 6,. One could have introduced further model coefficients of 
order unity to correct for these approximations but they would combine with the 
parameter p in the subsequent analysis and are omitted therefore. 

From Equations (11, 14), we may eliminate the pressure difference and obtain 

(16) 

Using the definition for w*, Equation (l), we find 

u’( ?, - ?J = qgw:. 

This together with Equations (12,15) in reordered form 

is the result which we obtain from heat and momentum balances. 
In order to close the system, we need parameterizations for the momentum 

fluxes 5, and 7,,,, and the surface temperature flux Q, as a function of u’ and A8. 
At the surface, we assume that the M-O-theory may be applied to the conditional 
ensemble mean values of the convective motion although the theory presumes 
horizontal homogeneity and stationary flow with vertically constant heat and 
momentum fluxes. The flow is approximately stationary and homogeneous 
because h is much smaller than H. The variation of the vertical heat flux will be 
also small because it varies approximately linearly with height. However, the 
momentum flux will show larger variations. Thus, the conditions of the M-O- 
theory are satisfied at best approximately. Therefore, in the absence of better 
proposals, we may apply the M-O-theory to obtain rough estimates. The M-O- 
equations in terms of the common mean values are summarized in the appendix. 
These equations predict velocity and temperature profiles which show little 
variations for z > -L, where L is the Obukhov-length. Under the condition that 
this length scale is small in comparison to h, we obtain: 

?, = -pi& (19) 
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u’ = T MhlzO) - hJhl-0 + ~m(zol~)]. 

Here K is the von Karman constant and E the Obukhov-length related to the 
convective motion: 

fi: E=--= H ti: --- 
d&/T K W;’ 

(21) 

Note that l # 0 while the standard Obukhov-length vanishes. Likewise, the 
surface temperature flux Q, is related to the temperature difference A0 between 
the ground and the interior of the surface layer at z = h by 

A0 = - 8, i Mhl-4 - &Ah/L) + ~dzd~)l, (22) 

Q, = - iie8+c = wz+cTt+c. (23) 

The momentum flux ?‘,,, is caused to a small fraction by small-scale turbulence but 
mainly by the convective motion pfi(x, y, z) 6(x, y, z) averaged over the top 
surface of the surface layer at z = h. As Figure 1 suggests, sinking motion 
transports velocity with small horizontal velocity towards the centre of the 
thermal while rising motion near the thermal transports high-speed velocity 
upwards. This asymmetry causes 5, to be positive on average and controlled by 
the convective velocity scale, i.e., 

7, = YmPd=. (24) 

Again, y,,, is a free model parameter of order unity which depends on the value 
of h/H. It is reasonable to assume that the momentum flux by the convective 
circulation is much greater than the momentum flux at the surface, so that 

This is consistent with the already used assumption of - h/i S 1. In the following, 
we shall neglect the contribution of the surface stress relative to the stress at the 
interface to the mixed layer. This would not be necessary in principle but is 
justified for the given arguments and is technically necessary because otherwise 
the value of U’ has to be determined from the roots of a cubical polynomial. 

Now the system is closed and we may eliminate the momentum and heat fluxes 
from Equations (17, 18). Inserting Equations (24,25) in (17) gives 

U’ aYh -zz 

w* Yntym’ 

This together with Equation (20) results in 

U* ayh 

w* ym lnthlzd - &,,(h;i) + &,(z,lL)7 
0* w* -=-- 

T* ii*’ 

(26) 

(27) 
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Here we need to know i:, which we obtain from Equations (21,27): 

l=-H ayh 

( ) 

3 2 

ym Mhlzd - $4AGO + vMz0/L:)13’ 

From Equations (22) and (27) follows 

w3) 

Equation (18) combined with (26) becomes 

0’ P’ym H -= -- 
T* a h’ 

(30) 

Equation (27) defines the function f(H/zo). For evaluation, one has to compute L 
by inverting Equation (28) for given value of H/zo. 

3. Determination of the Model Parameters 

The thickness of the surface layer h has been defined as that layer where 
horizontal motions dominate relative to vertical ones. A reasonable estimate is 

This estimate is backed by measurements of the vertical and horizontal velocity 
fluctuations as depicted in Figure 4.18 of Caughey (1982). It is consistent with 
the value obtained from the condition that the vertical heat flux varies by less 
than 10% for small entrainment heat-flux at the top of the CBL (Wyngaard, 
1985). In addition, the above theory contains effectively only two independent 
empirical coefficients (for given M-O flux-profile relationships and given value of 
the von Karman constant K), namely 

I 
‘yrh=% and PY~ h 0’ - 
Ym w* ff -s T*’ 

These coefficients can be determined from experiments which apply for - h/L + 
1. We shall see that this is usually the case for experiments in atmospheric 
boundary layers with moderately large surface roughnesses and vanishing mean 
wind. A test is the independence of u’/w* from H/z,, and from the ratio h/H. 
The data for u’/w* shown in Figure 4.18 of Caughey (1982) satisfy this con- 
dition. They imply 

3=0.7*0.1. 
YIH 

The result is supported also by the measurements of Deardorff and Willis (1985) 
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in a laboratory convection experiment and by results of large eddy simulations as 
used by Deardorff (1972). 

