

Entwicklung von Discontinuous Galerkin Verfahren höherer Ordnung auf unstrukturierten adaptiv verfeinerten Gittern inklusive Fehlerschätzung Ralf Hartmann

Motivation

Verfahren höherer Ordnung:

- ► Auflösen und Verfolgen von Wirbeln
 - Helikopter: Wirbelentstehung und Blatt-Wirbel Interaktion
 - Transportflugzeuge: Wirbelschleppe
- ► Auflösung von viskosen Randschichten
- Numerische Approximation aerodynamischer Kräfte: Auftrieb, Widerstand, (Nick-)Momente

Fehlerschätzung:

► Verlässliche Vorhersage aerodynamischer Kräfte

Adaptive Gitterverfeinerung:

- Gitterverfeinerung f
 ür eine bessere Auflösung von Wirbel, Randschichten, etc.
- Zielorientierte Gitterverfeinerung zur genauen Berechnung aerodynamischer Kräfte

Die Discontinuous Galerkin Diskretisierung

Folie 3 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Die kompr. Euler und Navier-Stokes Gleichungen in 2D Die kompressiblen Euler Gleichungen:

$$\frac{\partial}{\partial t} \begin{pmatrix} \varrho \\ \varrho v_1 \\ \varrho v_2 \\ \varrho E \end{pmatrix} + \frac{\partial}{\partial x_1} \begin{pmatrix} \varrho v_1 \\ \varrho v_1^2 + p \\ \varrho v_1 v_2 \\ v_1(\varrho E + p) \end{pmatrix} + \frac{\partial}{\partial x_2} \begin{pmatrix} \varrho v_2 \\ \varrho v_1 v_2 \\ \varrho v_2^2 + p \\ v_2(\varrho E + p) \end{pmatrix} = 0$$
$$\frac{\partial}{\partial t} \mathbf{u} + \nabla \cdot \mathcal{F}^c(\mathbf{u}) = 0$$

Die kompr. Euler und Navier-Stokes Gleichungen in 2D Die kompressiblen Euler Gleichungen:

 ∂t

$$\frac{\partial}{\partial t} \begin{pmatrix} \varrho \\ \varrho v_1 \\ \varrho v_2 \\ \varrho E \end{pmatrix} + \frac{\partial}{\partial x_1} \begin{pmatrix} \varrho v_1 \\ \varrho v_1^2 + p \\ \varrho v_1 v_2 \\ v_1(\varrho E + p) \end{pmatrix} + \frac{\partial}{\partial x_2} \begin{pmatrix} \varrho v_2 \\ \varrho v_1 v_2 \\ \varrho v_2^2 + p \\ v_2(\varrho E + p) \end{pmatrix} = 0$$
$$\frac{\partial}{\partial u} + \nabla \cdot \mathcal{F}^c(u) = 0$$

Die kompressiblen Navier-Stokes Gleichungen:

$$\begin{aligned} \frac{\partial}{\partial t}\mathbf{u} + \nabla \cdot \mathcal{F}^{c}(\mathbf{u}) - \nabla \cdot \mathcal{F}^{v}(\mathbf{u}, \nabla \mathbf{u}) &= 0 \\ \mathbf{f}_{1}^{v}(\mathbf{u}, \nabla \mathbf{u}) &= \begin{pmatrix} \mathbf{0} & \\ \tau_{11} & \\ \tau_{21} & \\ \tau_{11}v_{1} + \tau_{12}v_{2} + \kappa T_{x_{1}} \end{pmatrix}, \quad \mathbf{f}_{2}^{v}(\mathbf{u}, \nabla \mathbf{u}) &= \begin{pmatrix} \mathbf{0} & \\ \tau_{12} & \\ \tau_{22} & \\ \tau_{21}v_{1} + \tau_{22}v_{2} + \kappa T_{x_{2}} \end{pmatrix} \end{aligned}$$

DG Diskretisierung der kompr. Euler Gleichungen

Das Problem:

$$\nabla \cdot \mathcal{F}^c(\mathbf{u}) = 0 \quad \text{in } \Omega,$$

mit $\mathbf{u} = (\varrho, \varrho v_1, \varrho v_2, \rho E)^T$.

