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Abstract 
 

The purpose of this paper is to present an airport and access mode choice model 

based on a new discrete choice approach called “Generalized Neural Logit-Model”. 

This approach employs artificial neural networks to model the utility function and 

correlations within the choice set and genetic algorithms to optimize the network 

structure. To evaluate the new approach, a nested logit approach is chosen as a 

benchmark. The concept of alternative groups is employed for estimating a market 

segment-specific airport and access mode choice model and therefore it is 

generally applicable to any number of airports and combinations of airports and 

access modes. Hence it is possible to analyze future scenarios in terms of new 

airport constellations and new airport access modes. To achieve this, Kohonen’s 

Self-Organizing-Maps are used to identify different airport clusters from a demand-

oriented point of view and assign every airport to the appropriate cluster. 

 

Keywords: Airport and access mode choice model, Artificial neural networks, 

Concept of alternative groups, Discrete choice model, Generalized Neural Logit-

Model, Kohonen’s Self Organizing Maps 
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1. Introduction 
 

This paper presents a novel approach in discrete choice modeling based on 

artificial neural networks and is an excerpt of the doctoral thesis of the author. 

Research is mainly focused on the distribution assumptions of the random 

component of the utility function to model correlations among alternatives within 

the choice set due to unobserved alternative attributes. Only a few works deal with 

the subject of nonlinear utility functions partly because of the difficulties arising in 

determining a priori the form of nonlinearity of the utility function. Box-Cox and Box-

Tukey transformations (see i.e. Maier and Weiss 1990, pp. 126ff.) enable to model 

some limited forms of nonlinear utility functions. 

 

Some research has been done in combining discrete choice models with artificial 

neural networks to model a nonparametric nonlinear utility function. Bentz and 

Merunka (Bentz and Merunka 2000) and Gelhausen (Gelhausen 2003) describe 

two different ways to represent a logit-model as an artificial neural network. This 

approach shows significant better empirical results than a standard logit-model with 

a linear utility function (Bentz and Merunka 2000; Hruschka et al. 2002; Probst 

2002). An implementation of a nested logit-model with an arbitrary nesting 

structure is possible (Wilken and Gelhausen 2005, pp. 25ff.), but because of the 

complexity of the resulting network severe estimation and performance problems 

occur. 

 

The Generalized Neural Logit-Model enables to model a nonparametric nonlinear 

utility function and arbitrary correlations among alternatives in the choice set due to 

unobserved attributes. Correlations among alternatives are modeled similar to the 

dogit-model. An efficient implementation of the Generalized Neural Logit-Model is 

possible as it is close to standard artificial neural networks. 

 

The outline of this paper is as follows: 
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Chapter two explains the concept of alternative groups in discrete choice models 

as already introduced in Gelhausen (2006) and Gelhausen and Wilken (2006). This 

concept facilitates complexity reduction and the development of a model, which is 

applicable to alternatives outside the estimation data set. 

 

Chapter three describes the theory of the Generalized Neural Logit-Model and its 

implementation as artificial neural network. 

 

The Generalized Neural Logit-Model is applied to the case study of airport and 

access mode choice of air travelers in Germany in chapter four. A nested logit 

approach serves as a benchmark to evaluate the new model empirically 

(Gelhausen and Wilken 2006). 

 

The paper ends with a summary and conclusion. 

 

2. Grouping of Alternatives in Discrete Choice Models 
 

The fundamental hypothesis of discrete choice models is the assumption of 

individual utility maximization. Alternatives are evaluated by means of a utility 

function and the one with the highest utility is supposed to be chosen. From an 

external point of view the utility of an alternative for a specific individual is a 

random variable, so that the utility Ui for alternative i is composed of a deterministic 

component Vi and a random component εi (Maier and Weiss 1990, p. 100): 

 

(2.01) 

 

The random component of the utility function is introduced for various reasons, i.e. 

a lack of observability of the relevant alternative attributes or their incomplete 

measurability (Maier and Weiss, pp. 98f.). 

 

iii VU ε+=
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As a result of the random component in the utility function only evidence in terms of 

the probability of an alternative being the one with the highest utility can be given 

from an external point of view. Specific discrete choice models differ in terms of 

their assumptions regarding the random component. The most prominent member 

of this class of models is the logit-model with independently and identically 

distributed random components. The choice probability of an alternative i is 

computed as (Train 2003, p. 40): 

 

(2.02) 

 

As a consequence of the independently and identically distributed random 

components of the utility functions the ratio of two choice probabilities is only 

dependent on the utility of those two alternatives (Ben-Akiva and Lerman 1985, p. 

108): 

 

 

(2.03) 

 

 

This property of the logit-model is called “Independence from Irrelevant 

Alternatives” (IIA) and it is both a weakness and a strength of the model. Due to 

the distribution assumptions of the random component of the utility function it is not 

possible to model correlations among alternatives owing to unobserved factors. A 

major advantage of the IIA-property is the possibility to estimate model parameters, 

excluding alternative-specific variables, on a subset of the alternatives (McFadden 

1974, p. 113; McFadden 1978, pp. 87ff.; Ortuzar and Willumsen 2001, pp. 227f.; 

Train 2003, pp. 52f.) and the possibility of an evaluation of new alternatives without 

the need to re-estimate alternative-unspecific model parameters (Domencich and 

McFadden 1975, pp. 69f.). The problem of estimating alternative-specific variables 

from a subset of alternatives is discussed below. 
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The nested logit-model relaxes the IIA-restriction to some extent without losing the 

closed-form expression of the choice probabilities. For this purpose the random 

component in (2.01) is split up into a part a
iε , which varies over all alternatives I, 

and a part c
kε , which is identical for all alternatives of a nest k (Maier and Weiss 

1990, pp. 154f.): 

 

(2.04) 

 

The nested logit approach enables to model correlations due to unobserved factors 

among subsets of the alternatives, so that the choice set is partitioned into clusters 

with highly correlated alternatives. (2.05) is an example of a covariance matrix 

consisting of four alternatives partitioned into two clusters with the first two 

belonging to cluster one and the last two assigned to cluster two. 

