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ABSTRACT
A sequential Bayesian estimation algorithm for multipath
mitigation is presented, with an underlying movement model
that is especially designed for dynamic channel scenarios.
In order to facilitate efficient integration into receiver track-
ing loops it builds upon complexity reduction concepts that
previously have been applied within Maximum Likelihood
(ML) estimators. To demonstrate its capabilities under dif-
ferent GNSS signal conditions, simulation results are pre-
sented for both artificially generated random channels and
high resolution channel impulse responses recorded during
a measurement campaign.

1 INTRODUCTION
A major error source within global navigation satellite sys-
tems (GNSS) comes from multipath, the reception of ad-
ditional signal replica due to reflections, which introduce
a bias into the estimate of the delay lock loop (DLL) of
a conventional navigation receiver. For efficient removal
of this bias it is possible to formulate advanced maximum
likelihood (ML) estimators that incorporate the echos into
the signal model and are capable of achieving the theo-
retical limits given by the Cramer Rao bound. For static
channels without availability of prior information the ML
approach is optimal and performs significantly better than
other techniques, especially if the echos have short delay.
Various ML approaches have been proposed in the liter-



ature, characterized essentially by different efficient max-
imization strategies over the likelihood function [1], [2],
[3], [4], [5]. An estimator based on Sequential Importance
Sampling (SIS) methods (particle filtering) for static multi-
path scenarios has been considered in [6], which has the
advantage that prior channel knowledge can be incorpo-
rated. The drawback of ML estimator techniques in general
is that the parameters are assumed to be constant during the
time of observation. Independent estimates are obtained
for successive observation intervals, whose length has to
be adapted to the dynamics of the channel.

Most challenging for GNSS receivers are slowly chang-
ing environments where the assumption that channel pa-
rameters stay constant over sufficiently long observation
times no longer is satisfied. Consider for example the high
resolution channel impulse response received by a car driv-
ing in an urban channel environment [7], given in Figure 1.
Figure 2 shows the simulated performance of a conven-
tional DLL with narrow correlator [8] for a selected part
of the route, which is depicted in Figure 3. The example

Figure 1. Example of urban channel measurements in Munich for
10 degree elevation. The red frame encloses a selected
part of the route including a stop at a traffic light.

shows that carrier smoothing can reduce the multipath bias
significantly during the period when the car does not move.
In a changing environment, however, frequent cycle slips
make the smoothed pseudo ranges diverge from the correct
solution.

In this paper we consider the important practical case
of such dynamic channel scenarios and assess how the time-
delay estimation can be improved if information is avail-
able about the temporal evolution of the channel parame-
ters, including statistical knowledge about the occurence of
multipath replica. Our approach is based on Bayesian fil-
tering, the optimal and well-known framework to address
such dynamic state estimation problems. Sequential Monte
Carlo (SMC) methods are used for computing the posterior
probability density functions (PDFs) of the signal parame-
ters.

Figure 2. Performance of DLL without carrier smooting (red),
with 10 s carrier smoothing (green), and with 100 s car-
rier smoothing (blue), respectively.

Figure 3. Environmental view of the selected part of the route
(green line) with the stop marked by a green star.

2 SIGNAL MODEL
Assume that the complex valued baseband-equivalent re-
ceived signal is equal to

z(t) =
Nm

∑
i=1

ei(t) ·ai(t) · [c(t)∗g(t− τi(t))]+n(t) ,(1)

wherec(t) is a delta-train code sequence that is modulated
on a pulseg(t), Nm is the total number of allowed paths
reaching the receiver (to restrict the modeling complexity),
ei(t) is a binary function that controls the activity of thei′th
path andai(t) andτi(t) are their individual complex ampli-
tudes and time delays, respectively. The signal is disturbed
by additive white Gaussian noisen(t). Grouping blocks of
L samples at times(m+ kL)Ts, m= 0, . . . ,L−1, together
into vectorszk, k = 0,1, . . . , whilst assuming the parame-
ter functionsei(t), ai(t) andτi(t) being constant within the
corresponding time interval and equal toei,k, ai,k andτi,k,
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Figure 4. Example of the likelihood function for a channel withNm = 2, τ1 = 0 m, andτ2 = 30 m.