Die DG(p) Diskretisierung: Finde u_h in V_h^p , sodass

$$egin{aligned} \mathcal{N}(\mathbf{u}_h,\mathbf{v}_h) &\equiv \sum_{\kappa\in\mathcal{T}_h} \left\{ -\int_\kappa \mathcal{F}^c(\mathbf{u}_h):
abla \mathbf{v}_h \,\mathrm{d}\mathbf{x} + \int_{\partial\kappa\setminus\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_h^-,\mathbf{n}_\kappa) \,\mathbf{v}_h^+ \,\mathrm{d}s
ight\} \ &+ \int_\Gamma \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_\Gamma(\mathbf{u}_h^+),\mathbf{n}_\kappa) \,\mathbf{v}_h^+ \,\mathrm{d}s = 0 \quad orall \mathbf{v}_h \in \mathbf{V}_h^p, \end{aligned}$$

wobei

$$\mathbf{V}_{h}^{p} = \left\{ \mathbf{v} \in \left[L_{2}(\Omega) \right]^{4} : \mathbf{v}|_{\kappa} \in \left[\mathcal{Q}_{p}(\kappa) \right]^{4} \ \forall \kappa \in \mathcal{T}_{h} \right\},\$$

Start Start Start Start Start Start

DG Diskretisierung der kompr. Euler Gleichungen

Das Problem:

$$\nabla \cdot \mathcal{F}^c(\mathbf{u}) = 0$$
 in Ω ,

mit $\mathbf{u} = (\varrho, \varrho v_1, \varrho v_2, \rho E)^T$.

Die DG(p) Diskretisierung: Finde u_h in V_h^p , sodass

$$\begin{split} \mathcal{N}(\mathbf{u}_h,\mathbf{v}_h) &\equiv \sum_{\kappa\in\mathcal{T}_h} \left\{ -\int_{\kappa} \mathcal{F}^c(\mathbf{u}_h) : \nabla \mathbf{v}_h \, \mathrm{d}\mathbf{x} + \int_{\partial\kappa\setminus\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_h^-,\mathbf{n}_\kappa) \, \mathbf{v}_h^+ \, \mathrm{d}s \right\} \\ &+ \int_{\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_{\Gamma}(\mathbf{u}_h^+),\mathbf{n}_\kappa) \, \mathbf{v}_h^+ \, \mathrm{d}s = \mathbf{0} \quad \forall \mathbf{v}_h \in \mathbf{V}_h^p, \end{split}$$

wobei

$$\mathbf{V}_{h}^{p} = \left\{ \mathbf{v} \in \left[L_{2}(\Omega) \right]^{4} : \mathbf{v}|_{\kappa} \in \left[\mathcal{Q}_{p}(\kappa) \right]^{4} \ \forall \kappa \in \mathcal{T}_{h} \right\},\$$

Start Start Start Start Start Start

DG Diskretisierung der kompr. Euler Gleichungen

Das Problem:

$$\nabla \cdot \mathcal{F}^c(\mathbf{u}) = 0$$
 in Ω ,

mit $\mathbf{u} = (\varrho, \varrho v_1, \varrho v_2, \rho E)^T$.