 

 

(2.05) 

 

 

Each cluster k is characterized by an individual scale parameter c
kμ  and an identical 

non-negative covariance for all alternatives i within a cluster k. Alternatives of 

different clusters are assumed not to be correlated. 

 

For technical reasons the choice probabilities P(ai = aopt) are decomposed into an 

unconditional choice probability P(ck = copt), that cluster k is chosen, and a 

conditional choice probability P(ai = aopt | ai ∈ ck), that alternative i from cluster k is 

chosen (Maier and Weiss 1990, p. 156): 

 

(2.06) 
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The conditional choice probabilities comply with the logit-model and the choice set 

is restricted to the alternatives of the appropriate nest. The choice probability of a 

nest k is determined by its maximum utility c
kV  (Maier and Weiss 1990, p. 157): 

 

(2.07) 

 

The choice probability of an alternative i in nest k can be written as (Maier and 

Weiss 1990, p. 158): 

 

(2.08) 

 

The hierarchical structure of (2.08) does not imply a sequential decision process. 

An extension to more than two levels is possible (see i.e. Ben-Akiva and Lerman 

1985, pp. 291ff.). 

 

In the nested logit-model the IIA-property holds only for two alternatives of the 

same cluster: 

 

 

 

 

(2.09) 

 

 

 

 

The ratio of the choice probabilities for two alternatives of different clusters 

depends on the characteristics of all alternatives of those two clusters: 
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(2.10) 

 

 

 

 

 

As the nested logit-model lacks the IIA-property for some pairs of alternatives, 

model estimation on a subset of the choice set equal to the logit-model is not 

possible. 

 

If it is feasible to form groups of at least approximately similar clusters and to 

assign an identical covariance matrix for all clusters of the same group, an 

estimation of alternative-unspecific model-parameters equal to the logit-model on a 

subset of alternatives is possible. Each group of clusters must be represented by at 

least one member in this subset to enable the estimation of all cluster-specific 

scale parameters. (2.11) shows a covariance-matrix for six alternatives belonging 

to three groups, with two alternatives per group. Figure 2.01 shows the relationship 

between a group and a cluster for this example. 

 

 

 

(2.11) 
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Cluster 1 

Group 1 Group 2 Group 3

Cluster 5 Cluster 2 Cluster 3 Cluster 4 Cluster 6 

The letters A, B and C represent the covariance structure of a cluster. Same letters 

indicate an equal covariance structure for different clusters. Figure 2.01 illustrates 

the assignment of clusters to groups. 

 

 

 

 

 

 

 
Figure 2.01: Dependence between Clusters and Groups 

 

If identical alternative-specific model-parameters, especially alternative-specific 

constants, can be assumed reasonably well for different clusters of the same 

group, an estimation of all model-parameters is feasible on a subset of all 

alternatives as described above. 

 

Applying the concept of grouping to the logit-model is possible, however, serves 

only to estimating alternative-specific variables, as there are no different scale 

parameters due to independently and identically distributed random components in 

the utility function. 

 

The main advantage of this approach does not only lie in the reduction of 

computational costs for very large choice sets, as many econometric software 

packages limit the maximum number of clusters and alternatives for nested logit 

estimations, but primarily in a better way of developing a more generally applicable 

choice model beyond the alternatives of the estimation data set, i.e. in the context 

of scenario analysis. 

 

A less popular member of discrete choice models is the dogit-model. Correlations 

among alternatives in the choice set are modeled by means of a functional 
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combination of the utility functions of each alternative with an alternative-specific 

parameter θi (Gaudry and Dagenais 1979, p. 105): 

 

 

(2.12) 

 

 

Dogit- and logit-model are equal for all θi being zero so that the IIA-property holds 

for arbitrary pairs of alternatives. The vector of parameters θ describes to what 

extend the IIA-property does not hold. 

 

In some empirical cases the dogit-model is superior to a logit approach in terms of 

model fit (see i.e. McCarthy 1997). However, the IIA-property does not hold in a 

systematic way in a genuine dogit-model with a nonzero vector θ, so that the 

aforementioned concept of alternative groups is not applicable. 

 

3. The Generalized Neural Logit-Model 
 

3.1 Theory of the Generalized Neural Logit-Model 
 

The distribution assumptions regarding the random component of the utility 

function of the Generalized Neural Logit-Model are equal to the logit-model. 

Correlations among alternatives due to unobserved attributes are modeled by 

means of a combination of the utility functions of each alternative. This approach 

shows some similarities to the dogit-model, however, it offers more flexibility in 

terms of modeling correlations among alternatives. 

 

An essential part of the Generalized Neural Logit-Model is a linear combination of 

the utility functions of each alternative: 

 

(3.01) 
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 with 

 

 ijγ : Coefficient of the linear combination of the alternatives i and j 

 

Alternatives within a subset LK
pA  of the complete choice set AI are correlated. The 

correlation structure among alternatives is modeled by means of a hierarchy of 

utility functions. This approach shows some similarities to the nested logit-model. 

Due to the linear dependence between utility functions of different levels a two-

stage hierarchy is sufficient. The choice probabilities are computed in the same 

way as in the logit-model with (3.01) being the utility function: 

 

(3.02) 

 

The Generalized Neural Logit-Model belongs to the class of General Extreme 

Value-Models, so that utility maximizing behavior is modeled. The derivation of the 

model is identical to the logit-model with (3.01) being the utility function (Train 

2003, p. 97f): 

 

The function G is defined as: 

 

(3.03) 
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(3.06) 

 

(3.06) equals (3.02). 