this can be rewritten as

zk = CG(τk)Ekak︸ ︷︷ ︸
sk

+nk . (2)

In the compact form on the right hand side the samples of
the delayed pulsesg(τi,k) are stacked together as columns
of the matrixG(τk) = [g(τ1,k), . . . ,g(τNm,k)], C is a ma-
trix representing the convolution with the code, and the
delays and amplitudes are collected in the vectorsτk =
[τ1,k, . . . ,τNm,k]T andak = [a1,k, . . . ,aNm,k]T respectively. Fur-
thermore, for concise notation we useEk = diag[ek] whilst
the elements of the vectorek = [e1,k, . . . ,eNm,k]T , ei,k∈ [0,1],
determine whether thei′th path is active or not by being
eitherei,k = 1 corresponding to an active path orei,k = 0
for a path that is currently not active. The termsk denotes
the signal hypothesis and is completely determined by the
channel parametersτk, ak andek.

3 MAXIMUM LIKELIHOOD ESTIMATION
Using (2) we can write the associatedlikelihood function
as

p(zk|sk) =
1

(2π)Lσ2L ·exp

[
− 1

2σ2 (zk−sk)
H (zk−sk)

]
.(3)

The likelihood function will play a central role in the al-
gorithms discussed in this paper; its purpose is to quan-
tify the conditional probability of the received signal con-
ditioned on the unknown signal (specifically the channel
parameters). The concept of ML multipath estimation has
drawn substantial research interest since the first approach
was proposed in [1]. Despite being treated differently in
various publications the objective is the same for all ML

approaches, namely to find the signal parameters that max-
imize (3) for a given observationzk:

ŝk = argmax
sk
{p(zk|sk)} . (4)

Figure 4 shows an example of the likelihood function for a
static two path channel with delaysτ1 = 0 m andτ2 = 30
m. According to (3) the shape of this function depends on
the assumed number of active paths in the received signal
zk. If a single path is assumed, the ML estimator is closely
related to the conventional DLL. The echo at 30 m relative
delay leads to a distortion of the likelihood function shown
in Figure 4(a), resulting in a translation of its maximum and
hence a biased estimate. With a correct number of paths,
on the other hand, the second path is included in the maxi-
mization problem, now given by the two-dimensional like-
lihood function depicted in Figure 4(b). For practical im-
plementation of the ML estimator different maximization
strategies exist, which basically characterize the different
approaches. Despite offering great advantages for theoreti-
cal analysis the practical advantage of the generic ML con-
cept is questionable due to a number of serious drawbacks:

• The ML estimator assumes that the channel is static
for the observation period and is not able to exploit
its temporal correlation throughout the sequencek =
1, . . .. Measured channel scenarios have shown sig-
nificant temporal correlation [9].

• Despite being of great interest in practice the esti-
mation of the number of received paths is often not
addressed. The crucial problem here is to correctly
estimate the current number of paths to avoid over-
determination, since an over-determined estimator will
tend to use the additional degrees of freedom to match
the noise by introducing erroneous paths. Various



complex heuristics based on model selection are em-
ployed to estimate the number of paths, but they suf-
fer from the problem of having to dynamically ad-
just the decision thresholds. Typically only a single
hypothesis is tracked, which in practice causes error
event propagation.

• The ML estimator does only provide the most likely
parameter set for the given observation. No relia-
bility information about the estimates is provided.
Consequently ambiguities and multiple modes of the
likelihood are not preserved by the estimator.

