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A Refined GTD Ray System for an Embedded
Object and Its Polarimetric Behavior
Nicolas Pascal Marquart, Member, IEEE, Frédéric Molinet, Member, IEEE, and

Eric Pottier, Senior Member, IEEE

Abstract—A refined ray system based on the geometrical theory
of diffraction (GTD) for an object embedded in soil for a mono-
static transmitter–receiver alignment is presented. Apart from
the investigation of the “classical” reflections from the target,
creeping waves are also taken into account, and their formalism
is presented. The objective of such a ray set is to better under-
stand the different scattering mechanisms, which are presented in
the complex scattering framework. In electromagnetic modeling
based on GTD, the complex shape of a target is replaced by
simpler canonical objects, e.g., facets, cones, wedges, spheres, or
cylinders. Here, a cylinder is located in parallel and closely to
the plane interface of two dielectric half-spaces. The example of
air–soil is taken into account. The numerical results obtained
for various directions of incidence are employed to describe the
polarimetric characteristics of the diffracted field from grazing
to perpendicular incidence to the surface. By representing the
diffracted GTD field on the Poincaré sphere, the location on the
sphere has a one-to-one relationship to the dielectric properties of
the soil. The relation can be employed to extract information as
the soil moisture.

Index Terms—Creeping waves, geometrical theory of diffrac-
tion (GTD), ground penetrating radar (GPR), mine detection,
radar polarimetry, soil moisture.

I. INTRODUCTION

SYNTHETICALLY generated data sets are important for
radar polarimetry. By forward calculations of individual

scattering mechanisms, the entire scattering process can be
accurately modeled. A refined ray set is implemented for an
object embedded in soil close to the interface. In addition to
the multiple reflections of waves between the cylinder and the
interface, special emphasis is placed on the creeping waves,
encircling the cylinder. In general, the introduced ray system
consists of two wave types. The first type describes waves,
which propagate in free space after each interaction with the
cylinder. They are denoted as “space waves.” All multiple
reflected waves between the cylinder and the interface are space
waves. The second type describes creeping waves and lateral
waves. These waves propagate along the surface of the cylinder
and the plane interface between two semi-infinite media. They
are called “guided waves.” By introducing space and guided
waves in the ray system, a better understanding of the different
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scattering mechanisms is obtained. In consequence, additional
information on the geometrical parameters of the cylinder, its
depth, or the dielectric soil properties can be obtained. The
latter could be exploited to determine the soil moisture.