 

The definition of the subsets LK
pA  depends on the correlations among the 

alternatives to be modeled. Four cases are distinguished: 

 

• No correlations (logit-model) 

• Correlations among all alternatives in the choice set 

• Correlations among alternatives in disjoint clusters 

• Limited correlations among all alternatives in the choice set 

 

 No correlations (logit-model) 
 

Each subset LK
pA  equals exact one alternative and all coefficients ijγ  are set to a 

value of one. The IIA-property holds for arbitrary combinations of alternatives. 

 

 Correlations among all alternatives in the choice set 
 

There is only one subset LK
pA , which equals the complete choice set. The 

coefficients can take any values. The IIA-property does not hold for any 

combination of alternatives. 

 

 Correlations among alternatives in disjoint clusters 
 

In this case alternatives are grouped in disjoint clusters LK
pA  similar to the nested 

logit approach to model arbitrary correlations among alternatives in each subset. 

The IIA-property does only hold on the cluster level. The aforementioned concept 

of alternative groups can be applied. Clusters of the same group have an identical 
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matrix of coefficients of linear combination instead of an identical covariance 

matrix: 

 

 

(3.07) 

 

 with 

 

 g
ijγ : Coefficient of linear combination of the alternatives i and j of a cluster of 

group g 

 

 Limited correlations among all alternatives in the choice set 
 

In this case all alternatives may be correlated, so that the IIA-property does not 

hold for any pair of alternatives, but the coefficients of linear combination underlie a 

systematic structure, which enables model estimation on a subset of the complete 

choice set. It is possible to identify structural groups of alternatives and clusters 

according to the logit- and nested logit-model. Their definition is problem-

dependent. In this study correlations among alternatives of the same cluster and 

between alternatives of different cluster groups are considered. Therefore this 

approach is a medium between case two and case three. The alternative subsets 
LK
pA  are composed of the cluster of the considered alternative and all clusters of 

different groups. 

 

A group-dependent coefficient of linear combination gkl
imγ  is assigned to every 

alternative i of the cluster k and alternative m of the cluster l. This coefficient is 

identical for two pairs of alternatives (a, b) and (c, d), if (a, c) and (b, d) belong to 

different clusters of the same group. 
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The number of coefficients gkl
imγ  equals the square of the number of alternatives on 

the lowest level of the cluster structure. Because of the identity of certain 

coefficients every cluster of group g has an identical matrix of structural coefficients 

of linear combination: 

 

 

(3.08) 

 

 with 

 

 gG
imο : Coefficient of linear combination of alternative i of a cluster of group g 

and alternative m of a cluster of group G 

 

The assignment of elements of matrix (3.08) to the coefficients gkl
imγ  results from the 

cluster groups: 

 

(3.09) 

 

The coefficients gG
imο  and gkl

imγ  receive the value zero in the case of an assignment 

of two different clusters to the same group, as this type of correlations among 

alternatives is not considered in this study. This fact is pointed out above in the 

definition of the subsets LK
pA . 

 

Matrix (3.07) is a special case of (3.08). 

 

In the cases one, two and three formula (3.01) contains only non-equivalent 

alternatives. Two alternatives are equivalent, if they are on the same position in the 

cluster structure and their clusters belong to the same group. They have the same 

index m in (3.09). 
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In case four the above mentioned does not necessarily have to hold. By a 

normalization of the coefficients the value of (3.01) is according to the other three 

cases only dependent on the quality of non-equivalent linear combined alternatives 

and independent from the number of equivalent alternatives. For this purpose the 

coefficients gG
imο  and gkl

imγ  have to be divided by the number of equivalent 

alternatives in (3.01) for model estimation and model application: 

 

(3.10) 

 

 with 

 
G
mN : Number of equivalent alternatives m of different cluster of the same group 

G in (3.01) 

 

Model estimation on a subset of the total choice set by means of the IIA-property 

equal to the logit- and nested logit-model is not possible, as the IIA-property does 

hold neither on cluster- nor on alternative-level. However, identical coefficients 

being independent from the number of summands in (3.01) are assigned to certain 

alternatives as a result of the grouping of clusters and the normalization of 

coefficients. According to a random sample model estimation is possible in the 

case of every cluster group being represented at least with one member. 

 

3.2 The Generalized Neural Logit-Model as Artificial Neural Network 
 

The Generalized Neural Logit-Model represented as artificial neural network is 

composed of different modules, which have to be configured and put together 

problem-specific: 

 

• Utility functions 

• Linear combinations 
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x tanh(x) x

i,1x

i,kx

i,Kx
iV

 

• Logit-function 

 

 Utility function 
 

For the problem considered a three-layer multilayer perceptron is sufficient for 

universal function approximation (Hornik et al. 1989, pp. 359ff.; Fausett 1994, p. 

329). 

 

The activation function of the input and output neurons constitutes the identical 

function. Hidden neurons have a tangens hyperbolicus function as activation 

function. The linear part of the utility function is described by means of the direct 

connections from the input to the output neurons marked in blue. This represents a 

linear perceptron in itself. The nonlinear part of the utility function is modeled by 

means of the connections between the neurons marked in black. The input 

neurons correspond to alternative attributes and the output neurons match the 

utility of an alternative. Figure 3.01 displays a nonlinear utility function as artificial 

neural network in an abstract way. The box in the upper part of the figure shows 

the type of activation function for the appropriate layer of the artificial neural 

network. 

 

 

 

 

 

 
Figure 3.01: Nonlinear Utility Function as Multilayer Perceptron 

 

 Linear Combinations 
 

Linear combinations are modeled by means of a two-layer linear perceptron. The 

input and output neurons posses the identical function as activation function. The 
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input neurons correspond to utility values of an alternative and the output neurons 

match the alternative-specific linear combinations of those utility values. The 

connection weights correspond to the coefficients of linear combination. 