4 EFFICIENT LIKELIHOOD COMPUTATION
In [3] a general concept for the efficient representation of
the likelihood (3) was presented, which is applicable to
many of the exisiting ML mutlipath mitigation methods.
The key idea of this concept is to formulate (3) through a
vectorzc,k resulting from an orthonormal projection of the
oberserved signalzk onto a smaller vector space, so that
zc,k is a sufficient statistic according to the Neyman-Fisher
factorization [10] and hence suitable for estimatingsk. In
other words the reduced signal comprises the same infor-
mation as the original signal itself. In practice this concept
becomes relevant as the projection can be achieved by pro-
cessing the received signal (2) with a bank of correlators
and a subsequent decorrelation of the correlator outputs. A
variant of this very general concept, applied in [5], has also
been referred to as theSignal Compression Theoremin [11]
for a set of special projections that do not require the step
of decorrelation due to the structure of the used correlators.
For instance, unlike the correlation technique used in [1],
the one suggested in [5] already projects onto an orthog-
onal and thus uncorrelated subspace, similar to the code
matched correlator technique proposed in [3]. Due to com-
plexity reasons all practically relevant realizations of ML
estimators [1] [5] operate in a projected space, namely after
correlation. The corresponding mathematical background
will be discussed below, including also interpolation of the
likelihood and elimination of complex amplitudes as fur-
ther methods for complexity reduction.

4.1 Data Compression
As explained above the large vector containing the received
signal sampleszk is linearly transformed into a vectorzc,k

of much smaller size. Following this approach the likeli-
hood according to (2) can be rewritten as

p(zk|sk) =
1

(2π)Lσ2L exp

[
−

zH
k zk

2σ2

]
·exp

[
ℜ{zH

k QcQH
c sk}

σ2 −
sH
k QcQH

c sk

2σ2

]
=

1
(2π)Lσ2L exp

[
−

zH
k zk

2σ2

]
(5)

·exp

[
ℜ{zH

c,ksc,k}
σ2 −

sH
c,ksc,k

2σ2

]
,
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Figure 5. Output of two types of canoncical component type cor-
relator banks usable for data size reduction according
to (9)

with the compressed received vectorzc,k and the compressed
signal hypothesissc,k:

zc,k = QH
c zk, sc,k = QH

c sk , (6)

and the orthonormal compression matrixQc, which needs
to fulfill

QcQH
c ≈ I , QH

c Qc ≈ I , (7)

to minimize the compression loss. According to [3] the
compression can be two-fold so that we can factorize

Qc = QccQpc (8)

into acanonical component decompositionQcc and aprin-
cipal component decompositionQcc. In [3] two choices for
Qcc are proposed

Qcc =
{

CG(τb)R−1
cc Signal matched

C(τb)R−1
cc Code matched

, (9)

where the elements of the vectorτb define the positions
of the individual correlators. The noise-free outputs of the



corresponding correlator banks are illustrated in Figure 5.
To decorrelate the correlator outputs as mentioned above
the whitening matrixRcc can be obtained from a QR de-
composition ofCG(τb) andC(τb) respectively. Apart from
practical implementation issues both correlation methods
given by (9) are equivalent from a conceptual point of view.
For details on the compression throughQpc the reader is re-
ferred to [3].

4.2 Interpolation
In order to compute (5) independently of the sampling grid
advantage can be made of of interpolation techniques. Us-
ing the discrete Fourier transformation (DFT), withΨ be-
ing the DFT matrix andΨ−1 being its inverse counterpart
(IDFT), we get:

sc,k = QH
c CΨ−1diag[Ψg(0)]︸ ︷︷ ︸

Msc=const.

Ω(τk)Ekak , (10)

with Ω(τk) being a matrix of stacked vectors with Vander-
monde structure [3].

4.3 Amplitude Elimination
In a further step we reduce the number of parameters by
optimizing (5) for a given set ofτk andek with respect to
the complex amplitudesak, which can be achieved through
a closed form solution. Using

Sc,k = MscΩ(τk)Ek (11)

and obtainingS+
c,k by removing zero columns fromSc,k

one yields the corresponding amplitude values of the ac-
tive paths:

â+
k =

(
S+H

c,k S+
c,k

)−1
S+H

c,k z̄c,k . (12)

As we have introduced a potential source of performance
loss by eliminating the amplitudes and thus practically are
disregarding their temporal correlation, we propose to op-
timize (5) using

z̄c,k =
1
Q
·

Q−1

∑
l=0

zc,k−l (13)

with the adjustable averaging coefficientQ. Please note
that a+

k is equal to the ML amplitudes forQ = 1 . When
evaluating (5) we use

sc,k = Sc,kâk , (14)

whereas the elements of the vectorâk that are indicated
to have an active path (ak,i : i → ek,i = 1) are set equal
to the corresponding elements ofâ+

k . All other elements
(ak,i : i → ek,i = 0) can be set arbitrarily as their influence
is masked by the zero elements ofek.

