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ABSTRACT 
 
In this paper we introduce a simulation method for modelling clear-air atmospheric turbulence effects for long 
horizontal stratospheric paths. Divergence angles of several hundred microradians in combination with link distances up 
to 800 km require to adapt the appropriate resolution of the transverse optical field along the path. For this purpose, we 
implemented a propagation method in Cartesian coordinates. We choose two reference scenarios for high-altitude 
platform crosslinks and discuss the influence of simulation parameters to the derived results. Finally a method for 
computation of temporal IM/DD-time signals form simulated intensity matrices is presented. 
 
Keywords: numerical simulation, index of refraction effects, High Altitude Platform, long stratospheric paths, phase 

screen method  
 

1. INTRODUCTION 
 
Many questions concerning the propagation of Laser light in the turbulent atmosphere cannot be answered analytically. 
In order to design appropriate communication systems a certain number of important parameters at the receiver, (e.g., 
scintillation index, intensity correlation length, angle of arrival) can be derived from computer simulation results. A 
simulation helps identifying the important factors of an experiment before actual measurements are made. In particular, 
several technical problems remain for the channel measurements of long stratospheric paths which are planned to 
sustain broadband optical links between future High Altitude Platform (HAP) telecommunication systems. Such HAP 
systems can provide broadband services to the customer by combining advantages of terrestrial and satellite systems. 
Optical inter-platform links will be used to build up a stratospheric back haul network independent from terrestrial 
ground network. 
 
Our simulation methodology, as outlined in section 2, is based on the well known split-step approach to numerically 
solving the parabolic wave equation. We explain how occasional resampling of the field makes this approach feasible 
for long-range propagation scenarios. Even though the complex optical field at the receiver can be obtained from 
simulation, here we confine our evaluations to the resulting intensity matrix. Phase information is not considered 
because we are focusing on intensity modulated systems with direct detection at a wavelength λ of 1064 nm. The 
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parameters used to model stratospheric turbulence are given in section 3. Numerical considerations are discussed in 
section 4. The required number of random phase modulators (phase screens), by use of which turbulence effects are 
modelled, is part of those considerations.  Due to the curvature of the earth, the height profile of optical links between 
two HAPs is parabolically shaped. This leads to minimal path heights in the middle of the path, when the two HAPs are 
at the same altitude. In order to guarantee an availability of 100 percent for the stratospheric optical crosslinks, the 
minimal link height of the path must be above the cloud layer. For midlatitude locations the cloud boundary is at an 
altitude of 13 km [1]. With this constraint given, an optical communication crosslink between two HAPs at 25 km 
altitude for example, can reach a distance of 784 km. 
In this paper we consider two different scenarios, each involving two HAPs (the transmitter and the receiver) positioned 
at an altitude of 20 km (Fig. 1). The first scenario, featuring a propagation distance of 300 km, is designed to qualify for 
so called "weak fluctuation" conditions by using a "best case"-turbulence profile defined in section 3. The second 
scenario (propagation distance 600 km) is an instance of "strong fluctuation" conditions which is simulated with "worst-
case" turbulence conditions. The height profile of these two scenarios could be seen in (Fig. 2). The minimal path 
heights are 18.2 km for Scenario 1, and 13 km for Scenario 2.  
 
The divergence angle is one of the most important parameters in the design of optical free space communications 
systems. For typical transmitter aperture sizes of 10 to 20 cm, a diffraction limited divergence angle in the range of 5 to 
10 µrad would result in the highest attainable antenna gain. This would impose  high requirements on the pointing and 
tracking (PAT) system. For inter-platform links, the selection of an appropriate divergence angle depends mainly on the 
platform base motion disturbance and vibration spectrum, which is mostly influenced by station keeping propellers. A 
beam divergence of several hundred µrad is suitable for optical inter platform links [1]. Here we have chosen a 
collimated Gaussian beam with a full 1/e2 intensity-divergence angle of 500 µrad. Note that, with such a high divergence 
angle and such long propagation paths, the Gaussian beam wave is close to a spherical wave in terms of scintillation. 
Increasing its divergence leads to little difference in the scintillation. 
 

 
 

 
Fig. 1: Setup of scenarios used for simulation Fig. 2: Height profiles of considered scenarios 

 
Besides the formation of intensity speckles observable in a cross-sectional plane of the beam, scintillation is also 
characterized by the wander of the beam due to turbulent cells large in comparison to the beam width. Owing to the low 
turbulence of the upper atmosphere, the latter effect is weak and therefore, the evaluation of our simulations will focus 
on the intensity redistribution due to smaller turbulent scales. 
 