From the historical point of view, the diffraction of a plane
wave by an object situated close to an interface of a two- or
multilayered medium has been investigated by many authors,
and extensive literature exists on the subject. By using an
integral equation approach, Butler et al. [1] treated the problem
of a perfectly conducting cylinder of arbitrary cross section
located near the planar interface between two semi-infinite
homogeneous half-spaces of different electromagnetic proper-
ties and obtained numerical results for the currents induced
on a strip, a circular cylinder, and a rectangular cylinder.
Michalski and Zheng [2] developed a general procedure for the
scattering from perfectly conducting objects of arbitrary shape
embedded in a medium consisting of an arbitrary number of
planar dielectric layers. The key step in this procedure is the
development of a mixed potential integral equation formulation
that is amenable to the existing Method of Moments proce-
dure developed for objects in free space. Chang and Mei [3]
adapted the analysis of the unimoment method to a partly buried
object. All these approaches, which involve the calculation
of the half-space Green’s function and the evaluation of the
Sommerfeld integrals, are limited by the computational and
memory requirements when the size of the buried object is large
compared to the wavelength. More recently, the computational
complexity has been reduced according to Geng and Carin [4]
by adapting the fast multipole method to the problem. However,
since the interaction between the different parts of a target
buried in a lossy half-space depends strongly on the depth and
the soil characteristics, the acceleration procedures mentioned
in [4] have to be optimized with respect to these parameters.
In many particular situations, however, the rigorous treatment
of the subsurface diffraction problem by numerical techniques
may be unnecessary. Considering the case where the radius
r of the buried cylinder is large compared to the wavelength
(r/λ ≥ 0.64), the target–interface interaction can be modeled
by a few dominant waves. For solving the diffraction prob-
lem, a ray model based on the geometrical optics (GO) and
the geometrical theory of diffraction (GTD) has been chosen.
The ray model is used to describe the polarimetric behavior
of the illuminated target. The polarimetric characteristics can
be employed to extract some important physical parameters,
such as soil permittivity. In general, the existing coherent or
incoherent decomposition theorems of the scattering matrix [s],
which may be applied in the polarimetric analysis of the
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problem, consider very simple models based on GO involving
single (odd), double (even), or multiple bounce effects (see,
e.g., the works of Krogager [5], Cameron [6], or Cloude and
Pottier [7]). The polarimetric analysis of the problem is per-
formed by using a more refined ray model composed of spatial
and creeping waves. The creeping wave contribution to the
diffracted field might be small for some values of the physical
parameters (depth and size of the target and characteristics
of the soil), but it should not be neglected since it provides
a larger domain of application (e.g., the determination of the
geometrical properties of a target). The ray set is made up
of two spatial waves and three creeping waves in accordance
with the GTD and the truncation rule of asymptotic expansions
as well. The GTD or étalon method for wave fields states
that similar ray geometries lead to similar asymptotic formulas
(k → ∞). For a smooth convex target in front of an air–soil
interface, the simplest étalon problem includes a sphere or
cylinder. The solution of the étalon problem gives the main
features of the polarimetric behavior of an arbitrary convex
target. Exemplarily, we investigate a cylinder embedded in
the soil close to the interface. The diffracted ray field for a
monostatic alignment of the transceiver antenna is numerically
calculated for an incidence angle ϕi varying from perpendicular
ϕi = 0◦ (nadir) to grazing incidence ϕi = 90◦ to the surface.
The propagation of these creeping waves over the surface
causes radiation of elementary space waves tangentially away
from the surface toward the interface. In turn, these space waves
generate lateral propagating waves along the interface. The
numerical results obtained by the introduced GTD ray system
are exploited to investigate the polarimetric characteristics of
the diffracted field over the entire incidence angle range.

The structure of this paper is as follows: In Section II, the
spatial divergence of a general tube of rays at the transition
from the soil to the air is derived. The transition of a wave is
described by the coefficient D(n, ϕi). The transition coefficient
D(n, ϕi) depends on the incidence angle ϕi and on the complex
refractive index n. The refractive index n is determined by
the dielectric properties of the soil. Afterward, we present the
different wave types of the GTD ray system and discuss their
numerical implementation. The contributions of the different
wave types are presented in Section III. Based on the numerical
results, the polarimetric signature of the diffracted field on the
Poincaré sphere over the entire look angle range 0◦ < ϕi < 90◦

is derived in Section IV for different soils. Typical examples of
trajectories on the Poincaré sphere will be presented showing
the correspondence between the characteristics of these trajec-
tories and the soil’s permittivity. Final remarks are provided in
Section V.

II. GTD RAY SYSTEM

In the following, a GTD ray field scattered from an em-
bedded circular cylinder is built up by five different waves
for a monostatic transmitting–receiving antenna alignment. The
antenna is assumed to be located at the point M far away from
the cylinder. The corresponding ray paths for the monostatic
case are found by applying the principle of Fermat, which dic-
tates that the ray paths follow the minimal temporal trajectory
time between two points. In a homogenous medium, Fermat’s

Fig. 1. Tube of rays and its two principal radii ρ1 and ρ2 of the wave fronts.

Fig. 2. Expansion of a tube of rays at the transition from the soil C1T1T ′
1 into

the air C2T1T ′
1.

principle implies that the rays are straight lines. Other basic
postulates are that the polarization is constant along such a ray
for an isotropic medium and that the power in a flux tube is
conserved. Such a tube comprises a bundle of rays, and with
the propagation of the bundle tube, the energy diverges. At the
transition from the soil to the air, such a tube of rays is spread.