5 SEQUENTIAL ESTIMATION
5.1 Optimal Solution
In Section 2 we have established the models of the underly-
ing time variant processes. The problem of multipath miti-
gation now becomes one ofsequential estimation of a hid-
den Markov process: We want to estimate the unknown
channel parameters based on an evolving sequence of re-
ceived noisy channel outputszk. The channel process for
each range of a satellite navigation system can be modelled
as a first-order Markov process if future channel parame-
ters given the present state of the channel and all its past
states, depend only on the present channel state (and not on
any past states). We also assume that the noise affecting
successive channel outputs is independent of the past noise
values; soeach channel observation depends only on the
present channel state.

Intuitively we are exploiting not only the channel ob-
servations to estimate the hidden channel parameters (via
the likelihood function), but we are also exploiting our prior
knowledge about the statistical dependencies between suc-
cessive sets of channel parameters. We know from channel
measurements that channel parameters are time varying but
not independent from one time instance to the next; for ex-
ample, an echo usually experiences a ”life-cycle” from its
first occurrence, then a more or less gradual change in its
delay and phase over time, until it disappears [9].

Now that our major assumptions have been estab-
lished we may apply the concept ofsequential Bayesian
estimation. The reader is referred to [12] which gives a
derivation of the general framework for optimal estimation
of temporally evolving (Markovian) parameters by means
of inference; and we have chosen similar notation. The en-
tire history of observations (over the temporal indexk) can
be written as

Zk=̂{zi , i = 1, . . . ,k} , (15)

similarly we denote the sequence of parameters of our hid-
den Markovian process by

Xk=̂{xi , i = 1, . . . ,k} . (16)

So xi represents the characterization of the hidden chan-
nel state, including the parameters that specify the signal
hypothesissi given in (2). Our goal is to determine thepos-
terior probability density function (PDF) of every possi-
ble channel characterization given all channel observations:
p(xk|Zk) (see Figure 7). Once we have evaluated this pos-
terior PDF we can either determine that channel configura-
tion that maximizes it - the so called maximum a-posteriori
(MAP) estimate; or we can choose the expectation - equiv-
alent to the minimum mean square error (MMSE) estimate.
In addition, the posterior distribution itself contains all un-
certainty about the current range and is thus the optimal
measure to perform sensor data fusion in an overall posi-
tioning system.



Figure 6. Illustration of the recursive Bayesian estimator.
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Figure 7. Illustration of the hidden Markov estimation process for
three time instances. Our channel measurements are the
sequencezi , i = 1, . . . ,k}, and the channel parameters to
be estimated arexi , i = 1, . . . ,k}

It can be shown that the sequential estimation algo-
rithm is recursive, as it uses the posterior PDF computed
for time instancek− 1 to compute the posterior PDF for
instancek (see Figure 6). For a given posterior PDF at time
instancek−1, p(xk−1|Zk−1), theprior PDF p(xk|Zk−1) is
calculated in the so-calledprediction stepby applying the
Chapman-Kolmogorov equation:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 , (17)

with p(xk|xk−1) being the state transition PDF of the Markov
process. In theupdate stepthe new posterior PDF for stepk
is obtained by applying Bayes’ rule top(xk|zk,Zk−1) yield-
ing the normalized product of the likelihoodp(zk|xk) and

the prior PDF:

p(xk|Zk) = p(xk|zk,Zk−1)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(18)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
.

The termp(zk|xk) = p(zk|sc,k) follows from (5) and repre-
sents the probability of the measured channel output (often
referred to as the likelihood value), conditioned on a cer-
tain configuration of channel parameters at the same time
stepk. The denominator of (18) does not depend onxk and
so it can be computed by integrating the numerator of (18)
over the entire range ofxk (normalization).

