Vorbereitende Arbeiten für die Anwendung der CARS-Thermometrie in LOX/CH₄-Sprayflammen

W. Clauss, M. Oschwald Institut für Raumfahrtantriebe DLR Lampoldshausen

V. Smirnov et al. Institut für Nichtlineare Optik RAS Moskau

in der Helmholtz-Gemeinschaft

Diagnostik von CH₄/O₂-Flammen: roadmap

experimentelle Anlagen:

- ✓ Matrixbrenner (P_c< 2 MPa)</p>
- → gepulster HD-Brenner (P_C < 10 MPa, hohe T)
 </p>
- micro-Brennkammer am M3.1 Prüfstand (LOX/CH₄ Sprayverbrennung, P_c < 1 MPa)
- Brennkammer C am Prüfstand P8 (LOX/CH₄ Sprayverbrennung, P_C < 10 MPa)

Ziel der Arbeiten:

 CARS-Adaptation für den Einsatz bei folgenden Referenzbedingungen: Brennkammerdruck: P_C = 6 MPa Mischungsverhältnis: R_{OF} = 3.24 (Φ=1.23) Oxidatortemperatur: T_{LOX} = 120 K Treibstofftemperatur: T_{CH4} = 300 K Flammentemperatur: T_{flame} = 3636 K

in der Helmholtz-Gemeinschaft

Spezifischer Impuls I_{VAC} als Funktion des Mischungsverhältnisses und des Druckes

in der Helmholtz-Gemeinschaft

lessons learned (1/3) H₂, H₂O, und CH₄ CARS Spectren für R_{OF}=0.7-2.4 (Φ=1.7-5.7)

in der Helmholtz-Gemeinschaft

Lampoldshausen

lessons learned (2/3)

Schlussfolgerungen aus Laborexperimenten:

- → CH₄-CARS

 - in Diffusionsflammen Signale nur auf der treibstoffreichen Seite der Flammenfront (unverbranntes, kaltes Methan)
- \neg H₂-CARS
 - Signal mit guter Qualität im ausreagierten Gemisch: prioritäres Probenmolekül

→ H₂O-CARS

 Signal interferiert mit nicht-resonantem CARS-Signal

in der Helmholtz-Gemeinschaft

lessons learned (3/3)

Strategie für CARS in CH₄/O₂-Flammen:

- 2 Probenmoleküle (können mit einem CARS-System simultan vermessen werden):
 H₂ als Reaktionsprodukt
 CH₄ als Reaktant
 - ✓ Option 1: Thermometrie an beiden Molekülen
 - zwei Nachweiskanäle mit unterschiedlicher spektraler Auflösung erforderlich
 - → Option 2: H_2 -Thermometrie, CH_4 -Dichtebestimmung
- - H₂, wegen seiner guten Verfügbarkeit in der reaktiven Strömung

Neuer Ansatz zur CARS-Diagnostik in CH₄/LOX Sprayflammen bei hohem Druck

INTAS Projekt

Partner:

- ✓ DLR Lampoldshausen
- ✓ ONERA (DMPH), Palaiseau
- ✓ General Physics Institute der RAS (GPI)
- ✓ Central Institute of Aviation Motors (CIAM), Moskau

Projekt Struktur

- ✓ Umbau des gepulsten Hochdruckbrenners f
 ür CH₄/O₂-Verbrennung
- ✓ CFD-Simulation der Zündung und Verbrennung im gepulsten Brenner
- ✓ CARS-Spektroskopie im gepulsten Brenner
- ➤ Simulation der CARS-Spektren
- ✓ Vergleich der CARS-Codes
- → CARS-System f
 ür Einzelschuss-Thermometrie bei hohem Druck
- → Anwendung in einer CH_4/LOX Sprayflamme bei hohem Druck

H₂-Linienverbreiterung bei hohem Druck in H₂/O₂-Flammen

W. Clauss et al. > DIV3 Berlin > 11. Oktober 2007 > 8

Idee von V. Smirnov, GPI

simultan

- ✓ Detektion des H₂-CARS Signals und
- → Bestimmung der H₂-Linienbreite
- keine Notwendigkeit die Partialdichten aller potentiellen Stoßpartner im Messvolumen in der CH4/O2-Flamme zu bestimmen
- ✓ die Linienverbreiterungskoeffizienten müssen nicht bekannt sein

V.I. Fabelinsky, V.V. Smirnov, O.M. Stel'makh, K.A. Vereschagin, A.K. Vereschagin, W. Clauss, M. Oschwald, "New Approch to single shot CARS thermometry of high pressure, high temperature hydrogen flames", Journal of Raman Spectroscopy, Vol. 38, 2007, pp. 989-993

HIGH RESOLUTION SINGLE SHOT DBB-CARS SPECTROMETER

in der Helmholtz-Gemeinschaft

nichtresonantes DBB H₂-CARS Spektrum aus einer Gaszelle

ohne Fabry-Perot Interferometer

in der Helmholtz-Gemeinschaft

Institut für Raumfahrtantriebe Lampoldshausen W. Clauss et al. > DIV3 Berlin > 11. Oktober 2007 > 11

DBB-CARS Spektrum des H₂-Q-Zweiges aus einer Gaszelle

Geheizte Zelle mit einer Mischung von H_2 : $N_2 = 1$: 10, T = 960 K, P=5 bar ohne Fabry-Perot Interferometer

in der Helmholtz-Gemeinschaft

DBB-CARS Spektrum des H₂-Q-Zweiges aus einer Gaszelle

in der Helmholtz-Gemeinschaft

Fit von Lorentzprofilen an die gemessene spektrale Verteilung

in der Helmholtz-Gemeinschaft

Lampoldshausen

Fließschema des gepulsten Brenners

in der Helmholtz-Gemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Zusammenstellung Brennerkörper

in der Helmholtz-Gemeinschaft

Timingsequenz

in der Helmholtz-Gemeinschaft