A. Divergence at the Transition

According to the law of GO, the spatial propagation of a
ray and its corresponding energy, which is proportional to the
square of the amplitude of the field, is conserved in a tube of
rays. The wave front of such a tube is described by two principal
radii of curvature in accordance with the differential geometry,
as shown in Fig. 1, according to McNamara et al. [8]. In the case
of an interaction with an object, the two wave-front curvatures
are usually modified and described by a spatial divergence term.
An additional modification of the backscattered wave front
occurs at the transition from the soil into the air. The transition
from a “denser dielectric” half-space into the air leads to a
spreading of the tube. The additional geometrical attenuation
of the field is described by a general modification coefficient
D(n, ϕi). In general, the plane of incidence is determined by
the incident wave vector �k and the local normal vector n̂ at
the local reflection point. With reference to Fig. 2, a perfectly
conducting cylinder embedded in the soil is assumed with its
axis oriented parallel to the interface. In that particular case, the
section of the cylinder coincides with the plane of incidence.
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Hence, the two principal radii of curvature ρ1 and ρ2 are given
by the perpendicular- and parallel-aligned components relative
to the plane of incidence. The modifications of the two principal
radii of curvature ρ1 and ρ2 after a reflection are given with
reference to [8] by

⊥:
1
ρ1

=
1
ρi
1

+
2 cos(ϕi)

a1
(1)

‖ :
1
ρ2

=
1
ρi
2

+
2

a2 cos(ϕi)
(2)

where the local radii a1 and a2 describe the local surface
curvatures at the reflection point and the index (i) signifies the
incident wave field. For the cylinder model, this means that
the perpendicular radius of curvature a1 is equal to infinity.
Hence, the perpendicular component of the wave front will
not be modified after a reflection on the cylinder. In contrast,
the component a2 in the plane of incidence will be modified
according to (2). In the case of a circular cylinder with radius
r, the local radius of curvature a2 is constant. Furthermore,
the angle ϕi defines the incidence angle between the wave
vector �k and the local normal vector n̂. Referring to Fig. 2, the
perpendicular radius of curvature a1 of the circular cylinder is
equal to infinity, and the second radius a2 is constant along the
circle. As a result, the curvature ρ1 of the wave front remains
unmodified after a reflection at the cylinder. Hence, in the
following, only the radius of curvature lying in the plane of
incidence ρ2 has to be considered. The reflection and transition
of such a single ray are shown in Fig. 2, whereby a plane wave
is propagating from the antenna toward the point T1 located
on the plane interface. After the transition into the soil, the
wave is perpendicularly reflected cos(ϕi) = 0◦ at the point P .
After the interaction with the cylinder, the wave propagates
along the same path back to the antenna. The round trip of
the wave is shown by arrows. According to (2), the modified
radius of curvature is given in these studies by ρ2 = a2/2 for an
incoming plane wave field ρi

2 → ∞. The corresponding caustic
is marked by the point C1, lying at the half-distance of the path
0P . Of special interest is the transition of the backscattered
wave and its tube of rays at the interface. Regarding a neighbor
ray C1T ′

1 within the tube with the variation ∆ϕr, the tube
C1T1T ′

1 is altered into the gray-colored tube C2T1T ′
1 at the

transition into the air. We find the following relations for the two
ray tube segments with the radii of curvature ρ2(T1) = C1T1

and ρ′2(T1) = C2T1 as follows:

C1T1 − C1T ′
1 = T1T ′

1 sin(ϕr) (3)

C2T1 − C2T ′
1 = T1T ′

1 sin(ϕi). (4)

In (3) and (4), the approximation cos(∆ϕi) ≈ cos(∆ϕr) ≈ 1
is calculated due to small variations of the incidence and
refraction angles ∆ϕi and ∆ϕr. With reference to the sine rule,
it yields for the triangles T1C1T ′

1 and T1C2T ′
1 the following

expressions:

T1T ′
1

sin ∆ϕr
=

C1T ′
1

cos ϕr
(5)

T1T ′
1

sin ∆ϕi
=

C2T ′
1

cos ϕi
. (6)

Substituting (5) in (3) and (6) in (4), we can rewrite

C1T1 = T1T ′
1

[
sin(ϕr) sin(∆ϕr) + cos(ϕr)

sin(∆ϕr)

]
(7)

