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1. GENERALIZED POISSON EQUATIQN SOLVER

Many two-dimensional fluid dynamics problems require the solution
of Poisson's equation

2 32
a(x) g2 + B0 3¢ ¢ c(x) u + I = £(x,y). (1)

If (1) is discretized by central second order finite differences on a

rectangular staggered grid { X, = (i—%)AX, i=0,1, ... ,M+1; yj=(j-%]Ay,
j=0,1,...,N+1 } we get the block-tridiagonal linear system for
Vi,j ] u(xi,yj):
~(A—aI) -1 ] —v1 T —f1 |
-1 A -1 v, fz
. - | (2)
-1 A -1 V- T LIV
-1 (A-RI) vy £

where A is a tridiagonal M x M matrix with non-constant coefficients,
I the M x M unit matrix, Vj the vector {Vij} and fj =—{f(xi,yj)}-Ay2
(plus modifications accounting for boundary values). The values of «

and 8 depend upon the boundary conditions in the y-direction:

0 for v. = 0 0 for Vi,N+1 = 0 (Dirichlet)

i,0
; B = (3)

1  for Vi,T—Vi,O =0 1 for Vi,N+1—Vi,N = 0 (Neumann)

Q
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The boundary conditions in x-direction are arbitrary and may include
periodicity conditions. An efficient non-iterative algorithm for the
solution of (2) has been described in [_1_7 for the case of ¢« = 8 = 1
(Neumann boundary conditions). The procedure is based on Buneman's cyc-
lic reduction (CYR) / 2,3_/ in a version suited for arbitrary values of
M and N. The common restriction N = 2K / 2] as required in older ver-
sions is abandoned. Nevertheless the new algorithm requires only an or-
der M « N .

cations. Here we shall describe an extension to Dirichlet conditions.

log N operations and slightly more than M N storage lo-

The idea of the algorithm is as follows. We reduce the number of
unknowns in a sequence of reduction steps (r = 0,1,2,...,k = log,N) in
which we eliminate every second unknown Vj by a proper linear co&bina-
tion of adjacent equations. Hereby the original block-tridiagonal matrix
is reduced to a new block-tridiagonal matrix with about half as many
rows and columns. Its elements become polynomials of degree 2T in A.
These products are not computed explicitely since this would decrease
the efficiency and accuracy considerably. Instead we describe the poly-
nomials implicitely in terms of their roots. This can be done for each
equation as known from older CYR versions. Special attention is required
for the last equation where we have to use different linear combinations
depending on whether the remaining number of equations is odd or even.
In case of an even number, the elimination of the last unknown requires
the inversion of a matrix. The explicit computation of this inversion,
which would be very expensive, can be avoided by writing the matrix at

the r-th reduction step as

k(t) 1 k(®) = A - a1
. AT g Ae) -
- (4)
1 A (o) - A - g1
_1 ([C(r)]-T B(r)) ce) -

where we explicitely keep the denominator C(r). Now it is possible not

)

only to express A(r as a polynomial of the form

r

A (1) - (5)

1 ]

=0

j
with analytically determinable roots A.(r), but rather to give similar
expressions for K(r), B(r) and C(r) as well.




For Neumann boundary conditions the details are given in / 1_/. The ap-
pendix of this paper contains the polynomial representations for Neu-
mann and Dirichlet conditions. A FORTRAN-subroutine POISSX has been
coded that solves (2) for both types of boundary conditions. It takes
typically 1 s to solve (1) for M = N = 100 on an IBM 370/168 or 0.3 s
on the NCAR-CDC 7600. A PL/1-version is also available.

2. CAPACITANCE MATRIX APPROACH FOR IRREGULAR REGIONS

The CYR method is most efficient only if applied to rectangular
regions. It 1s not directly applicable for flow regions with obstacles
or other geometrical irregularities. It has been shown, however,/ 4,5_/
that one can find the solution of Poisson's equation, say A u = v, on
an irregular region by twice solving some slightly modified Poisson's
equation, say B 0 = v and Bu = v + w, for the rectangular region. The
matrix B is chosen equal to A for most except for some p equations which
correspond to the irregular grid points. For details we must refer to
the references.The perturbation w of the right hand side is computed
from the first step solution O by use of the inverse of the so called
capacitance matrix C. C‘1 is a p x p matrix which is independent of v
and can be precomputed by solving p systems B x = y. This requires an
order O(p M N log N) + O(ps) operations. Once C = is known, the solution
of A u = v requires an order O(2 M N logN) + O(pz) operations. The flexi-
bility of the method is demonstrated by Fig.l which shows a potential
flow computed using POISSX.