For the preselected value h/H = 0.1, we obtain from the data for 8’/T* shown 
in Figure 4.19 of Caughey (1982): 

PYm ~ = 0.3 * 0.05. (34) CY 

Alternatively, we might use the correlation 

(35) 

given by Kaimal et al. (1976). It implies 

P-Ywl ---E 
a 

l.81’2(h/H)2”=0.289for~=0.1. (36) 

This result is consistent with Equation (34) and reflects moreover the fact that the 
coefficient ym, defined in Equation (24), will increase with h/H because of 
increasing vertical momentum transport by the convective circulation. 

Based on these results, all remaining quantities can be evaluated. Figures 3 and 

1 
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1 

Fig. 3. Plot of minimum friction velocity 6, over the convective velocity scale w* and of the 
temperature difference A0 over the convective temperature scale T, versus the boundary 
layer/roughness height ratio H/z,,. The full curves correspond to Equations (27,29). the dashed lines 

to Equations (37, 38). 
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Fig. 4. Plot of the ratio of surface layer thickness h over the Obukhov length for the convective 
motion i versus the boundary layer/roughness height ratio H/zo. 

4 show the results for those quantities which are functions of H/z,. The function 
ii*/ w* versus (H/z,) is the function f(H/zJ postulated by Businger (1973a, b). 
As predicted, it decreases with increasing H/Q. The temperature difference 
AO/Ty, strongly increases with H/z,,. For comparison it might be noted that 
Equation (6) would give a constant temperature difference. Figure 4 shows that 
-h/L > 1 for H/z0 > 100. This is the lower limit of the validity of the results 
because of the assumption expressed in Equation (25). Most mid-day atmospheric 
convective boundary layers satisfy this condition except for very large roughness 
heights like those for high trees or urban areas. 

The dashed curves in Figure 3 correspond to 

(37) 

(38) 

The latter result corresponds to Equation (5) with C = 2.15. This value is a little 
smaller than the estimates given by Monin and Yaglom (1971), p. 499. 
Obviously, these simple equations give good approximations to the Equations 
(27,29) and may be of practical value, therefore. For example, by means of these 
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correlations, Equation (4) can be rewritten as 

(39) 

Typical values in an atmospheric CBL (Kaimal et al., 1976, run 6Al) are 
w* = 2.4 m s-l, T*=O.O9K, H=2000m, z0=0.02m, T=300K, V= 
15 . 10ph m2 s-r. From these values, we obtain H/z0 = 105, u* = 0.15 m ss’, u’ = 
1.7 m s-l, -L = 1.3 m, 0’= 0.27 K, A8 = 9.8 K, and A0o = 1.9 K. Kaimal et al. 
(1976) report minimum values of u* = 0.18 m s-’ and of -L = 5.7 m, but for 
non-zero mean wind. Thus the theory seems to predict realistic results. 

4. Heat Transfer Correlations and Limits of Validity 

If Equation (29) is expressed in terms of the characteristic numbers defined in (7) 
we obtain 

312 

, 

where Equation (38) is used to obtain the approximation for F = F(H/z,,). This 
result has been deduced for a rough surface. In order to be classified as rough, 
the surface roughness parameter z. has to be greater than the scale v/r.i* of the 
viscous layer. From the definitions of the various numbers, one easily obtains 

Using the approximate results, Equations (37,38), give 

z”u”=o.354 zo 
V 

( Ji (K!) ‘I?. 

(41) 

(42) 

This number is greater than 10, which might be a reasonable limit for a rough 
surface, if 

for Pr = 0.7. (43) 

It requires, e.g., Ra > 5.6 . 10”’ for H/z. = 1000, and Ra > 5.6 . 10” for H/z, = 
106. Since it is difficult to reach such high Rayleigh numbers in laboratory 
experiments, it can be surely assumed that Equation (10) has been obtained for 
effectively smooth surfaces. 

For the parameter values given at the end of the previous section, we obtain 
Ra = 8 . lOI’, Nu = 2 . 10h, (zoLi*/v) = 203. Thus, the given example corresponds 
to a rough surface under pure convective conditions in spite of the not very large 
value of zo. 
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5. Summary and Discussion 

The present model is based on the concept of conditional ensemble values of the 
structure of the CBL as shown in Figures 1 and 2 together with balances of heat 
and momentum in the surface layer and the Monin-Obukhov (M-O) theory for 
the heat and momentum transfer at the surface. From these considerations, 
explicit relationships have been deduced to determine the turbulent velocity 
fluctuations u’ and the turbulent temperature fluctuations 8’ in the surface layer. 
The results are consistent with measurements summarized by Caughey (1982) 
and these data are used to determine the two free coefficients of the present 
model. From the model, we have determined the function f(H/zJ postulated by 
Businger (1973a, b) and the temperature difference A0 between ground and 
surface layer. 