To summarize so far, the entire process of prediction
and update can be carried out recursively to calculate the
posterior PDF (18) sequentially, based on an initial value
of p(x0|z0) = p(x0). The evaluation of the likelihood func-
tion p(zk|xk) is the essence of the update step. Similarly,
maximizing this likelihood function (i.e. ML estimation)
would be equivalent to maximizingp(xk|Zk) only in the
case that the prior PDFp(xk|Zk−1) does not depend on
Zk−1 and when all values ofxk are a-priori equally likely.
Since these conditions are not met, evaluation ofp(xk|Zk)
entails all the above steps.

5.2 Sequential Estimation using Particle Filters
The optimal estimation algorithm relies on evaluating the
integral (17), which is usually a very difficult task, except
for certain additional restrictions imposed on the model and
the noise process. So very often a suboptimal realization of
a Bayesian estimator has to be chosen for implementation.



In this paper we use a Sequential Monte Carlo (SMC) fil-
ter, in particular a Sampling Importance Resampling Parti-
cle Filter SIR-PF according to [12]. In this algorithm the
posterior density at stepk is represented as a sum, and is
specified by a set ofNp particles:

p(xk|Zk)≈
Np

∑
j=1

w j
k ·δ (xk−x j

k) , (19)

where each particle with indexj has a statex j
k and has a

weight wj
k. The sum over all particles’ weights is one. In

SIR-PF, the weights are computed according to the princi-
ple of Importance Samplingwhere the so-called proposal
density is chosen to bep(xk|xk−1 = x j

k−1), and withresam-
pling at every time step. ForNp → ∞ the approximate pos-
terior approaches the true PDF.

5.2.1 Incorporation of Channel Observations and Char-
acterization

The key step in which themeasurementfor instancek is
incorporated, is in the calculation of the weightw j

k which
for the SIR-PF can be shown to be the likelihood function:
p(zk|x j

k). The characterization of thechannel processen-
ters in the algorithm when at each time instancek, the state
of each particlexi

k is drawn randomly from the proposal

distribution; i.e. fromp(xk|x j
k−1).

5.3 Choice of Appropriate Channel Process
To exploit the advantages of sequential estimation for our
task of multipath mitigation/estimation we must be able to
describe the actual channel characteristics (channel param-
eters) so that these are captured byp(xk|xk−1). In other
words, the model must be a first order Markov model and
all transition probabilities must be known. In our approach
we approximate the channel as follows:

• The channel is totally characterized by a direct path
(index i = 1) and at mostNm−1 echos.

• Each path has complex amplitudeai,k and relative
delay and∆τi,k = τi,k − τ1,k; where echos are con-
strained to have delayτi,k ≥ τ1,k; i.e. ∆τi,k ≥ 0.

• The different path delays follow the process: (see
Figure 8)

τ1,k = τ1,k−1 +α1,k−1 ·∆t +nτ , (20)

∆τi,k = ∆τi,k−1 +αi,k−1 ·∆t +nτ . (21)

• Each parameterαi,k that specifies the speed of the
change of the path delay follows its own process:

αi,k =
(

1− 1
K

)
·αi,k−1 +nα . (22)

τkτk-1 τk+1

αk-1 αk αk+1

Figure 8. Markov model for the path delays.

on off

ponoff

poffon

1 - ponoff 1 - poffon

Figure 9. Markov model for the multipath activity.

• The magnitudes and phases of the individual paths,
represented by the complex amplitudesai,k, are elim-
inated according to (12) and (14) for the computation
of the likelihood (5).