The simulation method enables us to observe at the receiver only a finite extent of the optical field. In particular, we 
wish to estimate the scintillation near the beam axis. In HAP links, the pointing and tracking system will make the beam 
wander around the receiver, and therefore the off-axis scintillation has to be investigated if it is significantly higher than 



the on-axis scintillation. For highly divergent beams, e.g. with a 500-µrad full divergence angle, the difference between 
on- and off- axis scintillation indices  1/ 222 −= IIIσ   is negligible [25]. 

 
For these types of scenarios, a method to transfer the spatial statistics of the simulated intensity distribution at the 
receiver to a temporal direct-detected signal is introduced in (5). 
 
 

2. SIMULATION METHODOLOGY 
 
For the problem of "clear air" atmospheric optical propagation a number of simplifications can be applied to Maxwell's 
equations. Absence of depolarization effects allows the consideration of a scalar optical field which leads to a stochastic 
Helmholtz equation; small angle scattering allows for further simplification to the parabolic equation 
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The complex quantity u(r) denotes the slowly varying envelope of the scalar electromagnetic field; k is the wave 
number and )()()(1 rrr nnn −=  is the local deviation of the refractive index from its ensemble average. Note, that in 
(1) we also neglect time dependency of the medium. Without the second term, which models stochastic phase 
perturbations due to the atmosphere, (1) is the parabolic wave equation, one of whose solutions are Gaussian beams [2]. 
In the turbulent regime, the stochastic process n1 is governed by the well known power law 
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statistics. 
The split-step approach to numerically simulating atmospheric propagation amounts to partitioning the propagation 
distance into "reasonably sized" sub-distances ∆zi=zi−zi-1, i=1…N, z0=0 and to alternately simulate the effects of both 
terms in (1) individually for each ∆zi. "Reasonably sized" here means that ∆zi is, on the one hand, small enough so that 
the "split-step approximation” 
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of the formal solution to (1) is justified and, on the other hand, large enough so that the realizations of the stochastic 
phase perturbations (which we call phase-screens and note PS henceforth) can be generated independently for each ∆zi. 
This algorithm has been thoroughly described in the literature, details can be found in, e.g., [4][5][6][7]. Here we merely 
have space to outline how the specific problems associated with long-range beam propagation are dealt with in our 
simulation1. 
 
The complex field u(x,y,zi) is represented by a finite number of sample values as obtained by a regular sampling in X- 
and Y-dimension, that is, by a grid of sample values u(k∆x,l∆x,zi), k=1…M, l=1…M. For z0 the grid simply bears the 
sampled transmitter beam profile; the values at zi, i≥1, are subsequently obtained from the values at zi-1 as sketched 
above. If computational resources were unlimited, one would always choose a grid size large enough to cover the entire 
beam profile with a spatial sampling rate appropriate to accurately resolve all small-scale modulations of the field. In 
long-range beam propagation scenarios, however, this turns out to be infeasible for the beam diameter becomes very 
large due to diffraction. One solution which has already been proposed by Rubio et al. [8], is to sacrifice coverage of the 

                                                           
1 Our simulation is based on PILab (short for "Propagation and Imaging Lab"), a Matlab-based programming environment developed 
at DLR to support simulation of optical free-space communication scenarios [9]. 



full beam cross section in favor of maintaining a sampling interval that resolves atmospherically induced modulations of 
the field on all scales equal and below the receiver aperture diameter. The order of magnitude of an appropriate 
sampling interval must not become larger than l0, the lower bound of the inertial subrange of turbulence. We maintained 
∆x≤ l0/3 in our simulations. 
 
In order to simulate beam propagation effectively, the sampling interval gets adapted according to the diffractive beam 
spread. Like Rubio et al., we resample the field at those propagation distances zi where the next propagation step would 
render the sampling rate insufficient without resampling (see Fig 3). The grid size stays the same, so the extent of the 
field represented by the grid gets reduced in a resampling step (from some value Xi’ to Xi, cf. Fig 1). Since we use an 
FFT-based propagation algorithm entailing periodic boundary conditions, we finally multiply the resampled field with a 
super-Gaussian damping function to avoid spurious “self-interference”2 in subsequent propagation steps. Unlike Rubio 
et al., who use spherical coordinates, we carry out calculations in Cartesian coordinates and employ a coordinate 
transformation of the paraxial diffraction formula (referred to as Talanov transform in [4] and [9]) to adapt the sampling 
interval.  
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Fig. 3: Step-wise simulation with occasional resampling of the field 

 
3. TURBULENCE PARAMETERS IN THE STRATOSPHERE 

 
In order to get realistic simulation results, reliable values for the physical stratospheric conditions are required. Intensive 
and reliable measurements of the turbulence in the stratosphere are rare. For the index-of-refraction structure constant 
Cn

2, we used profiles based on several reported measurements from balloon ascents and other experiments [10]-[24]. 
From those measurement data, one can define a best- and a worst-case Cn

2 profile for stratospheric altitudes: 
  

8000/2 10)( h
n ahC −⋅=  13km < h < 25 km (3) 

 
a = 1.5×10-16 m-2/3 for the best case  With 
a = 8×10-16 m-2/3 for the worst case 

 
where h is the altitude in meters. 
 