C2T1 = T1T ′
1

[
sin(ϕi) sin(∆ϕi) + cos(ϕi)

sin(∆ϕi)

]
. (8)

Dividing (8) by (7), one gets the following expression:

C2T1

C1T1

=
ρ′2(T1)
ρ2(T1)

=
[

sin(ϕi) sin(∆ϕi) + cos(ϕi)
sin(ϕr) sin(∆ϕr) + cos(ϕr)

] [
sin(∆ϕr)
sin(∆ϕi)

]
. (9)

Next, a simplification of (9) is performed. Generally, the varia-
tion of the angles ϕr and ϕi is related via the law of refraction.
The transition between the soil and the air is given by

sin(ϕi) = n sin ϕr (10)

sin(ϕi − ∆ϕi) = n sin(ϕr − ∆ϕr). (11)

The refractive index n is given by n =
√

ε2/ε1. The latter
expression (11) is rewritten in the following form:

sin(ϕi) cos(∆ϕi) − cos(ϕi) sin(∆ϕi)

= n [sin(ϕr) cos(∆ϕr) − cos(ϕr) sin(∆ϕr)] . (12)

Assuming a small variation of the angles ∆ϕi ≈ ∆ϕr ≈ 0 as
given for neighbor rays, the sine terms can be neglected in
the analysis. In consequence, the relation (12) reduces to the
following approximate form:

sin(∆ϕr)
sin(∆ϕi)

=
1
n

cos(ϕi)
cos(ϕr)

. (13)

Substituting (13) in (9), for ∆ϕi ≈ ∆ϕr ≈ 0, and after some
algebra, the final expression for the modified radius of curvature
is obtained as

ρ′2(T1) = D(n,ϕi)ρ2(T1) (14)

where the modification coefficient D(n, ϕi) takes the simple
form

D(n,ϕi) =
1
n

[
cos2 ϕi

cos2 ϕr

]
. (15)

The energy flow within a tube of rays for a transition from the
soil into the air (15) is finally determined by the incidence angle
ϕi and the refractive index n.

B. Wave Types

The formulas of the different waves of the system are intro-
duced. The numerical implementation is performed in such a
way that the backscattered field can be computed for a large
incidence angle range 0◦ < ϕi < 90◦. The code respects the
more general case of an elliptical cylinder having two different
principal axis; for the sake of simplicity, a circular cylinder
is discussed. For convenience, a time dependence of the form
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Fig. 3. Ray path of wave 1.

Fig. 4. Ray path of wave 2.

Fig. 5. Ray path of the creeping wave 3.

exp(iωt) is assumed in the following. The path geometries of
the various waves are shown in Figs. 3–7. Throughout the calcu-
lations, the phase origin is placed in the center of the cylinder,
as shown in Fig. 3. Also, for numerical purposes, the spatial
divergence term 1/

√
OM and the phase term exp(−2ik10M)

are neglected for each single wave type. The ray geometry and
the formulas of the implemented GTD code for the waves 1–5
are discussed next.
1) Wave 1: The first wave type in the system is the one that,

after the transition at the interface T1, falls perpendicular onto
the cylinder T2 and is reflected back toward the antenna M . The
paths for the incoming and backscattered wave are identical.
The path geometry and the corresponding interaction points
of wave 1 are shown in Fig. 3. The GTD field is computed
according to a “brick-building approach,” where a simple mul-
tiplication of an amplitude term, spreading factor, and phase
term describes the propagation of a wave. In accordance with

Fig. 6. Ray path of the refracted wave 4.

Fig. 7. Ray path of wave 5.

the notation used by Marquart [9], the direct reflected wave 1
from the cylinder is immediately expressed by the following
building blocks:

�E(M) = �E0 · T i
(T1) · R0(T2)

· T r
(T1)SFW1(T1) · e

−2i

[
�ki
1·

−→
0T1+k2T1T2

]
(16)

where the dyads T i and T r describe the two transitions of
wave 1 across the interface. The dyad R0 signifies the reflection
at T2 for the perfectly conducting cylinder. According to (14),
the spatial divergence of wave 1 after its transition into the air
is given in [8]