Connections marked in red are constrained to a value of one. 

 

Figure 3.02 displays the aforementioned four cases of correlation among the 

alternatives of the choice set as artificial neural network. A possible grouping 

structure of clusters is indicated by an appropriate highlighting of the connections 

in black and blue. As only one cluster per group is displayed this structure is easily 

identifiable. Therefore an additional indexing of the utility functions relating to the 

clusters is omitted for reasons of clearness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.02: Linear Combinations as Artificial Neural Network 
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ex 1/x x

LK
1V
LK
2V
LK
iV
LK
IV

1P

2P

iP

IP

 

 Logit-Function 
 

The logit-function is modeled by means of a three-layer multilayer perceptron. The 

activation function is f(x)=ex for the input neurons and f(x)=1/x for the hidden 

neurons. The output neurons posses the identical function as activation function 

with (3.11) being the net input function. Instead of the usual summation the inputs 

into a neuron are multiplied. 

 

(3.11) 

 

 with 

 

 wij: Connection weight between a neuron of layer i and a neuron of layer j 

 oi: Output of a neuron of layer i 

 

This type of neuron is called “combiner neuron” (NeuroDimension 2005, pp. 276f.). 

The input neurons represent the linear combinations of the utility values and the 

output neurons the choice probabilities of the alternatives in the choice set. Figure 

3.03 shows the logit-function represented as artificial neural network. Connections 

marked in red are constrained to a value of one. 

 

 

 

 

 

 

 

 

 
Figure 3.03: Logit-Function as Artificial Neural Network 
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 Generalized Neural Logit-Model 
 

Figures 3.04 to 3.07 display the Generalized Neural Logit-Model for all four 

aforementioned cases. For reasons of a concise implementation alternatives and 

clusters are grouped although this is not necessary for the cases one and two. The 

number of utility functions and output neurons equals the number of alternatives on 

the lowest level of the cluster structure. Identical utility functions relating to the 

connection structure and weights can be achieved by weight sharing (Bishop 2003, 

p. 349; LeCun et al. 1989, pp. 542ff.; Rumelhart et al. 1986, p. 349) in the case of 

all alternatives being evaluated by means of the same utility function. If endogenity 

of exogenous factors due to unobserved alternative attributes is present (Bhat 

2003, pp. 16f.), a dependence of the utility function on the considered alternative is 

possible as alternative attributes are evaluated differently dependent on the 

relevant alternative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gelhausen 19

x tanh(x) x ex 1/x x

1
1P

1
2P

1
IP

G
1P

G
2P

G
IP

1
1,1x

1
1,kx

1
1,Kx

1
2,1x

1
2,kx

1
2,Kx

1
I,1x

1
I,kx

1
I,Kx

G
I,1x

G
I,kx

G
I,Kx

G
2,1x

G
2,kx

G
2,Kx

G
1,1x

G
1,kx

G
1,Kx

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.04: Generalized Neural Logit-Model for Case 1 
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Figure 3.05: Generalized Neural Logit-Model for Case 2 
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Figure 3.06: Generalized Neural Logit-Model for Case 3 
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Figure 3.07: Generalized Neural Logit-Model for Case 4 
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4. Case Study: Airport and Access Mode Choice in Germany 
 

4.1 Introduction 
 

The Generalized Neural Logit-Model is applied to the case study of airport and 

access mode choice of air travelers in Germany. A nested logit approach with a 

linear utility function serves as a benchmark to evaluate the new model empirically 

in terms of model fit. The available database, airport categories, model definition 

and model estimation of the nested logit-model is discussed in great detail in 

Gelhausen and Wilken (2006, pp. 10ff.). Only some fundamental facts are 

introduced briefly below. A full discussion of these issues would be beyond the 

scope of this paper. Purpose of this chapter is to discuss both approaches 

concerning model quality and to present some conclusions relating to air traveler’s 

choice behavior in airport and access mode choice. 

 

Table 4.01 shows the full alternative set of the database (Gelhausen and Wilken 

2006, p. 11). Only the access mode “car” includes parking at the airport for the 

duration of the journey. For “kiss and ride” the number of trips is doubled compared 

to all other access modes as the car is parked at the trip origin. The “taxi” 

alternative includes taxis and private bus services operating on demand only. The 

access mode “bus” contains scheduled public-transit buses. “urban railway” and 

“train” are distinguished in terms of the tariff paid. If the tariff of the Deutsche Bahn 

applies, it is a train; otherwise it is an urban railway (Gelhausen and Wilken 2006, 

p. 11). 
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 Car Kiss and Ride Rental Car Taxi Bus Urban Railway Train 

Berlin x x x x x x  
Bremen x x x x  x  
Dortmund x x x x x   
Dresden x x x x x x  
Düsseldorf x x x x x x x 
Erfurt x x x x x   
Frankfurt a. M. x x x x x x x 
Frankfurt Hahn x x x x x   
Friedrichshafen x x x x x x  
Hamburg x x x x x   
Hannover x x x x x x  
Karlsruhe-Baden x x x x x   
Köln/Bonn x x x x x   
Leipzig/Halle x x x x x  x 
Lübeck x x x x x   
München x x x x x x  
Münster/Osnabrück x x x x x   
Niederrhein x x x x x   
Nürnberg x x x x x x  
Paderborn/Lippstadt x x x x x   
Saarbrücken x x x x x   
Stuttgart x x x x x x  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.01: Airports and Available Access Modes 

 

According to the length and purpose of a journey different market segments are 

defined (Gelhausen and Wilken 2006, pp. 10f.): 

 

• Journeys to domestic destinations, subdivided into private (BRD P) and 

business (BRD B) trip purpose 

• Journeys to European destinations for business trip purpose (EUR B) 

• Journeys to European destinations for private short stay reasons up to 

four days (EUR S) 