The largest uncertainty of the model originates presumably from application of 
the M-O-theory for conditions which do not fully satisfy the requirements of this 
theory. However, the sensitivity of the results to parameters of the M-O- 
equations is weak. For instance, replacing h in Equations (20,22) by 0.5 h causes 
i&/w* to increase and A6/T* to decrease at maximum by (18.4,2.7, l.O)% for 
H/z0 = (lo’, 104, l@‘), respectively, and H/z,, should be greater than lo3 for the 
present theory. 

The results show that in common atmospheric cases the surface layer loses 
most of its circulation momentum to the mixed layer by asymmetrical large-scale 
convective motions while the momentum loss at the (rough) surface is negligible. 
This explains why the turbulence in the mixed layer is only weakly dependent on 
surface roughness. However, the shear-induced turbulence at the surface is 
responsible for the surface temperature flux relative to the temperature difference 
between ground and surface layer. In fact, this temperature difference drives the 
whole CBL since it controls the surface energy balance (including radiation) and 
thus the amount of sensible heat flux from the ground to the atmosphere. The 
value of ti* is important to know for estimates of turbulent transports between 
the surface and the surface layer for vanishing mean wind velocity. The present 
theory could easily be extended to relate moisture differences with the latent heat 
flux or concentration differences with fluxes of other air constituents. 

The heat transfer relationship obtained from the present model shows that the 
Nusselt number increases with the square root of the Rayleigh number whereas it 
increases with the third root of the Rayleigh number for smooth surfaces. 
Equation (43) specifies the limit between smooth and rough surfaces. Experi- 
ments are necessary to verify this result. It is reassuring that the result Equation 
(29) for ABIT* is in close agreement with the prediction of Prandtl (1932) and 
others given by the dashed curve in Figure 3 and Equation (38). 

NO measurements have been found to check the validity of the predicted 
temperature difference A8. This is not surprising in view of the difficulties in 
defining and measuring the surface temperature (together with Q,, zo, and H) 
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but it is particularly unfortunate because such data would provide an independent 
check of Equation (29) since all model parameters in this equation have been 
fixed already. The large field experiments in 1968 in Kansas (Haugen et al., 

1971) and 1973 in Minnesota (Kaimal et al., 1976) used temperature probes at 
towers with a minimum height position of 0.5 m. This height is still much larger 
than z0 in these experiments. Moreover, local measurements would probably not 
be representative for the surface temperature which drives the average heat flux 
over a larger surface area. Measurement of infrared radiation might give a 
suitable indicator of the temperature 8, at the ground which then can be related 
to the surface temperature & by Equation (39). Remote sensing of this radiation 
would also give the necessary average over a larger surface area. 

Deardorff and Willis (1985) report that in their laboratory experiment A@ was 
‘typically’ 10 K while T* varies between 0.094 and 0.14 K. In the present theory, 
see Figure 3, this would imply H/.Q varying between 3 . lo4 and 10’. Un- 
fortunately, Deardorff and Willis (1985) do not report values for H/G,. However, 
for comparison such values would be of limited value because in this experiment 
the effective Rayleigh number is of the order Ra = 10” and thus not large enough 
in view of the criterium given in Equation (43). 

We have started to apply large-eddy simulations for the CBL to compute 
ensemble mean values of thermals and to verify the results given in Figure 3. For 
this purpose, we are using the method described in Schumann et al. (1987). The 
results obtained corroborate the results reported in this paper. Details of these 
simulations are to be reported in Schmidt and Schumann (1989). 

Acknowledgments 

I thank Drs. J. A. Businger, T. Hauf, H. Kraus, F. T. M. Nieuwstadt, H. Schmidt 
and an anonymous reviewer for several hints and critical questions which helped 
me to improve the present paper. 

Appendix: Monin-Obukhov Relationships 

In Section 2, we apply the Monin-Obukhov (M-O) theory. The corresponding 
equations are well known but summarized here for completeness and to specify 
the values of the numerical parameters where we follow Paulson (1970) and Dyer 
(1974): 

U(z) = T Mz/zo) - tkdz/L) + +&0lL)l (44) 

e(z) - 0, = + Mz/zd - +h(zIL) + th(zdL)l (45) 

e*=-Qr 
u*’ 

L=-u: 
d&g/ T 

(46) 
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$m(l) =2ln(y)+ln(*) -2arc tan(rp;‘)+; (47) 

(48) 

(urn (5) = (1 - W-“4, (ph (5) = Cl- W-“*, K = 0.41. (49) 

These equations apply for the unstable case, i.e., for z/L 5 0, where the Obuk- 
hov-length L is negative. For discussions of the values of the coefficients used, 
see Businger et al. (1971), Yaglom (1977), Viswanadham (1982), and Wier and 
Riimer (1987). In a preliminary version of this paper, we had used the earlier 
proposals by Businger ef al. (1971). The differences induced by this ambiguity 
are small. The terms I+$,,( &L) and I,$,(z~ L) are negligible for zo/L 4 1. 
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