SFW1(T1) =
√

ρ′2(T1). (17)

The change of the radius of curvature ρ2(T1) after the transition
into the air is given explicitly in the following form after (14):

ρ′2(T1) = D(n,ϕi)

(ao(T2)

2
+ T1T2

)
. (18)

The divergence factor 1/
√

ρ′2(T1) + T1M is equated to
1/
√

0M and neglected.
2) Wave 2: The second wave discussed describes the first

interaction between the target and the interface. It will be named
wave 2 in the ray system. Its geometry and interaction points
are shown in Fig. 4. In comparison to wave 1, two additional
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reflections, one at the interface J3 and one at the cylinder J2,
are present. The additional interactions signify an attenuation of
the field. Similar to wave 1, the backscattered wave 2 received
at the antenna is given by the following blocks:

�E(M) = �E0 · T i
(J1) · R2

0(J2) · f (J3) · T r
(J1) SFW2(J1)

· e
−2i

[
�ki
1·

−→
0J1+k2(J1J2+J2J3)

]
(19)

where the Fresnel dyad f takes into account the reflection at the
interface. In (19), the radius of curvature at the transition point
J1 is modified in accordance with (14). When five and more
interactions come into play, the received energy at the antenna
is negligible. Therefore, the investigation of waves of higher
order is meaningless and not included in the ray system.
3) Wave 3: The waves 1 and 2 presented earlier are space

waves that do not attach to the cylinder. In contrast, the third
wave introduced in the system is the so-called creeping wave,
which surrounds the cylinder. The creeping wave 3 and its
propagation are shown in Fig. 5. After attaching tangentially
at the point Q2, the wave surrounds the cylinder as a creeping
wave before being tangentially radiated away from the surface
Q3 toward the antenna at M . According to the notation used
in [10], the creeping wave 3 is given in the following form:

�E(M) = 2 �E0 · T (Q1) · D(Q2,Q3)

· T (Q4) ei atts
h e

−i

[
�ki
1·

−→
0Q1+�ki

1·
−→
0Q4+k2Q2Q3

]
. (20)

Referring to Fig. 5, wave 3 propagates on an arc around the
cylinder. Its asymptotic approximations of the attachment and
detachment coefficients are computed according to the work
of Bouche et al. [10]. The ⊥ and ‖ notations are used for the
soft (s) and hard (h) components of the field, as given in (20).
For the coefficients, it holds

ei atts
h = eiγ lc

a . (21)

In (21), the parameters lc and a correspond to the arc length
and to the local radius of curvature along the propagation path
on the cylinder. For the circular cylinder, the radius of curvature
a is constant along the entire arc length. The attenuation factor
γ is given by

γ =
(

k2a

2

) 1
3

ei π
3

{
q1

q̄1

}
+ O

[(
k2a

2

)−4
3

]
(22)

where the first zeros of the airy functions q1 and q̄1 correspond
to the ⊥ and ‖ field components according to Abramowitz and
Stegun [11]

q1 = 2.33811 q̄1 = 1.01879.

The propagation direction of the incoming and backscattered
wave 3 along the ray is interchangeable. Thus, the double field
value of wave 3 is calculated in the GTD ray system. In the
same manner as for the previous waves, the divergence term

1/
√

Q3Q4 · D(n, ϕi) + Q4M for the return path is substituted
by 1/

√
0M and neglected.

4) Wave 4: As a result of the transition of the backscattered
field from the denser dielectric soil into the air, lateral refracted
waves are generated along the interface of the two half-spaces.
This type of lateral propagating wave is shown in Fig. 6 and
designated as wave 4. The propagation of wave 4 takes place
in such a way that, by surrounding the cylinder, elementary
waves are continuously launched tangentially from the surface
toward the interface (similar to wave 3). For incident angles
at the surface that are greater than the so-called critical angle
ϕcrit., refraction occurs. For example, at the point U4, wave 4 is
refracted and propagates along the interface. The critical angle
ϕcrit. is defined by the refraction angle ϕr = π/2. According
to the law of refraction, it follows that