• Each path is either ”on” or ”off”, as defined by chan-
nel parameterei,k ∈ {1≡ ”on” ,0≡ ”off” },

• whereei,k follows a simple two-state Markov process
with a-symmetric crossover and same-state probabil-
ities: (see Figure 9)

p(ei,k = 0|ei,k−1 = 1) = ponoff , (23)

p(ei,k = 1|ei,k−1 = 0) = poffon . (24)

The model implicitly incorporates three i.i.d. noise sources:
Gaussiannτ andnα , as well as the noise process driving the
state changes forei,k. These sources provide the random-
ness of the model. The parameterK defines how quickly
the speed of path delays can change (for a given variance
of nα ). Finally, ∆t is the time between instancesk−1 and
k. We assume allmodel parameters(i.e. K, ∆t, noise vari-
ances, and the ”on”/”off” Markov model) to be independent
of k. Note that the model directly represents the number of
paths as a time variant parameter that is equal to∑Nm

i=1ei,k.
The hidden channel state vectorxk can therefore be repre-
sented as:

[τ1,k,∆τ2,k, ...,∆τNm,k,α1,k, ...,αNm,k,ei,k, ...,eNm,k]
T .

(25)
When applied to our particle filtering algorithm, draw-

ing from the proposal density is simple. Each particle stores
the above channel parameters of the model and then the
new state of each particle is drawn randomly fromp(xk|x j

k−1)
which corresponds to drawing values fornα andnτ as well
as propagating the ”on”/”off” Markov model, and then up-
dating the channel parameters fork according to (20)-(24).



5.4 Practical Issues
5.4.1 Model Matching

It is important to point out that a sequential estimator is
only as good as its state transition model matches the real
world situation. The state model needs to captureall rel-
evant hidden states with memory and needs to correctly
model their dependencies, while adhering to the first order
Markov condition. Furthermore, any memory of the mea-
surement noise affecting the likelihood functionp(zk|xk)
must be explicitly contained as additional states of the model
x, so that the measurement noise is i.i.d.

The channel state model is motivated by channel mod-
elling work for multipath prone environments such as the
urban satellite navigation channel [9] [7]. In fact the pro-
cess of constructing a channel model in order to charac-
terize the channel for signal level simulations and receiver
evaluation comes close to our task of building a first order
Markov process for sequential estimation. For particle fil-
tering, the model needs to satisfy the condition that one can
draw states with relatively low computational complexity.
Adapting the model structure and the model parameters to
the real channel environment is a task for current and fu-
ture work. It may even be possible to envisage hierarchical
models in which the selection of the current model itself
follows a process. In this case, a sequential estimator will
automatically choose the correct weighting of these models
according to their ability to fit the received signal.

5.4.2 Integration into a Receiver

For receiver integration the computational complexity of
the filtering algorithm is crucial. From a theoretical point
of view it is desirable to run the sequential filter clocked
corresponding to the coherent integration period of the re-
ceiver and with a very large number of particles. From
the practical point of view, however, it is desirable to re-
duce the sequential filter rate to the navigation rate and to
minimize the number of particles. Existing ML approaches
can help here to achieve a flexible complexity/performance
trade-off, as strategies already developed to extend the ob-
servation periods of ML estimators can be used directly to
reduce the rate of the sequential filtering algorithm.

6 SIMULATIONS
For performance assessment computer simulations with the
proposed sequential estimator have been carried out. The
simulated signal corresponds to a GPS L1 signal withc(t)
being a Gold code of length 1023 that is modulated on
a bandlimited rectangular pulse. The chip rate is 1.023
MChips/s so that the duration of the codeword is 1ms. The
one-sided bandwith of the resulting navigation signal is
5 MHz. The signal’s carrier to noise density ratio is se-
lected to beC/N0=45dB-Hz and the multipath power is
6dB lower than that of the direct path. The Bayesian es-
timator uses a time interval of 1 ms corresponding to the

Figure 10. Static multipath scenario: Performance of SIR PF as
function of relative multipath delay for different path
models.

Figure 11. Static multipath scenario: Average probability of a
two path model for the estimator with path activity
tracking.

duration of a codeword. The amplitude averaging coeffi-
cient is set toQ = 10. The channel parametersσ2

i,τ , σ2
i,α ,

K, and p(ei,k|ei,k−1) are selected to fit the statistics of a
real channel according to [9]. The SIR PF uses the mini-
mum mean square error (MMSE) criterion to estimate the
parametersxk from the posterior.