• Journeys to European destinations for holiday reasons for five days or 

longer (EUR H) 

• Journeys to intercontinental destinations, subdivided into private (INT P) 

and business (INT B) trip purpose 
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Variable (Abbreviation) Definition

Access Cost (COST) Cost in € per Person incl. Parking Fees, Double Trip 
Length 

Access Time (TIME) Time in Minutes, Double Trip Length 
Waiting Time (WAIT) Inverse of the Daily Frequency 
Inverse of the Population Density (INVPD) Inverse of Residents per km2 
Inverse of the Competition on a Direct Flight 
Connection(COMP) 

Inverse of the Number of Alliances and Independent 
Airlines 

Quality of Terminal Access (AAS) binary (good/bad) 
Existence of a Direct Flight Connection (DIRECT) binary (good/bad) 
Frequency of a Direct Flight Connection (DFREQ) Number Flights per week 
Existence of a Low-Cost Connection (LC) binary (yes/no) 
Frequency of a Low-Cost Connection(LCFREQ) Number Low-Cost Flights per week 
Existence of a Charter Flight Connection (CC) binary (yes/no) 
Frequency of a Charter Flight Connection (CCFREQ) Number Charter Flights per week 

 

Attributes (Abbreviation) Definition

Number of Domestic Low-Cost Flights (LCBRD) Flights per Week 
Number of Domestic Charter Flights (CCBRD) Flights per Week 
Number of Domestic Full Service Flights (FSBRD) Flights per Week 
Number of European Low-Cost Flights (LCEUR) Flights per Week 
Number of European Charter Flights (CCEUR) Flights per Week 
Number of European Full Service Flights (FSEUR) Flights per Week 
Number of Intercontinental Low-Cost Flights (LCINT) Flights per Week 
Number of Intercontinental Charter Flights (CCINT) Flights per Week 
Number of Intercontinental Full Service Flights (FSINT) Flights per Week 
Number of Domestic Destinations(NUMBRD) Number of Destinations 
Number of European Destinations (NUMEUR) Number of Destinations 
Number of Intercontinental Destinations (NUMINT) Number of Destinations 

 

Table 4.02 displays the chosen alternative attributes and their definitions 

(Gelhausen and Wilken 2006, p. 12). 

 

 

 

 

 

 

 

 

 

 
Table 4.02: Definition of Alternative Attributes 

 

Airports are categorized from a demand-oriented point of view by means of a 

clustering technique based on artificial neural networks called “Kohonen’s Self-

Organizing Maps” (see i.e. Kohonen 2001, pp. 109ff.) to form groups of clusters 

composed of one airport category and all access modes (Gelhausen and Wilken 

2006, pp. 14ff.). Table 4.03 shows the relevant attributes for distinguishing airport 

categories (Gelhausen and Wilken 2006, p. 12). 

 

 

 

 

 

 

 

 

 

 
Table 4.03: Attributes for Airport Categorization 



Gelhausen 26

x1 

x2 

xi 

xK 

C1

C2

Ci

CI

x 

Attribute x2 

Cluster C1 

Cluster C2 

Cluster C3 

Attribute x1 

( ) ( )
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k
kkj minxwjD →−= ∑

Parameter Value 
Topology of output neurons Linear 
Measure of distance Euclidean 
Neighborhood function linear: 2 - 0.002*Iteration 
Learning rate 0.01 
Number of iterations 10 000 
Data normalization yes, [-1; 1] 
Number of input neurons 12 
Number of output neurons 3 

 

 

 

 

 

 

 

 

 

 
Figure 4.01: Self-Organizing Map 

 

Figure 4.01 is a schematic illustration of a Self-Organizing Map. The neurons are 

simple computational units connected by weighted edges. Computations in a 

neuron are performed according to a simple transfer function. Input neurons 

correspond to clustering attributes and output neurons represent the clusters. The 

transfer function of the input neurons is the identical function f(x) = x. The output 

neurons have a “winner-takes-all” transfer function. The neuron with the smallest 

distance between the input vector and its synaptic weight vector wins the 

competition and is activated. During learning of the self-organizing map the 

synaptic weight vector of the output neurons approach the corresponding cluster 

centroid as the right part of figure 4.01 illustrates. 

 

Table 4.04 shows the parameters for optimal cluster identification. The self-

organizing map was not highly sensitive with regard to parameter variations. 

 

 

 

 

 

 
Table 4.04: Parameters of a Self-Organizing Map for Airport Categorization 
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    Airport   
Attributes Category 1 Category 2 Category 3 
LCBRD 0.054281 0.026181 -0.973566 
CCBRD 0.63343 -0.23698 -0.902359 
FSBRD 0.820399 -0.16164 -0.810737 
LCEUR -0.814996 -0.248973 -0.717447 
CCEUR 0.673964 0.145995 -0.811895 
FSEUR 0.767974 -0.596754 -0.967617 
LCINT -0.999997 -0.507511 -0.862715 
CCINT 0.459986 -0.679604 -0.986041 
FSINT 0.128171 -0.975403 -0.999997 
NUMBRD 0.810002 0.570222 -0.409338 
NUMEUR 0.791409 -0.012681 -0.737397 
NUMINT 0.314031 -0.817745 -0.991489 

 

Three airport categories have been identified. The output neurons are arranged in 

a linear grid and distances between input vectors and output neurons are 

measured Euclidean. A linear neighborhood function is used and the neighborhood 

contains all output neurons at the beginning of the learning process. It shrinks to 0 

within 1 000 iterations. The number of learning iterations is 10 000 and the learning 

rate is chosen rather small with 0.01. Each element of the input vector is 

normalized to the interval [-1; 1]. 

 

Table 4.05 shows the synaptic weights for the trained self-organizing map. The 

color of the columns equals the color of the synaptic weights in figure 5.2. 