Die DG(p) Diskretisierung: Finde u_h in V_h^p , sodass

$$\begin{split} \mathcal{N}(\mathbf{u}_h,\mathbf{v}_h) &\equiv \sum_{\kappa\in\mathcal{T}_h} \left\{ -\int_{\kappa} \mathcal{F}^c(\mathbf{u}_h) : \nabla \mathbf{v}_h \, \mathrm{d}\mathbf{x} + \int_{\partial\kappa\setminus\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_h^-,\mathbf{n}_\kappa) \, \mathbf{v}_h^+ \, \mathrm{d}s \right\} \\ &+ \int_{\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_{\Gamma}(\mathbf{u}_h^+),\mathbf{n}_\kappa) \, \mathbf{v}_h^+ \, \mathrm{d}s = \mathbf{0} \quad \forall \mathbf{v}_h \in \mathbf{V}_h^p, \end{split}$$

wobei

$$\mathbf{V}_{h}^{p} = \left\{ \mathbf{v} \in \left[L_{2}(\Omega) \right]^{4} : \mathbf{v}|_{\kappa} \in \left[\mathcal{Q}_{p}(\kappa) \right]^{4} \ \forall \kappa \in \mathcal{T}_{h} \right\},\$$

Eigenschaften von DG Verfahren

$$egin{aligned} \mathcal{N}(\mathbf{u}_h,\mathbf{v}_h) &\equiv \sum_{\kappa\in\mathcal{T}_h} \left\{ -\int_\kappa \mathcal{F}^c(\mathbf{u}_h)\cdot
abla \mathbf{v}_h \,\mathrm{d}\mathbf{x} + \int_{\partial\kappa\setminus\Gamma} \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_h^-,\mathbf{n}_\kappa) \,\mathbf{v}_h^+ \,\mathrm{d}s
ight\} \ &+ \int_\Gamma \mathcal{H}(\mathbf{u}_h^+,\mathbf{u}_\Gamma(\mathbf{u}_h^+),\mathbf{n}_\kappa) \,\mathbf{v}_h^+ \,\mathrm{d}s = 0 \quad orall \,\mathbf{v}_h \in \mathbf{V}_h^p, \end{aligned}$$

- ► Verallgemeinerung von Finite Volume Verfahren
 - DG nutzt numerische Flüsse, hat eine lokale und globale Erhaltungseigenschaft (ist konservativ)
 - DG(0) entspricht dem Basis Finite Volumen Verfahren
- ► Höhere Ordnung durch Erhöhung des Polynomgrads *p*, keine Rekonstruktion
- ► Unstrukturierte Gitter, lokale Verfeinerung, hängenden Knoten erlaubt
- Kommunikation benachbarter Zellen nur durch numerische Flüsse, gut für Parallelisierung und für hp-Verfeinerung
- ► DG ist FEM, daher Fehlerschätzung, ziel-orientierte Verfeinerung, etc.

Ergebnisse von Verfahren höherer Ordnung

Folie 7 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Laminarer Testfall

Strömung um das NACA0012 Profil:

M = 0.5, Re = 5000, $\alpha = 0$.

Laminarer Testfall

Strömung um das NACA0012 Profil:

M = 0.5, Re = 5000, $\alpha = 0$.

Zoom des Gitters:

Laminarer Testfall

Strömung um das NACA0012 Profil:

M = 0.5, Re = 5000, $\alpha = 0$.

Rechnungen basierend auf DG(p), p = 1, 2, 3 auf einer Folge von global verfeinerten Gittern mit 3072, 12288, 49152 und 196608 Zellen.

States Contract Hard

Simulation höherer Ordnung für laminaren Testfall

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

cdp (druckbasierter Widerstandsbeiwert)

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

cdp (druckbasierter Widerstandsbeiwert)

Folie 9 > STAB07 > Ralf Hartmann presentation > November 12, 2007

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

cdp (druckbasierter Widerstandsbeiwert)

Folie 9 > STAB07 > Ralf Hartmann presentation > November 12, 2007

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

cdp (druckbasierter Widerstandsbeiwert)

Folie 9 > STAB07 > Ralf Hartmann presentation > November 12, 2007

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

in der Helmholtz-Gemeinschaft

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

presentation > November 12, 2007

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

in der Helmholtz-Gemeinschaft

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

presentation > November 12, 2007

M = 0.5, Re = 5000, $\alpha = 0$ Strömung um das NACA0012 Profil.