6.1 Static Channel
The capability of multipath mitigation techniques is com-
monly assessed by showing the systematic error due to a
single multipath replica plotted as a function of the rela-
tive multipath delay in a static channel scenario. In Fig. 10
the root mean square error (RMSE) is shown for the pro-
posed sequential estimator, implemented as a SIR PF with
2000 particles. Estimators with fixed two path model or
fixed single path model are also shown for comparison with
the implicit path activity tracking. The performance of a
single path estimator is comparable to that of a DLL with
infinitesimal correlator spacing and shows a considerable
bias over a large delay range. The estimator with fixed
two path model successfully mitigates the multipath bias
for delays greater than 30m. However, as indicated by the
Cramer-Rao bound [3], for smaller delays it shows an in-



Figure 12. Dynamic multipath scenario: Tracking performance
of SIR PF and DLL.

Figure 13. Dynamic multipath scenario: Direct path tracking er-
ror of SIR PF and DLL for the scenario that is depicted
in Fig. 12

creasing variance and is outperformed by the single path
estimator. The estimator with path activity tracking is ca-
pable of combining the advantages of both models. From
the posterior it is possible to calculate the estimated aver-
age probabilityP(Nm,k = 2|Zk) of a two path model, which
is shown in Fig. 11 and indicates the transition between the
models: for small delays the two paths essentially merge
to a single one. Note that in these simulations the model
parameters of the sequential estimator are still the ones de-
signed for the dynamic channel and not optimal for this
static scenario.

6.2 Dynamic Channel
Results for a randomly chosen dynamic channel with up to
Nm = 3 paths, which matches to the model parameters as-
sumed in the estimator, are depicted in Fig. 12 for a SIR PF
with 20 000 particles. The corresponding error of the di-
rect path tracking is shown in Fig. 13, together with that of
a conventional non-coherent DLL with 0.1 chip early/late
correlator spacing and 1 Hz tracking loop bandwidth. This
loop bandwidth was found to result in the smallest RMSE
of the DLL for the considered dynamic scenario in the ab-
sence of multipath. The DLL performance suffers signifi-
cantly from the multipath reception. The SIR PF (RMSE
= 0.77 m) is less distorted than the DLL (RMSE = 3.49 m)

Figure 14. Performance of the SIR PF with up toNm = 2 paths
for the measured urban channel environment (com-
pare Figure 1. Direct path estimates are shown in blue,
second path estimates in red.

Figure 15. Illustration of particles in the delay space at different
time steps, and the posterior density of the direct path
delay (black) and the second path relative delay (red)
given by the particles in different dimension (green
and cyan).

and able to detect the activity of multipath implicitly.
We have also applied the SIR PF to the measured

channel described in Section 1. The results, given in Fig-
ure 14, show again a clear advantage over the DLL with
narrow correlator.

A further advantage compared to ML estimation is
that the posterior PDF at the output of the estimator rep-
resents reliability information about the desired parameters
and preserves the ambiguities and multiple modes that may
occur within the likelihood function. An example of the
posterior obtained from the set of particles is illustrated in
Figure 15.



7 CONCLUSION
In this paper we have shown that a Bayesian filter is capable
of reducing the errors caused by multipath successfully by
exploiting the strong temporal correlations of the channel
parameters. Our approach is characterized by an improved
state transition model that allows us to introduce a Markov
model to determine the lifecycle of each individual path,
such as temporarily turning a path on and off as well as
creating and destroying it. This approach allows to track
the signal delays as well as the number of paths implicitly
in a probablistic fashion. As all hypotheses are tracked si-
multaneously the problem of error propagation is avoided.

We have demonstrated how sequential Bayesian es-
timation techniques can be applied to the multipath miti-
gation problem in a navigation receiver. The proposed ap-
proach is characterized by code matched, correlator based
signal compression together with interpolation techniques
for efficient likelihood computation in combination with a
particle filter realization of the prediction and update recur-
sion. The considered movement model has been adapted
to dynamic multipath scenarios and incorporates the num-
ber of echos as a time variant hidden channel state variable
that is tracked together with the other parameters in a prob-
abilistic fashion.
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