 

 

 

 

 

 

 

 

 
Table 4.05: Cluster Centroids of Airport Categories 

 

Table 4.06 displays the airports of the German Air Traveler Survey (Berster et al. 

2005), which was used as a database for model estimation, and the appropriate 

category for each of those airports. 
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 LCBRD CCBRD FSBRD LCEUR CCEUR FSEUR LCINT CCINT FSINT NUMBRD NUMEUR NUMINT 

AP 1 3.18 0.43 20.39 0.87 5.83 55.81 0.00 1.24 12.25 8.31 60.27 31.42 
AP 2 8.97 0.58 28.27 11.65 11.76 37.24 0.02 0.71 0.79 16.23 74.62 9.16 
AP 3 1.29 0.86 39.22 32.57 15.57 10.05 0.02 0.42 0.00 19.94 78.90 1.16 

 

 LCBRD CCBRD FSBRD LCEUR CCEUR FSEUR LCINT CCINT FSINT NUMBRD NUMEUR NUMINT 

AP 1 106 16 756 32 225 2138 0 49 517 19 144 83 
AP 2 104 7 348 129 153 487 0 11 11 17 80 12 
AP 3 3 1 80 47 25 39 0 0 0 6 22 1 

 

Category Airport (IATA-Code)
AP 1 Frankfurt a. M. (FRA) 
AP 1 München (MUC) 
AP 2 Düsseldorf (DUS) 
AP 2 Hamburg (HAM) 
AP 2 Köln/Bonn (CGN) 
AP 2 Stuttgart (STR) 
AP 3 Bremen (BRE) 
AP 3 Dortmund (DTM) 
AP 3 Dresden (DRS) 
AP 3 Erfurt (ERF) 
AP 3 Frankfurt Hahn (HHN) 
AP 3 Friedrichshafen (FDH) 
AP 3 Hannover (HAJ) 
AP 3 Karlsruhe/Baden (FKB) 
AP 3 Leipzig/Halle (LEJ) 
AP 3 Lübeck (LBC) 
AP 3 Münster/Osnabrück (FMO) 
AP 3 Niederrhein (NRN) 
AP 3 Nürnberg (NUE) 
AP 3 Paderborn/Lippstadt (PAD) 
AP 3 Saarbrücken (SCN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.06: Assignment of Airports to Categories 

 

Tables 4.07 and 4.08 show the properties of the identified three airport categories 

both in percentages and in absolute values (Gelhausen and Wilken 2006, p. 17). 

 

 
Table 4.07: Properties of Airport Categories (in %) 

 

 
Table 4.08: Properties of Airport Categories (absolute) 
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Alternative Abbreviation 

AP 1/Car AP1CAR 
AP 1/Kiss and Ride AP1KAR 
AP 1/Rental Car AP1RC 
AP 1/Taxi AP1TAXI 
AP 1/Bus AP1BUS 
AP 1/Urban Railway AP1UR 
AP 1/Train AP1TR 
AP 2/Car AP2CAR 
AP 2/Kiss and Ride AP2KAR 

AP 2/Rental Car AP2RC 
AP 2/Taxi AP2TAXI 
AP 2/Bus AP2BUS 
AP 2/Urban Railway AP2UR 
AP 2/Train AP2TR 
AP 3/Car AP3CAR 
AP 3/Kiss and Ride AP3KAR 
AP 3/Rental Car AP3RC 
AP 3/Taxi AP3TAXI 
AP 3/Bus AP3BUS 
AP 3/Urban Railway AP3UR 
AP 3/Train AP3TR 

 

Figure 4.02 illustrates the nesting structure of each cluster group composed of one 

airport category and all access modes (Gelhausen and Wilken 2006, p. 20). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.02: Nesting Structure 

 

For model estimation the data set is partitioned into several disjoint data subsets. 

Each data subset contains only a subset of the full set of airport-access mode 

alternatives, namely one airport of each category and its access modes. Each data 

subset includes observations of individuals, who have chosen one of the 

alternatives of the reduced alternative set. By a suitable definition of data subsets, 

it is possible to estimate a model with the full set of seven access modes for all 

three airport categories. For this purpose, the inclusion of the airports Frankfurt a. 

M., Düsseldorf and Leipzig/Halle is necessary, as these are the only airports of 

their category with an airport access via train in 2003. The individual data subsets 

are merged into a single new estimation data set. The number of alternatives is 

reduced from 122 to 21. By weighting each observation the estimation data set is 

statistically representative. Figure 4.03 shows the definition of the data subsets. 

The nearest airport of each category is assigned to each data set marked in 

different colors. Every subset is named according to its airport of the third category 

(Gelhausen and Wilken 2006, p. 18). 

APi 

PRi PUi 

APiCAR APiKAR APiRC APiTAXI APiBUS APiUR APiTR

i=1, 2, 3 … …
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Data Subset Airport (IATA-Code)
BRE FRA, HAM, BRE
DTM FRA, DUS, DTM
FDH MUC, STR, FDH
FKB FRA, STR, FKB
HHN FRA, DUS, HHN
LBC FRA, HAM, LBC
LEJ FRA, HAM, LEJ
NUE MUC, STR, NUE
PAD FRA, DUS, PAD

Grouping of Alternatives 

Definition of Data Subsets and 
a Reduced Set of Alternatives 

Merging of Data Subsets into a 
new Estimation Data Set 

Estimation of Group-Specific 
Model Parameters 

Selection of Airports and 
Access Modes 

Assignment of Airports and 
Access Modes to Groups 

Model Application 

Model Estimation Model Application 

Specific Application Case 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.03: Data Subsets and Assignment of Airports 

 

After selecting the airports and access modes for the specific application case, 

they are assigned to categories with the appropriate model parameters. Model 

application is possible to any number of airports and arbitrary airport/access mode 

combinations as a result of the clusters groups. Figure 4.04 summarizes the 

general process of model estimation and its application (Gelhausen and Wilken 

2006, pp. 18f.). 