The tropopause is assumed to remain below the altitude of 13km. The stratospheric fall-off of these boundary profiles 
does not depend on the tropopause wind speed. This dependence, which is incorporated in the Huvnagel-Valley (H-V) 
model (see for example [25]), is actually in disagreement with some reported data [26]. Also note, that the stratification 
of the turbulent upper-atmosphere as well as the possible horizontal variability of Cn

2, are not modeled by such simple 
profiles. Fig. 4 shows the Cn

2 profiles used in our simulations along with different H-V profiles characterized by the 
mean tropopause wind. 
 
                                                           
2 Other authors call the effect “aliasing”; it actually is the analog to aliasing in the spatial domain. 



The parabolic height profile (Fig. 2) leads to a maximum Cn
2 value at the middle of the path. Since Cn

2(h) features a 
constant logarithmic slope, the ratio of maximum to minimum Cn

2 value depends only on the link distance, the height of 
the transceivers having a negligible influence. This Cn

2 ratio is shown in Fig. 5 as a function of link distance. It can be 
seen that for distances up to 300 km, a constant Cn

2 may be assumed. 
In order to render one scenario in the weak fluctuation regime and the other in the strong fluctuation regime, the 300 km 
link was studied with the best case turbulence profile ("scenario 1"), while the 600 km link was studied with the worst 
case profile ("scenario 2"). 
 

 
Fig. 4: Stratospheric Cn

2 profiles. The proposed best- and 
worst- case profiles are compared to the parametric 
Huvnagel-Valley model. The tropopause wind of the H-
V plots takes on the values v = 10, 20 and 30 m/s. 

Fig. 5: Ratio of the maximum to the minimum Cn
2 as a 

function of link distance. The altitudes of the transmitter 
and receiver are 20 km, and Cn

2(h) follows equation (3). 

 
Besides the index-of-refraction structure constant, assumptions about the intertial subrange, that is, about its lower and 
upper bound l0 and L0, must also be made. The parameters l0 and L0 are also known as the inner and outer scale of 
turbulence. For the inner scale l0, no general profile of the height dependency is available for the stratosphere so far. 
From experiments in the lower stratosphere [27], a scale size in the order of several cm was reported. A constant value 
of 5 cm was chosen for the inner scale l0. Values for the outer scale L0 in the upper atmosphere are still controversial. 
Some models give values of several hundred meters [28], [29]. Barat and Bertin derived L0 values of about 10 to 100 
meters from stratospheric balloon trials [30]. Bearing in mind that large outer scales have little effect on scintillation and 
that beam wander is not considered, L0 has been freely set to 100 meters in our simulations. 
 
The refractive-index power spectrum used for phase screen generation is the so-called modified spectrum defined as 
[25]: 
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where κ is the wave number, κl = 3.3/l0 and κ0 = 1/L0. 
 
  

4. PARAMETERS OF NUMERICAL SIMULATION  
 
The maximum sampling interval size ∆xmax was set to 1 cm. We used a grid size M of 1024 by 1024 sample points. As it 
turns out, the entire turbulence spectrum cannot be modeled by a sampling grid of this size. Indeed, cell sizes on the 
order of L0 are always larger than the matrix extent. It has been reported in [7] that the effect of outer scale is very small, 
when its value is within about an order of magnitude larger than the Fresnel length kL / , k being the wave number 



2π/λ and L the propagation distance. For our HAP scenarios, the Fresnel length is between 20 and 40 cm in the NIR. 
Thus, the scale range covered by the grid includes all turbulence scales effectively distorting the optical wave field. 
 
The extent of the final matrix is about 10 meters by 10 meters and the valid area (excluding the damped region) is about 
8 meters by 8 meters. Although the valid area is much bigger than the typical speckle size (which is on the order of the 
Fresnel length or less), an accurate estimation of the intensity statistics through the assumption of ergodicity cannot be 
achieved from a single simulation realization. Indeed, turbulent cells of relatively large sizes create localized regions of 
high intensity speckles in the receiver plane. Those regions may not always be present in the final intensity matrix. 
As explained in section 2, two competing factors affect the partitioning of the propagation path into sub-distances ∆zi: 
To allow for generation of stochastically independent phase screens, ∆zi must be greater than the outer scale of 
turbulence L0. On the other hand, to adhere to the line of argument that led to the split-step solution, ∆zi<<kl0