in der Helmholtz-Gemeinschaft

Konvergenz von cdp und cdf unter globaler Verfeinerung, siehe [Hartmann, Houston 2006]

cdf (viskoser Widerstandsbeiwert)

presentation> November 12, 2007

Referenz cdp - cdp

Referenz cdp - cdp

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 11 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR

Folie 11 > STAB07 > Ralf Hartmann presentation > November 12, 2007

cdf

Folie 11 > STAB07 > Ralf Hartmann presentation> November 12, 2007

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

cdf

Folie 11 > STAB07 > Ralf Hartmann presentation> November 12, 2007

cdf 0.052 reference cdf DG(1), global refinement DG(2), global refinement DG(3), global refinement DG(1), global refinement DG(2), global refinement ---x---DG(3), global refinement ····*··· 0.01 0.05 0.048 0.046 0.001 cdf - reference cdf 0.044 Sdf 0.042 0.0001 0.04 0.038 1e-05 0.036 0.034 0.032 1e-06 10000 100000 100000 10000 cells cells 3.072 cells 196.608 cells 196.608 dof 3.145.728 dof

cdf - Referenz cdf

Folie 11 > STAB07 > Ralf Hartmann presentation> November 12, 2007

cdf 0.052 reference cdf DG(1), global refinement DG(2), global refinement DG(3), global refinement DG(1), global refinement DG(2), global refinement ---x---DG(3), global refinement ····*··· 0.01 0.05 0.048 0.046 0.001 cdf - reference cdf 0.044 Sdf 0.042 0.0001 0.04 0.038 1e-05 0.036 0.034 0.032 1e-06 10000 100000 10000 100000 cells cells 3.072 cells 196.608 cells 196.608 dof 3.145.728 dof 2 min 34 min

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

cdf - Referenz cdf

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

DLR

cdf 0.052 reference cdf DG(1), global refinement DG(2), global refinement DG(3), global refinement DG(1), global refinement DG(2), global refinement ---x---DG(3), global refinement ····*··· 0.01 0.05 0.048 0.046 0.001 cdf - reference cdf 0.044 Sdf 0.042 0.0001 0.04 0.038 1e-05 0.036 0.034 0.032 1e-06 10000 100000 10000 100000 cells cells 3.072 cells 196.608 cells 196.608 dof 3.145.728 dof 2 min 34 min 786.432 cells 12.582.912 dofs \approx 3 h (extrapoliert) **Deutsches Zentrum**

cdf - Referenz cdf

Approximation höherer Ordnung von viskosen Randschichten

Folie 12 > STAB07 > Ralf Hartmann presentation> November 12, 2007

Approximation höherer Ordnung von viskosen Randschichten

Ebene Platte: M = 0.01, Re = 10000, siehe [Hartmann, Houston 2006]

presentation> November 12, 2007

Stand Bar Contract Man

Higher order approximation of viscous boundary layers

Ebene Platte: M = 0.01, Re = 10000

Approximation (auf 5% Genauigkeit) der viskosen Kräfte auf die Wand:

	DG(1)	DG(2)	DG(3)
Zellen	36	5	3
DoFs	72	15	12

orthogonal zur Wand

ADIGMA BTC-2 Testfall

M = 0.3, $\alpha = 12.5^{\circ},$ Re = 4000,

isotherme Wand

$$\begin{split} M &= 0.3, \alpha = 12.5^{\circ}, \\ Re &= 4000 \end{split}$$

3264 Zellen für das Halbmodel

links: DG(1), 2. Ordnung rechts: DG(4), 5. Ordnung

$$\begin{split} M &= 0.3, \alpha = 12.5^{\circ}, \\ Re &= 4000 \end{split}$$

3264 Zellen für das Halbmodel

links: DG(1), 2. Ordnung rechts: DG(4), 5. Ordnung

DG(1), 40 DoFs/Zelle: 130,560 DoFs

DG(4), 625 dofs/Zelle: 2,040,000 DoFs

Laminarer Deltaflügel, $M = 0.3, \alpha = 12.5^{\circ}, Re = 4000$

Konvergenz von C_L auf einer Folge global verfeinerter Gitter

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Laminarer Deltaflügel, $M = 0.3, \alpha = 12.5^{\circ}, Re = 4000$