 

 

 

 

 

 

 

 

 

 
Figure 4.04: Estimation and Application of Airport and Access Mode Choice Model 
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∑+=
k

i,kkii x*baltV

Variable BRD P BRD B EUR S EUR H EUR B INT P INT B 

COST -0.0263035 -0.0204609 -0.0199987 -0.0173617 -0.0216885 -0.0138527 -0.00936472 
TIME -0.0081889 -0.0152572 -0.0061063 -0.00857067 -0.00795957 -0.00541014 -0.00535887 
WAIT -28.8061 -18.935 -8.33078 -4.40982 -9.94709 -18.7546 -35.7591 
INVPD -187.86 -21.8829 -215.876 -235.641 x -25.6109 -32.2589 
COMP -0.158635 x -1.22176 -1.13258 -0.182127 x x 
AAS 0.920627 1.12781 0.20336 0.46823 0.504623 0.840462 0.382595 
DIRECT 2.29637 3.64119 3.63327 3.31697 1.43564 1.85847 0.439344 
DFREQ 0.00682913 0.00601159 0.0104684 0.0153856 0.0177437 x x 
LC x x 0.0863075 0.563633 0.275153 x x 

LCFREQ x x 0.0631856 x 0.0761092 x x 

PR1 1.07092 1.02375 0.764486 0.61189 0.808397 1.13266 1.03073 
PU1 0.745385 0.978059 0.593257 0.3847 0.386155 0.983045 0.32899 
PR2 0.492518 1.00829 0.767123 0.570138 0.783306 1.06067 1.3532 
PU2 0.390636 0.992109 0.543582 0.437515 0.708662 0.927296 0.832438 
PR3 0.817955 1.00988 0.821821 0.610065 0.937914 0.813943 0.91783 
PU3 0.428619 0.999286 0.395656 0.551239 0.805435 0.137029 0.718249 
AP1 1.81029 1.01119 1.80601 1.65075 1.61072 1.10489 2.10553 
AP2 2.10174 1.00887 1.76862 1.92646 1.67197 1.19742 1.16102 

AP3 2.35248 1.01164 1.74828 1.99236 1.77295 1.23031 1.73837 

pseudo-R2(null) in % 57.41 54.10 52.40 52.29 48.58 48.89 47.46 
pseudo-R2(const) in % 43.82 40.47 41.94 38.22 35.96 32.86 28.30 
LR (MNL) 82414 8740 43774 349740 311756 599974 131576 
α=0.5% 25.19 23.59 23.59 23.59 23.59 23.59 23.59 

 

The deterministic part of the utility function of the nested logit-model is of linear 

form (Gelhausen and Wilken 2006, p. 19): 

 

(4.01) 

 

with 

 

 alti: Alternative-specific constant of alternative i 

 bk: Coefficient of attribute k 

 xk, i: Value of attribute k for alternative i 

 

Table 4.09 displays the estimated coefficients of the alternative attributes, scale 

parameters, goodness-of-fit measures and the likelihood-ratio test statistics for all 

seven market segments (Gelhausen and Wilken 2006, p. 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.09: Overview Estimation Results per Market Segment 

 

Scale parameters are normalized to a value of one on the lowest level of the 

nesting structure. For the alternative-specific constants, p- and t-values and the 
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standard deviation of the estimated coefficients see Gelhausen and Wilken 

(Gelhausen and Wilken 2006, pp. 21ff.). 

 

4.2 Generalized Neural Logit-Model 
 

For model estimation, the same data set and cluster group structure is used as for 

the nested logit-model. The subdivision of access modes into private and public 

modes of travel is omitted as a two-stage hierarchy is sufficient. Case four is 

chosen in terms of correlation among alternatives as this approach is more flexible 

than a nested logit-model yet it enables the development of a model, which is 

applicable to alternatives outside the estimation data set. The selection of 

explanatory variables is based on the nested logit-model because of the possibility 

of statistical significance tests and simple plausibility checks. To consider 

endogenity of exogenous factors no weight sharing is applied. Figure 4.05 

exemplifies the structure of the Generalized Neural Logit-Model for the case of 

private journeys to domestic destinations (BRD P). 
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Figure 4.05: Structure of the Generalized Neural Logit-Model for the Market Segment BRD P 
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The method of network structure specification follows the idea of Miller, Todd and 

Hedge (Miller et al. 1989). The estimation data set is split up into a training set and 

a cross-validation set with a share of 85% and 15% respectively. Different network 

topologies, which are generated by a genetic search, are trained on the training set 

and evaluated on the cross-validation set in terms of their ability to generalize. The 

best network topology in terms of a minimal cross-validation error the network is 

trained on the entire estimation data set without an early stopping of training, so 

that a maximum of information is available for the final estimation of the connection 

weights. This ensures a maximum of statistical efficiency while the ability of an 

artificial neural network to generalize does not decline in the case of an appropriate 

network structure (Anders 1997, pp. 116ff.). The method of least squares is 

employed for the estimation of connection weights with conjugate gradients being 

the numerical optimization method. Input variables are scaled on the interval [-1; 

1]. Table 4.10 summarizes the training parameters. Because of computational 

costs the population size is chosen small, but an optimal network topology is found 

within ten generations. 