ϕcrit. = arcsin
(

1
n

)
= arcsin

(
c2

c1

)
(23)

where c1 and c2 correspond to the propagation velocities in
the air and the soil. The propagation velocity of the refracted
wave 4 is given by c1. In terms of the dielectric properties ε1
and ε2, (23) is rewritten in the following form:

ϕcrit. = arcsin
(√

ε1
ε2

)
. (24)

On its way from U4 to U5, the refracted wave 4 continuously
radiates elementary waves into the soil with the critical angle
ϕcrit.. The field amplitude is exponentially attenuated with the
distance from the interface according to Bouche et al. [10].
Referring to Fig. 6, it is apparent that all the detachment points
U3 along the cylinder represent an excited line source. The
problem consists in finding an exact analytical solution of a line
source radiating near the interface between two dielectric half-
spaces generating lateral waves along the interface. A solution
for a line source in the presence of a semi-infinite dielectric
medium is given in the work of Felsen [12]. According to the
notation used in Fig. 6 and considering [12, Sec. 5.5, eq. (57c);
Fig. 5.5.2(b)], the field of a wave radiating from the point U3

and propagating as a lateral wave toward the point U6 is given
as follows:

Ib =
1√
2π

ei[k2(U3U4+U5U6)+k1U4U5]ε
1
4 e−i π

4

(1 − ε)(k2U4U5)
3
2

(25)

whereby the substitution ε = ε1/ε2 is made. According to the
work of Felsen and Marcuvitz [12], a normalized field strength
|E0| = 1 is assumed at the detachment point U3. In contrast, the
field strength mentioned in [10, App. 1 (p. 467)] is defined as

E0(U3) =
ei π

4

√
8πk︸ ︷︷ ︸
Ds

eikr

√
r

. (26)

Hence, in order to compute the field up to the point U6 in
accordance with the formulas specified in [12], the field value
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at U3 has to be divided by the factor Ds. This finally yields the
correct field value of wave 4 in the ray system as follows:

�E(M) = �E0 · T i
(U1) · D(U2,U3)

(
Ib

Ds

)
T r

(U7)SFW4

· e
−i

[
�ki
1·

−→
0U1+�kr

1 ·
−→
0U7+k2(U1U2+U2U3+U6U7)

]
. (27)

In (27), the spatial divergence up to U6 is calculated. After
the reflection at U6, the radius of curvature is modified in the
following way:

ρ2(U6) =
a2(U6) cos(ϕi)

2
. (28)

The propagation to the transition point U7 yields

ρ2(U7) = ρ2(U6) + U6U7. (29)

At U7, the radius is changed after the transition according to

ρ′2(U7) = D(n,ϕi)ρ2(U7). (30)

Finally, the divergence for the return path takes the following
form:

SFW4 =
√

ρ′2(U7) (31)

where 1/
√

ρ′2(U7) + U7M is approximated by 1/
√

0M .
5) Wave 5: Bearing in mind that wave 4 radiates waves

tangentially away from the surface on its path around the cylin-
der, a bundle of launched rays will have incident angles at the
interface smaller than the critical angle ϕcrit.. From the bundle
of rays, one single wave will propagate back to the antenna,
as shown in Fig. 7. Therefore, one may see wave 5 in the
succeeding discussion as a special case of the previous wave 4.
In contrast, wave 5 is not propagating as a refracted wave along
the interface. Instead, wave 5 is reflected at the interface Z4 and
cylinder Z5 before propagating back toward the antenna. Ac-
cording to the GTD, wave 5 is computed in the following way:

�E(M) = �E0 · T i(Z1) · D(Z2, Z3) · f(Z4) · R0(Z5)

· T r(Z6)SFW5 e
−i

[
�ki
1·

−→
0Z1+k2Z1Z6

]
(32)

where the term Z1Z6 corresponds to the entire ray path
Z1Z2+Z2Z3+Z3Z4+Z4Z5+Z5Z6. The spatial divergence
of a ray tube is computed similar to the previously discussed
waves. The radius of curvature ρ′2(Z5) after the reflection at Z5

is evaluated as follows:

ρ′2(Z5) =
1

1
Z3Z4+Z4Z5

+ 2
a2(Z5) cos(ϕi)

. (33)

The modified curvature ρ′2(Z6) after the transition is found
to be

ρ′2(Z6) = D(n,ϕi) (ρ′2(Z5) + Z5Z6) . (34)

Fig. 8. Cylinder (r = 2 m) located at the depth d = 0.5 m in a loss-free
soil with ε2 = 9.6. (a) Single-field contributions | �E⊥(φ)| of the ray system.
(b) Single-field contributions | �E‖(φ)| of the ray system.