Konvergenz von C_L auf einer Folge global verfeinerter Gitter

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DG(3) Diskretisierung auf lokal verfeinertem Gitter (8.122 Zellen für Halbmodel)

Folie 19 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Laminarer Deltaflügel, $M = 0.3, \alpha = 12.5^{\circ}, Re = 4000$

Schnitt entlang einer der Wirbel

Laminarer Deltaflügel, $M = 0.3, \alpha = 12.5^{\circ}, Re = 4000$

DG Diskretisierung auf lokal verfeinertem Gitter (8.122 Zellen für Halbmodel)

in der Helmholtz-Gemeinschaft

presentation> November 12, 2007

Folie 22 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Fehlerschätzung für einzelne Zielfunktionale

Gegeben die Diskretisierung: Finde $u_h \in V_h$ sodass

$$\mathcal{N}(\mathbf{u}_h, \mathbf{v}_h) = 0 \quad \forall \mathbf{v}_h \in \mathbf{V}_h.$$
 (1)

und ein Zielfunktional J.

Berechne: $J(\mathbf{u}_h)$, exakt (aber unbekannt): $J(\mathbf{u})$, was ist $J(\mathbf{u}) - J(\mathbf{u}_h)$?!

Mit Hilfe eines Dualitätsarguments erhalte eine Fehlerdarstellung

$$egin{aligned} J(\mathbf{u}) - J(\mathbf{u}_h) &= -\mathcal{N}(\mathbf{u}_h, \mathbf{z}) = \mathcal{R}(\mathbf{u}_h, \mathbf{z}) \ &pprox \mathcal{R}(\mathbf{u}_h, \widetilde{\mathbf{z}}_h) = \sum_{\kappa \in \mathcal{T}_h} \eta_\kappa = : \eta, \end{aligned}$$

Diskretes adjungiertes Problem: Finde $\widetilde{\mathbf{z}}_h \in \widetilde{\mathbf{V}}_h$ sodass

$$\mathcal{N}'[\mathbf{u}_h](\mathbf{w}_h, \tilde{\mathbf{z}}_h) = J'[\mathbf{u}_h](\mathbf{w}_h) \quad \forall \mathbf{w}_h \in \tilde{\mathbf{V}}_h.$$

Fehlerschätzung für einzelne Zielfunktionale: Beispiele

ADIGMA MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ},$ Re = 5000

Mach number isolines

Kraft Koeffizienten:

Druckbasierter Widerstandsbeiwert: $J(\mathbf{u}) = c_{dp}$ Viskoser Widerstandsbeiwert: $J(\mathbf{u}) = c_{df}$ Auftriebsbeiwert: $J(\mathbf{u}) = c_l$ Momentenbeiwert: $J(\mathbf{u}) = c_m$

Fehlerschätzung für einzelne Zielfunktionale: $J(\mathbf{u}) = c_{dp}$

Beispiel: MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ}, Re = 5000$

Zielfunktional: $J(\mathbf{u}) = c_{dp}$ (druckbasierter Widerstandsbeiwert), Ref.wert: $J_{cdp}^{ref}(\mathbf{u}) = 0.02380$

error in c_{dp}

			-	
Zellen	DoFs	exakt	geschätzt	ratio
400	6400	1.034e-03	-1.404e-03	-1.36
652	10432	3.341e-03	2.959e-03	0.89
1090	17440	4.045e-04	5.712e-04	1.41
1801	28816	-2.079e-04	-1.091e-04	0.52
3034	48544	-2.344e-04	-1.890e-04	0.81
5047	80752	-1.529e-04	-1.387e-04	0.91
8527	136432	-8.055e-05	-7.536e-05	0.94
14410	230560	-4.357e-05	-3.762e-05	0.86
24406	390496	-2.366e-05	-2.314e-05	0.98