3. APPLICATION IN "REMAC', A SMAC-TYPE FLUID DYNAMICS CODE

The capacitance matrix approach using POISSX becomes efficient if
the system A u = v has to be solved many times. This is the case in vis-
cous incompressible fluid dynamics. If we use the primitive variables
velocity and pressure, then we have to solve at each time step Poisson's
equation for the pressure. The pressure must satisfy Neumann boundary
conditions at walls (including internal obstacles) and at prescribed
velocity in- and outflow boundaries. Dirichlet conditions are given at
continuative outflow boundaries and at free surfaces. All these options
are possible in the SMAC code / 6 _/, a PL/1 version of which (REMAC)
has been implemented in the REGENT system / 7 /. SMAC uses a staggered
grid. We have implemented POISSX in REMAC. Due to its flexibility with
respect to the values of M and N and by use of a general procedure for

treating obstacles, free surfaces, and varying boundary conditions with
the capacitance matrix approach, the new version of REMAC keeps the old




flexibility of SMAC. Some extensions for even more complicated obstacle
and inflow/outflow configurations are in their debugging phase.

Several test cases (A to F) have been run in order to check the
new (POISSX-) version of REMAC and to compare the computing times with
the older (SOR-) version where Poisson's equation was solved by succes-
sive overrelaxation. Fig.2 shows vector plots of typical resulting velo-
city fields. Cases A to E are run with a Reynolds number of the order
one; in case F it is of the order 100. Cases A to E have been run for
30 time steps, case F for 80 steps. The time step is about one half the
value allowed by stability.The overrelaxation parameter is 0.8 for cases
A to E and 0.92 for case F. The initial velocity is zero except for case
E where the initial velocity field corresponds to one large vortex.All
cases are in Cartesian coordinates except for case E which is run in
cylindrical coordinates. A velocity vector has been plotted for each
cell filled with fluid. During the first 30 time steps the expected re-
circulating flow did not develop in cases B, C and D. The ratio R be-
tween the SOR-REMAC and the POISSX-REMAC computing times is given in the
figure captions. We see, the gain in efficiency is typically a factor
ten. We must note, however, that the SOR iteration scheme which is as
described in / 6 _/ can be made more efficient. In general, the POISSX
version is faster than the SOR version especially in the following si-
tuations: ) .
a) Neumann boundary conditions at all walls, b) no free surfaces,
c) highly transient flow problems (no steady state), d) not too many
obstacles (p of the order of M or N), e) large time steps.
In other situations, especially with many and fast moving free surface
cells (a change in the surface configuration requires a new capacitance
matrix) the SOR version is faster. We conclude that the fast direct
Poisson solver POISSX in combination with the capacitance matrix tech-
nique is competitive with iterative schemes even in a general purpose

production code.
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APPENDIX: R0OOTS OF ACT), x(T) g(¥) o (¥) pop (a.8) ¢ (0,1)

Using the substitution A = 2 cos 6 we find A(r) = 2 cos 2%6;

K(r)= sin [(2r+1)6]/sin 6 for a = 0 and K(r)= cos [(2r+1/2)e]/cos (6/2)
for ¢« = 1; B T)s sin [(kp+1)6]/sin & for 8 = 0 and cos [(ke+1/2)8)/
cos_(6/2) for B = 1, c(r)= sin [(2r+1)6]/sin 6 for B = 0 and

"= cos [(&y+1/2)6]/cos (8/2) for 8 = 1 (ky and &, are as defined in

/" 1_7). From this it is easy to show that the required roots Xj(r) as in
(5) are of the form A YJo 2 cos ej. In case of A(r these roots are in-
dependent of o and 8 and as given in [_1_7. For K(r):6j=(2j-a)n/(2r+1+2—uL
gt/ 6j=(2j-3)ﬁ/(2kr+2—8), C(r): ej=(2j—8)n/(22r+2—8). We see:the change

in boundary conditions merely requires some generalized coding of these
TOOtS.

Fig.1: Velocity field in a channel V!fi??%fﬁ/%ﬁ?%?%%7:4??f%?i??7?
with obstacles for potential flow. N FC T
The flow is from left to right. — T TNy A S
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Fig.2A: Prescribed inflow and pre- = |~ =~ - - - ~ - - - - - s f
scribed outflow. This corresponds
to Neumann boundary conditions for
the pressure everywhere. The phy- | & 0 @ o —
sically unrealistic outflow condi~ | ————————"—"——7 ——— =
tion has been used to test this |~ T T T T T T T T T -

type of boundary condition. R = 10.2
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Fig.ZB: Prescribed inflow for the
lower part of the left boundary,
continuative / 6 / outflow at the
right, corresponding to a Dirichlet
condition for the pressure. R = 10.4

Fi1g.2C: Flow over an obstacle with
prescribed in- and outflow. R = 9.2

Fig.2D: Flow over an obstacle with
prescribed inflow and continuative
outflow. R = 3§

Fig.2E: Decaying vortex in a cylind-
rical container. The axis of symme-
try corresponds to the left boundary.
R = 30

Fig.2F: Broken dam problem of /& /7 |

with an obstacle. R = 0.3
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