

Array measurements in wind tunnels with open test sections

A. Lauterbach, K. Ehrenfried, L. Koop

Institute of Aerodynamics and Flow Technology, Technical Flows

German Aerospace Center (DLR)

Göttingen

Germany

Outline

- motivation
- experimental setup
- investigations: sound propagation through shear layers:
 - a) frequency broadening
 - b) phase fluctuations
 - c) velocity of turbulent structures
 - d) generic model
- summary

1. Motivation

The microphone – array – technique in the aero acoustics: measurements in open - jet wind - tunnels

 sound source inside the flow, microphone array outside the flow: sound has to propagate through the wind - tunnel shear - layer

steady interactions:

 refraction in a inhomogeneous mean flow field

unsteady interactions:

- frequency broadening
- phase fluctuations

2. Experimental setup

1M wind tunnel, DLR Göttingen ('1MG')

- $U_{\infty} = 0$ 65 m/s, closed circuit, open test section
- noise, especially at lower frequencies, not acoustically optimized

2. Experimental setup

Sound source and microphone line – array in the 1MG

- foreground: line array
- inside the test section: sound source, standard hi-fi tweeter, supplied with sine and/or white noise

 the red marked microphones are considered for the first investigations

Influence of the wind tunnel shear layer on a tone

- sound source: $f_{test} = 30 \text{ kHz}$
- microphone, central located: sound propagates perpendicularly
- different flow velocities U_m

result:

- symmetric peak broadening
- SPL of the peak decreases with velocity
- (as expected, higher ambient noise level)

Influence of the wind tunnel shear layer on a tone

explanation:

- interaction with structures → act as sources
- due to turbulence irregularly moving sources
- irregularly fluctuating Doppler shift: Doppler broadening: well known!

(see Ross 1981, AIAA 80-0984R)

Influence of the wind tunnel shear layer on a tone

three different positions of the observer: $U_{\infty} = 40 \text{ m/s}$:

- asymmetric broadening for non perpendicularly propagation
- observer upstream (): peak skewed to lower frequencies
- observer downstream (): skewed to higher frequencies

Influence of the wind tunnel shear layer on a tone

asymmetric broadening:

- irregular movement (symmetric broadening) superimposed with:
 - component toward the observer (microphone downstream)
 - component away from the observer (microphone upstream)

assumption:

- structures inside the shear layer which influence sound propagation
- these structures move downstream
- → motivation for the next investigations: learn more about these structures: consideration of the phase

of a wave which propagates through a shear layer

- phase fluctuations between source signal and observer signal:
 - due to acceleration or deceleration of the wave by the shear layer
- decreases correlations between array microphone signals:
 - → SNR of beamformer output is reduced

experimental setup:

- standard setup
- tone with f_{test} = 15 or 30 kHz, emitted by source inside the flow
- recorded signals:
 - central microphone
 - electrical signal from the signal generator, simultaneously
- flow velocities: $U_{\infty} = 10$, 25, 40 and 55 m/s

of a wave which propagates through a shear layer: calculation

computing $\phi'(t)$:

<u>step 1</u>:

 spectral cross density between microphone signal and electrical signal from the signal generator

$$S_{xy}(f) = F\{y(t)\} \cdot [F\{x(t)\}]^*.$$

- · window-wise, narrow windows
- considering a single Fourier coefficient that corresponds to f_{test}: time series
- → phase and amplitude fluctuate

parameters:

- $f_{test} = 10 \text{ kHz}$ and $f_{test} = 30 \text{ kHz}$, signal of the source
- windows: 50% overlap, Hanning weighted, size: 1024 samples
- Mean over time interval: 10ms @ f_s=102.4 kHz,
 →artificial sampling frequency f_{sampling,Fourier} =200 Hz

of a wave which propagates through a shear layer: calculation

step 2: using expression
$$\phi = \arctan\left(\frac{\operatorname{Re}(S_{xy}(f_{test}))}{\operatorname{Im}(S_{xy}(f_{test}))}\right)$$
 one obtains the phase

step 3: only the fluctuations are interesting : $\phi' = \phi - \overline{\phi}$

6000 windows ≡ 30 sec measuring duration @ artificial sampling rate: f_{sampling,Fourier} = 200 Hz

of a wave which propagates through a shear layer: calculation

• Frequency spectra of $\phi'(t)$, from measurements with f_{test} = 15 kHz and f_{test} = 30 kHz

results:

- distinct frequency spectra
- peak is flow velocity dependent → Strouhal number:

$$Sr = \frac{f l}{U_{\infty}}$$

low frequencies → large scale structures
(Sr with characteristic length diameter of the nozzle)

peak position is not influenced by f_{test}

of a wave which propagates through a shear layer: calculation

- Strouhal number constant around mean value Sr ≈ 0.48
 - → linear dependency between velocity and frequency

annotation concerning phase fluctuations:

- measurable = compensatable?
- 'guide star method': Ehrenfried et al. AIAA 2005-2962

of a wave which propagates through a shear layer: velocity of structures

downstream moving structures:

→ asymmetric broadening

velocity measurement:

- source emits tone
- calculating time series: $\varphi_{1}^{'}(t)$ and $\varphi_{2}^{'}(t)$
- moving structure influences phases one after another
- cross correlation function computes time shift Δt
- one obtains the mean velocity of structures

of a wave which propagates through a shear layer: velocity of structures

- ratio u_{shear} / U_∞ nearly constant
- u_{shear} between 62% and 78% of U_{∞}
- u_{shear} depends on f_{test}

- assume: ensemble of structures with different velocities inside the shear layer
- frequency dependence:
 - strong interaction: structure size ≥ wavelength
 - weak interaction: wavelength >> structure size
- → smaller structures travel faster than larger ones

5. Model of the sound propagation

using phase modulation

$$u'(x_s, f, t) = \hat{u}_r \cdot \exp\left[i\left(2\pi f t + \varepsilon \cdot \cos\left(2\pi \tilde{f} t - \frac{2\pi \tilde{f}}{u_{shear}}x\right)\right)\right]$$

basic ideas:

- monopole source
- infinitesimal thin shear layer
- no flow
- shear layer induces phase modulation: frequency of modulation \tilde{f} = frequency distribution of $\phi'(t)$
- u_{shear} = downstream velocity of phase disturbance
- using Kirchhoff Helmholtz integral to compute sound field in front the shear layer

5. Model of the sound propagation

using phase modulation

test case with $f_{test} = 1000Hz$:

 simple model able to predict tendencies of symmetric and asymmetric broadening

6. Summary

- questions concerning array measurements in open jet wind tunnels
- an experimental setup (line array and sound source) was developed which allows investigations concerning sound propagation through a shear layer
- broadening: dependence on flow velocity and especially position of the observer: important for narrow – band analysis
- assumption of structures that influence phase, moving downstream
- computing spectra of these phase fluctuations: maxima are velocity dependent: found a Strouhal number of Sr = 0.48
- estimation of the velocity of these structures in the shear layer: between 62% and 78% of U_{∞}
- finally, development of an simple model that is able to reproduce tendencies of the symmetric and asymmetric broadening

Thank you for your attention!