Fehlerschätzung für einzelne Zielfunktionale: $J(\mathbf{u}) = c_{df}$

Beispiel: MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ}, Re = 5000$

Zielfunktional: $J(\mathbf{u}) = c_{df}$ (viskoser Widerstandsbeiwert), Ref.wert: $J_{cdf}^{ref}(\mathbf{u}) = 0.0322835$

error in c_{df}

Zellen	DoFs	exakt	geschätzt	ratio
400	6400	1.076e-02	1.525e-02	1.42
655	10480	-2.973e-03	-2.592e-03	0.87
1093	17488	-1.415e-03	-1.418e-03	1.00
1804	28864	-3.947e-04	-4.326e-04	1.10
2989	47824	-9.136e-05	-1.116e-04	1.22
5110	81760	-3.787e-05	-4.518e-05	1.19
8476	135616	-1.919e-05	-2.071e-05	1.08
14185	226960	-1.319e-05	-1.619e-05	1.23
23638	378208	-1.048e-05	-1.052e-05	1.00

Fehlerschätzung für einzelne Zielfunktionale: $J(\mathbf{u}) = c_l$

Beispiel: MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ}, Re = 5000$

Zielfunktional: $J(\mathbf{u}) = c_l$ (Auftriebsbeiwert), Ref.wert: $J_{cl}^{ref}(\mathbf{u}) = 0.037286$

error in c_l

Zellen	DoFs	exakt	geschätzt	ratio
400	6400	-1.175e-01	-5.867e-02	0.50
658	10528	6.548e-03	6.841e-03	1.04
1108	17728	-1.292e-03	-1.159e-03	0.90
1861	29776	-1.784e-03	-1.891e-03	1.06
3118	49888	-1.239e-03	-1.266e-03	1.02
5236	83776	-6.504e-04	-6.704e-04	1.03
8746	139936	-2.623e-04	-2.622e-04	1.00

Fehlerschätzung für einzelne Zielfunktionale: $J(\mathbf{u}) = c_m$

Beispiel: MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ}, Re = 5000$

Zielfunktional: $J(\mathbf{u}) = c_m$ (Momentenbeiwert), Ref.wert: $J_{cm}^{ref}(\mathbf{u}) = -0.01661$

error in c_m

Zellen	DoFs	exakt	geschätzt	ratio
400	6400	-1.221e-03	-3.035e-03	2.49
667	10672	2.883e-03	3.001e-03	1.04
1138	18208	3.862e-04	4.378e-04	1.13
1867	29872	9.083e-05	8.543e-05	0.94
3130	50080	6.199e-05	5.807e-05	0.94

Fehlerschätzung für einzelne Zielfunktionale

 z_1 Komponente der adjungierten Lösungen.

Oben: cdp, cdf; Unten: cl, cm.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 29 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Fehlerschätzung für mehrere Zielfunktionale

Gegeben *N* Zielfunktionale $J_i(\mathbf{u}), i = 1, ..., N$. Der *direkte Weg* braucht *N* diskrete adjungierte Probleme: finde $\tilde{\mathbf{z}}_{i,h} \in \tilde{\mathbf{V}}_h$ sodass

$$\mathcal{N}'[\mathbf{u}_h](\mathbf{w}_h, \tilde{\mathbf{z}}_{i,h}) = J'_i[\mathbf{u}_h](\mathbf{w}_h) \quad \forall \mathbf{w}_h \in \tilde{\mathbf{V}}_h, \qquad i = 1, \dots, N,$$

um Fehlerschätzungen für die N Zielfunktionale zu erhalten:

$$J_i(\mathbf{u}) - J_i(\mathbf{u}_h) = \mathcal{R}(\mathbf{u}_h, \mathbf{z}_i) \approx \mathcal{R}(\mathbf{u}_h, \mathbf{z}_{i,h}), \qquad i = 1, \dots, N,$$