 

Estimation Method Least Squares 
Optimization Method Conjugate Gradients 
Scaling yes, [-1; 1] 

Genetic Search  
Share of Cross-Validation 15% 
Population Size 10 
Selection Rule Roulette 
Cross-over Multi-Point 
P(Cross-over) 0.9 
P(Mutation) 0.01 
Coding Direct Encoding 

  
Table 4.10: Training Parameters 

 

Model quality is measured in terms of model fit and assessed by means of the 

pseudo-R2. Benchmark is a model without any variables (R2null) and a market 

share model (R2const). Table 4.11 illustrates the pseudo-R2 by market segment for 

the Generalized Neural Logit-Model (GNL) and the nested logit approach (NL). 
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 R2(null) in %   R2(const) in %  
Market Segment NL GNL Diff. to NL NL GNL Diff. to NL 
BRD P 57.41 61.35 3.94 43.82 49.74 5.92 
BRD B 54.10 58.13 4.03 40.47 47.16 6.69 
EUR S 52.40 58.09 5.69 41.94 49.99 8.05 
EUR H 52.29 56.51 4.22 38.22 45.10 6.88 
EUR B 48.58 51.96 3.38 35.96 41.79 5.83 
INT P 48.89 55.10 6.21 32.86 42.01 9.15 
INT B 47.46 56.01 8.55 28.30 41.26 12.96 

 

 

 

 

 

 

 

 
Table 4.11: Comparison of Model Fit 

 

The Generalized Neural Logit-Model shows especially for the market segments of 

intercontinental journeys for both private and business purpose a clear increase in 

model fit compared to the nested logit approach. For example, the increase of 

R2(const) is about 45% for the market segment INT B compared to the nested 

logit-model. The pseudo-R2 is more evenly distributed over the market segments 

and lies between 41% and 49% in the case of R2(const). This corresponds to an 

R2 of linear regression of 82% and 92% (Domencich et al. 1975, p. 124). Table 

4.12 contrasts relative alternative frequencies and computed choice probabilities 

for the market segment EUR S. 
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Alternative Relative NL-Model  GNL-Model  
 Frequency  abs. Diff.  abs. Diff. 

AP1CAR 4.7068 5.4012 0.69 5.2468 0.54 
AP1KR 9.1049 10.0309 0.93 9.4534 0.35 
AP1RC 0.1929 0.1543 0.04 0.2043 0.01 
AP1TAXI 2.7006 2.7392 0.04 2.7109 0.01 
AP1BUS 0.5401 0.5015 0.04 0.4558 0.08 
AP1UR 5.5170 6.4429 0.93 6.2622 0.75 
AP1TR 1.3503 1.7747 0.42 2.3327 0.98 
AP2CAR 9.9537 9.3364 0.62 9.9918 0.04 
AP2KR 16.4738 14.1975 2.28 15.1639 1.31 
AP2RC 0.3472 0.1929 0.15 0.2491 0.10 
AP2TAXI 6.5201 6.5972 0.08 6.6302 0.11 
AP2BUS 2.1219 2.6620 0.54 2.3235 0.20 
AP2UR 4.2438 5.3627 1.12 4.2061 0.04 
AP2TR 4.4753 3.7809 0.69 3.8147 0.66 
AP3CAR 16.3580 16.2423 0.12 17.5289 1.17 
AP3KR 11.0725 9.7994 1.27 9.6736 1.40 
AP3RC 0.1157 0.0772 0.04 0.1048 0.01 
AP3TAXI 2.4306 2.7392 0.31 2.1798 0.25 
AP3BUS 1.2731 1.3889 0.12 0.9809 0.29 
AP3UR 0.4244 0.5401 0.12 0.4718 0.05 

AP3TR 0.0772 0.0386 0.04 0.0149 0.06 

E(abs. Diff.))   0.50  0.40 
σ(abs. Diff.)   0.55  0.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.12: Relative Alternative Frequencies and Computed Choice Probabilities for EUR S 

 

Airport and access mode choice behavior of air travelers is governed by a complex 

nonlinear utility function and correlations among alternatives beyond the 

capabilities of a nested logit approach with a linear utility function as the clear 

increase in model fit demonstrates. Figures 4.06 and 4.07 illustrate the 

dependencies between two selected alternative attributes and the choice 

probability of a specific alternative. There is a clear nonlinear relationship between 

access time, access cost and the choice probability in domestic air travel for 

business purpose. These travelers are very access time-sensitive. This relationship 

is of more linear form with a greater importance of access cost in the market 

segment of intercontinental air travel for private reasons. 
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TIME (AP1CAR) COST (AP1CAR) 

INT P 

BRD B

COST (AP2CAR) TIME (AP2CAR)

 

Figure 4.06: Analysis of the Utility Function for BRD B 

 

Figure 4.07: Analysis of the Utility Function for INT P 
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5. Summary and Conclusions 
 

This paper presents a novel approach in discrete choice modeling called 

“Generalized Neural Logit-Model”. This approach is based upon the General 

Extreme Value-framework and is implemented as artificial neural network. Its main 

advantages lie in a nonparametric nonlinear utility function and the capability to 

model arbitrary correlations among alternatives in the choice set. 

 

The first part of this paper deals with the concept of alternatives and cluster 

groups. It enables the development of discrete choice models applicable to 

alternatives outside the estimation data set. 

 

The next chapter introduces the Generalized Neural Logit-Model. The first part is 

about the theoretical framework followed by an implementation as artificial neural 

network. 

 

The Generalized Neural Logit-Model is evaluated empirically by means of a case 

study. The case of airport and access mode choice in Germany is chosen and a 

nested logit approach based on the concept of cluster groups serves as a 

benchmark. To form cluster groups airports are categorized from a demand-

oriented point of view by means of a clustering technique based on artificial neural 

networks called “Kohonen’s Self-Organizing Maps”. 

 

The Generalized Neural Logit-Model is superior to the nested logit approach in 

terms of model fit as the considered problem is governed by a complex nonlinear 

utility function and correlations among alternatives beyond the capabilities of a 

nested logit approach with a linear utility function. The pseudo-R2 based on a 

market share model as a benchmark lies within the range of 41% to 49% and is up 

to 45% above the nested logit approach depending on the market segment. This 

corresponds to an R2 of linear regression of 82% to 92%, so that a model of very 

good quality can be obtained for all market segments. 
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