Hence, the spreading factor is given by

SFW5 =
√

ρ′2(Z6). (35)

In the latter expression, the term 1/
√

ρ′2(Z6) + Z6M is
substituted by 1/

√
0M and neglected in the field simulations.

III. NUMERICAL RESULTS

The backscattered GTD field is computed for a normalized
and linearly polarized incident field with the specific field
components �E0

⊥ = 1, �E0
‖ = 1 at the frequency f = 500 MHz.

The ray system is calculated for a look angle range ϕi varying
from 0◦ to 90◦. First, the cylinder is placed at a depth d = 0.5 m
in a dielectric lossless soil ε2 = 9.6. The absolute amplitude
values of the single waves are shown in Fig. 8 over the entire
look angle range. From it, one sees that, due to the strong
attenuation of the creeping waves, the dominant contributors of
the backscattered ray field are given by the two waves 1 and 2.
The fields of the waves 3, 4, and 5, which creep on an arc along
the cylinder, can be neglected in comparison to the waves 1
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Fig. 9. Cylinder (r = 2 m) located at the depth d = 0.5 m in a loss-free soil
for a permittivity of ε2 = 9.6 − i. (a) Single-field contributions | �E⊥(φ)| of
the ray system. (b) Single-field contributions | �E‖(φ)| of the ray system.

and 2. The example shows that the main GTD ray contributors 1
and 2 accurately describe the main polarimetric features accord-
ing to Marquart et al. [13].

The ray system is computed for a lossy electromagnetic soil
where the complex permittivity is set equal to ε2 = 9.6 − i.
With reference to the work of Ulaby et al. [14], this corre-
sponds, for example, to a sandy soil with poor moisture. In
contrast to the loss-free soil, the real refraction angle now
becomes imaginary. The formulas can also be applied in that
case. With reference to the study of Wang and Deschamps [15],
their extension to a lossy medium can be performed as the
diffracted field is observed far away from the cylinder. The
simulated field values for a lossy soil are shown in Fig. 9
for a complex permittivity ε2 = 9.6 − i. In the case that the
attenuation is strong, only the main reflection from the cylinder
(wave 1) remains as a significant backscattered signal.

IV. REPRESENTATION ON THE POINCARÉ SPHERE

The polarimetric signatures of the backscattered GTD ray
field is investigated for an incoming field varying from grazing

Fig. 10. Polarimetric characteristics of wave 1 over the look angle range 0◦ <
ϕ < 90◦ for a linearly polarized incident field and loss-free soil.

Fig. 11. Polarimetric characteristics of wave 2 over the look angle range 0◦ <
ϕ < 90◦ for a linearly polarized incident field and loss-free soil.

up to perpendicular incidence. The polarimetric behavior is
analyzed by representing the components of the Stokes vector
g1, g2, and g3 on a normalized sphere, the Poincaré sphere
according to Born and Wolf [16]. Its radius is defined as
follows:

g0 ≤
√

g2
1 + g2

2 + g2
3 . (36)

The polarization of the two main contributor waves 1 and 2
is represented individually on the Poincaré sphere. A linear
polarized incident field given by �E0

⊥ = �E0
‖ = 1 at the frequency

f = 500 MHz is taken into account. The cylinder is placed in
a lossless soil at the depth d = 0.5 m. In Figs. 10 and 11, the
polarimetric signatures of waves 1 and 2 are shown over the
entire look angle range of 0◦–90◦. According to the Stokes vec-
tor and its representation on the Poincaré sphere, the location
of the waves 1 and 2 on the sphere is given by g1 = 0, g2 = 1,
and g3 = 0 at perpendicular incidence ϕ = 0◦. With increasing
look angle, the phase difference of the transition coefficients
also increases, leading to the characteristic progression along
the equator line toward g1 = −1, g2 = 0, and g3 = 0. The
transition coefficients of the two field components �E0

⊥ and �E0
‖
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Fig. 12. Polarimetric behavior of the entire ray system over the look angle
range of 0◦–90◦ for a linearly polarized incident field. The cylinder is located
at the depth d = 0.3 m.

