

Temperature Dependence of Material Properties and its Influence on the Thermal Distribution in Regeneratively Cooled Combustion Chamber Walls

M. Oschwald, D. Suslov, A. Woschnak

German Aerospace Center Institute for Space Propulsion, Lampoldshausen D-74239 Hardthausen

1st EUCASS July 4-7, 2005 Moscow, Russia

conditions in regeneratively cooled LOX/GH₂-engines

- ▶ hot gas temperature: ≈ 3500 K
- ▶ pressure: ≈ 11 MPa
- heat flux: up to 80 MW/m²
- LH₂-temperature:
 - cooling channel inlet $\approx 40 \text{ K}$
 - cooling channel outlet $\approx 100 \text{ K}$
- wall structure temperature:
 - hot gas side $\approx 400 800 \text{ K}$
 - cooling fluid side $\approx 40 100 \text{ K}$

hot gas wall temperature: ΔT =40 K \approx 50% life time

A. Fröhlich, M. Popp, G. Schmidt, D. Thelemann. Heat Transfer Characteristics of H_2/O_2 Combustion Chambers, AIAA 93-1826, 29th Joint Propulsion Conference, Monterey, CA, 1993

stratification in cooling channels with high aspect ratio

HARCC-experiment

- P8 test bench
- LH₂-cooled L42 combustor
- pressures up to P_c = 9 MPa
- heat fluxes up to 40 MW/m²
- variation of AR=1.7 ... 30

P8 test bench —

D. Suslov, A. Woschnak, J. Sender, M. Oschwald, Test specimen design and measurement technique for investigation of heat transfer processes in cooling channels of rocket engines under real thermal conditions, AIAA 2003-4613, 39th Joint Propulsion Conference, Huntsville, 2003

A. Woschnak, D. Suslov, M. Oschwald, Experimental and Numerical Investigations of Thermal Stratification Effects, AIAA 2003-4615, 39th Joint Propulsion Conference. Huntsville, 2003

HARCC geometries

sector no.	width [mm]	height [mm]	aspect ratio	fin width [mm]
1	1.2	2.0	1.7	1.4
2	0.8	2.8	3.5	1.4
3	0.3	9.0	30	1.4
4	0.5	4.6	9.2	1.4

temperature determination in wall structure with thermocouples

- measurements at 4 axial locations
 - z=52mm, 85mm, 119mm, 152mm downstream duct entrance
- 5 radial positions
 - 0.7mm, 1.1mm, 1.5mm, 1.9mm, 7.5mm from hot gas side
- determination of surface temperature, heat flux and heat transfer coefficients by inverse method

heat conduction / material properties

instationary problem:

$$\rho \frac{\partial (c_V T)}{\partial t} - \nabla \cdot (\lambda \nabla T) = 0$$

stationary problem:

$$-\nabla \cdot (\lambda \nabla T) = 0$$

specific heat:

heat conductivity:

 $c_V \approx 25.9 \text{ J/mol/K}$ (Dulong-Petit, ambient temperature) $\lambda \approx 350 \text{ W/Km}$ (typical Cu-alloy)

combustion chamber wall construction

Debye-theory of the specific heat

Debey-theory

- quantum mechanics for low temperature behaviour
- high temperature limit:

c_v = 3R (Dulong-Petit)

Iow temperature limit:

 $\textbf{c}_V \propto a {\cdot} (\textbf{T} / ~ \boldsymbol{\Theta}_D ~ \textbf{)^3}$

• for copper: $\Theta_{\rm D} \approx 315$ K

thermal conductivity at low temperatures

R.L. Powell and W. A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperature, NBS Circular 556, 1954 Institute of Space Propulsion

thermal conductivity of copper alloy for L42-combustor

thermal expansion coefficient

thermal field w/o and with temperature dependence of λ

 HARCC experiment, 52 mm downstream cooling fluid inlet

AR H/B	sector	Т _{Н2}	<i>Т_W</i> [К]		∆T _W [K]
			T_c λ =const.	τ _ν λ(Τ)	
1.7	Q1	85	380.9	385.0	4.9
3.5	Q2	90	363.3	369.4	6.1
9.1	Q4	95	349.9	358.2	8.3
30	Q3	100	343.6	352.7	9.1

thermal field w/o and with temperature dependence of λ

cooling fluid temperature: 50K

AR H/B	sector	<i>Т_W</i> [К]		⊿T _w [K]
		T_c λ =const.	τ _ν λ(τ)	
1.7	Q1	349.0	361.3	12.3
3.5	Q2	326.6	345.7	19.1
9.1	Q4	308.3	334.6	26.3
30	Q3	297.3	327.0	29.7

 $\Delta T_W = T_v - T_c$

transient thermal field: $c_v = c_0 vs. c_v = c_v (T)$

wall temperatures

- pre-cooling of structure to 40 K
- instantaneous temperature increase at t=0

C •

b

а

transient thermal field: $c_v = c_0 vs. c_v = c_v (T)$

dT/dt [K/s]

temporal gradients

transient thermal field: $c_v = c_0 vs. c_v = c_v (T)$

spatial gradients

summary

specific heat c_v thermal conductivity λ thermal expansion coefficient α

- show significant temperature dependence
- c_v , λ , α disappear at absolute zero

 $\alpha \rightarrow 0 \text{ for } T \rightarrow 0$

• reduced thermal stress at low temperature

 $c_v \rightarrow 0$ für T $\rightarrow 0$

• only minor differences as compared with simulation results with c_v=const.

 $\lambda \rightarrow 0 \text{ for } T \rightarrow 0$

- increase of hot gas side wall temperature
- relevant level of increase at low cooling fluid temperature and high AR