Das neue Verfahren, ursprünglich in [Hartmann, Houston 2003] für Burgers Gln., braucht ein diskretes adjungiert-adjungiertes Problem (Fehlergleichung): Finde $\tilde{e}_h \in \tilde{V}_h$ sodass

$$\mathcal{N}'[\mathbf{u}_h](\mathbf{\tilde{e}}_h,\mathbf{w}_h) = \mathcal{R}(\mathbf{u}_h,\mathbf{w}_h) \quad \forall \mathbf{w}_h \in \mathbf{\tilde{V}}_h,$$

um Fehlerschätzungen für die N Zielfunktionale zu erhalten:

$$J_i(\mathbf{u}) - J_i(\mathbf{u}_h) \approx J'_i[\mathbf{u}_h](\mathbf{e}) \approx J'_i[\mathbf{u}_h](\mathbf{\tilde{e}}_h), \qquad i = 1, \dots, N_i$$

Fehlerschätzung für mehrere Zielfunktionale

Beispiel: MTC-3, laminare Strömung, $M = 0.5, \alpha = 2^{\circ}, Re = 5000$

Auf jedem Gitter berechne Strömungslösung u_h und die Adjungiert-adjungierte \tilde{e}_h .

exakter Fehler: $J_i^{ref}(\mathbf{u}) - J_i(\mathbf{u}_h), \quad i = 1, ..., N,$ Fehlerschätzung: $J_i'[\mathbf{u}_h](\tilde{\mathbf{e}}_h), \quad i = 1, ..., N,$

	Fehler in cdp		Fehler in cdf		Fehler in cl		Fehler in cm	
.ellen	exakt	geschätzt	exakt	geschätzt	exakt	geschätzt	exakt	geschätzt
400	1.03e-03	-2.92e-03	1.08e-02	1.62e-02	-1.18e-01	-6.59e-02	-1.22e-03	-4.36e-03
655	1.39e-03	1.38e-03	-3.02e-03	-2.89e-03	6.30e-03	4.15e-03	2.99e-03	2.67e-03
1111	-1.04e-04	8.65e-05	-1.42e-03	-1.89e-03	-8.30e-04	-6.54e-04	4.76e-04	5.11e-04
1843	-6.28e-04	-5.28e-04	-5.20e-04	-6.46e-04	-1.83e-03	-1.91e-03	6.25e-05	3.49e-05
3061	-3.96e-04	-3.51e-04	-1.61e-04	-2.25e-04	-7.34e-04	-7.69e-04	3.15e-05	3.67e-05
5146	-1.82e-04	-1.63e-04	-9.03e-05	-1.11e-04	-4.86e-04	-3.94e-04	1.09e-05	1.35e-05

Ziel-orientierte (adjungiert-basierte) Verfeinerung

Folie 32 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Ziel-orientierte Verfeinerung

Viskose Strömung, M = 1.2, Re = 1000, $\alpha = 0$, um das NACA0012 Profil

Mach Isolinien: nah

Mach Isolinien: fern

Folie 33 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Goal-oriented refinement

Viskose Strömung, M = 1.2, Re = 1000, $\alpha = 0$, um das NACA0012 Profil

Mach Isolinien: nah

Mach Isolinien: fern

Folie 34 > STAB07 > Ralf Hartmann presentation > November 12, 2007

Goal-oriented refinement

Viskose Strömung, M = 1.2, Re = 1000, $\alpha = 0$, um das NACA0012 Profil

Mach Isolinien: nah

Mach Isolinien: fern

Zur effizienten und genauen Berechnung von $J(\mathbf{u}) = c_{dp}$:

Goal-oriented refinement

Viskose Strömung, M = 1.2, Re = 1000, $\alpha = 0$, um das NACA0012 Profil

Mach Isolinien: nah

Mach Isolinien: fern

Zur effizienten und genauen Berechnung von $J(\mathbf{u}) = c_{dp}$: Wie sollte das Gitter hierzu aussehen?