Fig. 13. Polarimetric behavior of the entire ray system over the look angle
range of 0◦–90◦ for a linearly polarized incident field. The cylinder is located
at the depth d = 0.5 m.

are similar for perpendicular incidence. In order to investigate
the effect of the distance between the cylinder and the interface,
the backscattered field is calculated at two different depths,
namely, d = 0.3 m and d = 0.5 m. The polarization of the ray
field for the different lossy soils is shown in Figs. 12 and 13.
With increasing loss, the locations on the sphere move away
from the equator line leading to a typical “polarization ladder.”
Of particular interest is the fact that the superposition of the
two main contributors (waves 1 and 2) gives virtually a linear
polarization for both computed heights in a loss-free soil.
Furthermore, comparing both figures, it is obvious that the
distance from the interface has no significant influence on the
location on the sphere. Hence, the shift away from the equator
line is solely due to the soil’s loss. The result is surprising, as
one may think that, due to different ray paths, the superposition
of the two principal waves should take place out of phase. This
is not the case, as due to the geometrical setup and refraction
index of the lossy soil, the path length J1J2 + J2J3 of wave

Fig. 14. Absolute phase δ of the complex transmission coefficients T⊥ and
T‖ for a lossy soil: ε2 = 9.6 − i.

Fig. 15. Absolute phase δ of the complex transmission coefficients T⊥ and
T‖ for a lossy soil: ε2 = 9.6 − 8i.

2 is nearly twice as long over the entire look angle range as
the distance sphere → interface T1T2 according to wave 1.
As a consequence, the single steps of the polarization ladder
can be directly related to the loss of the soil. The small phase
shift is given by the transition soil → air. For the transition
coefficient, a phase shift occurs at the transition lossy soil →
air. The phases δ’s of the perpendicular and parallel transmis-
sion coefficients are shown in Figs. 14 and 15 for complex
permittivities ε2 = 9.6 − i and ε2 = 9.6 − 8i. With increas-
ing loss, the phase difference also increases, which finally
leads to the significant “polarization ladder” on the Poincaré
sphere.

V. CONCLUSION

The backscattered field of a cylinder embedded in the soil
close to the plane interface is described by a refined ray field for
a monostatic transmitter–receiver alignment. The ray system,
according to the GTD, is composed of five different waves
including space, creeping, and laterally refracted waves along
the interface. In contrast to the space waves, the creeping waves
attach to the cylinder, surround it, and are again reradiated to
the receiving antenna. The ray description of the scattered field
via its asymptotic formulas (k → ∞) gives a better insight
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into the individual mechanisms of the entire global scattering
process. In our example, the waves 1 and 2 remain significant
contributors in the ray system. The contribution of the creeping
waves is strongly dependent on the frequency of the incident
field. The frequency f = 500 MHz is considered, which cor-
responds to the factor kr = 20, where r signifies the radius
of the circular cylinder. The presented formulas are valid up
to the limit kr = 4 (f = 100 MHz) and, thus, applicable for a
wider frequency range. Hence, the contributions of the creeping
waves to the ray system must be maintained. With decreasing
frequency, their contribution to the total field will increase.
The implemented GTD formulas are determined for a lossless
dielectric medium. Their extension to a lossy medium can be
performed for a transceiver antenna located far away from the
target. Hence, the two dominant contributors, waves 1 and 2,
are a good approximation of the solution. The backscattered
GTD field is represented on the Poincaré sphere for different
lossy soils over the look angle range of 0◦–90◦. The result-
ing location on the Poincaré sphere provides a one-to-one
relation to the dielectric properties of the soil. This could be
exploited to determine the soil moisture by burying a reference
object and measuring with a ground penetrating radar for
instance.
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