Folie 35 > STAB07 > Ralf Hartmann presentation > November 12, 2007

3

3

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Residuen-basierte Verfeinerung: 17670 Zellen mit 282720 DoFs Fehler in c_{dp} : $1.9 \cdot 10^{-3}$ Fehler in c_{df} : $1.1 \cdot 10^{-2}$

3

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Residuen-basierte Verfeinerung 17670 Zellen mit 282720 DoFs Fehler in c_{dp} : $1.9 \cdot 10^{-3}$ Fehler in c_{df} : $1.1 \cdot 10^{-2}$

Ziel-orientierte Verfeinerung: 10038 Zellen mit 160608 DoFs Fehler in c_{dp} : $1.6 \cdot 10^{-4}$ Fehler in c_{df} : $7.2 \cdot 10^{-4}$

2

3

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Anisotrope Verfeinerung

Nutze adjungiert-basierte Indikatoren um die zu verfeinernden Zellen auszuwählen, Entscheide basierend auf anisotropen Indikatoren für anisotropen Verfeinerungsfall.

Laminarer Testfall, M = 0.5, Re = 5000, $\alpha = 0$ um NACA0012 Profil.

DG(2), d.h. 3. Ordnung, mit adjungiert-basierter Verfeinerung Vergleich Fehler in c_{dp} :

- ► isotrope Verfeinerung
- anisotroper
 Sprungindikator
- anisotroper Ableitungsindikator (3. Ableitungen)

Zusammenfassung

Discontinuous Galerkin Diskretisierung höherer Ordnung für die kompressiblen Navier-Stokes Gleichungen

- Dieselbe Genauigkeit auf gröberen Gittern und weniger Rechnenaufwand als für Verfahren 2. Ordnung
- ► Genaue Fehlerschätzung bzgl. Zielfunktionale
- ► Effiziente adjungiert-basierte (ziel-orientierte) adaptive Gitterverfeinerung
- ► Anisotrope Verfeinerung:
 - zur Auflösung von anisotropen Strömungsphänomenen (Schocks, Randschichter
 - Automatische Generierung von "optimalen" ersten Wandabständen
 - Optimierung von Gittern mit ungeeigneten/schlechten Aspect ratios.

Die nächsten Schritte in Richtung industrieller Anwendung

- ► Erweiterung des Strömungslösers
 - auf drei-dimensionale turbulente Strömungen mit hoher Reynoldszahl
- ► Diese Erweiterung auch für
 - die Berechnung der Adjungierten und der Adjungiert-adjungierten
 - die Auswertung von Verfeinerungindikatoren (residuen-basiert und adjungiert-basiert)
 - und die Fehlerschätzung bzgl. aerodynamischer Kraftkoeffizienten
- ► Fehlerschätzung und adaptive Verfeinerung bzgl. mehrerer Zielfunktionale
- Erweiterung auf hybride Gitter
- Erweiterung auf hp-Verfeinerung
- ► Effiziente Lösungsalgorithmen
 - lineare and nonlineare Mehrgitter
 - h- und p- Mehrgitter

EU Project: ADIGMA

Adaptive Higher-Order Variational Methods for Aerodynamic Applications in Industry

Start war 1. Sept 2006

Koordinator:DLRIndustrie:Airbus-D, Airbus-F, Dassault, Alenia, EADS-MForschungsinstitute:DLR, ONERA, NLR, FOI, INRIA, VKIUniversitäten:Uni Bergamo, Uni Twente, Uni Swansea, Uni Nottingham
Uni Stuttgart, Uni Warsaw, Uni Prague, ENSAM, (Uni Nanjing)SMEs:ARA, CENAERO

Hauptsächlich Discontinuous Galerkin Verfahren, Mehrgitter, Newton-Verfahren, Adaption, Fehlerschätzung, anisotrope Verfeinerung, hp-Verfeinerung.