2 should 
hold, ensuring that phase distortions along ∆zi cannot give rise to amplitude distortions within the same sub-distance. 
This latter requirement, however, leads to a high number of sub-distances, too high to render a computationally feasible 
simulation setup for long-range propagation scenarios. Therefore, in this section we investigate how far the upper bound 
on ∆zi may be relaxed without compromising the validity of certain intensity statistics of the propagated optical field. 
Other authors have proposed heuristic upper bounds on sub-distances involving a kind of "local Rytov index"[26]: 
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E.g., Martin & Flatte suggested an implicitly posed upper bound by [7]  
 

σ1
2(∆z) = 0.1 (6) 

 
or σ1

2(∆zi) ≤ 0.1σ1
2(L) for the case of very weak turbulence (σ1

2(L) < 0.1). Under a constant Cn
2, this latter condition 

guarantees a minimum of 4 phase screens. 
The Rytov index of long stratospheric links is usually larger than 0.1. Applying the common rules for the PS placement 
means that a few phase screens can model stratospheric path length of several hundred kilometers. The Rytov indices of 
the 2 scenarios described earlier are 0.72 and 44.2, respectively. 

 
Fig. 6: SI of Scenario 2 as a function of the number of phase 
screens. 

Fig. 7: Correlation length of Scenario 2 as a function 
of the number of phase screens. 

 
Scenario 1 has an almost constant Cn

2 (section 3) and, according to (6), a number of 3 PS is sufficient. Following [7] 
again, the number of PS for Scenario 2 is approximately 30. Several propagations have been done for this scenario with 
different numbers of PS introduced in the optical path. The inter-PS distances ∆zi were calculated so that σ1

2(∆zi) has 
the same value for all ∆zi. This leads to shorter ∆zi near the middle of the path. For a given number of PS, several 
independent realizations have been done. From each resulting intensity matrix, the scintillation index (SI) and the 



correlation length as defined in  section 7, have been estimated. SI estimates were computed as the mean square of the 
normalized intensity samples in the valid region. As for the covariance function, it was estimated from an unbiased 
estimate of the 2D-autocorrelation of the intensity matrix, which in turn has been averaged over the polar angle to get a 
one-dimensional function. Results are displayed in Fig. 6 and Fig. 7. As expected, we observe a high standard deviation 
of the estimates. It could have been hoped that the increase of the number of PS would reduce, to some extent, the 
variance of the estimates. Yet, no variation of this variance could be clearly observed as the number of PS increases. 
Besides, for any number of PS, no radical changes in the PDF shape could be observed, even for just a few PS. It 
follows that the required number of PS used to model the optical path does not need to be governed by strict rules. 

 
5. COMPUTATION OF TEMPORAL VECTORS FROM INTENSITY MATRICES 

 
In order to investigate the intensity modulated communication channel, we extract from the simulation matrices a one-
dimensional vector characterising the received signal of a direct-detection system. This vector can then be used to 
display various statistical functions or may serve as input to channel coding or interleaving simulations [31]. 
 
For the extraction of a direct-detected signal, there are two requirements. Firstly the information contained in the matrix 
must be representative of the scintillation statistics. As encountered in section 4, even if the correlation length is small 
compared to matrix size, an accurate statistical estimation cannot be guaranteed from the result of a single realization. 
Accuracy requires averaging over several independent realizations. Secondly, the generation of the vector relies on the 
"frozen turbulence" hypothesis. According to this hypothesis, turbulent motion of the medium can be neglected (in 
comparison with the wind-driven motion of the medium as whole) in modelling the evolution of the intensity pattern at 
the receiver. We further assume that the wind transverse to the direction of propagation is predominant The temporal 
vector is generated from the random walk of an integrating receiver aperture over the spatial intensity matrix. The 
sampling time is given by the spatial sampling interval multiplied by the mean transverse wind speed. It is important 
that the path taken by the moving aperture does not introduce additional correlation. The aperture is moved along 
continuous straight segments (see Fig 8). End points of the segments are generated with independently Gaussian 
distributed x and y coordinates. In this way, the directions of the path segments are uniformly distributed over [0,2π] and 
more information can be retrieved from the anisotropic intensity field. Due to circular field dampers used for our 
simulation approach (see section 2), the valid matrix area at the receiver has a circular finite extent. Random end points, 
which are generated out of the valid area by the random number generator, are set to the border. The standard deviation 
σ of each coordinate of the random points should be chosen so that the points within this circular valid area have the 
same probability to be considered. We found that when the ratio of the matrix radius to the standard deviation equals 
0.70, we obtain a quasi uniform evaluation of the grid points. Fig. 9 shows the distribution of evaluated matrix elements 
over the cross section of the intensity matrix which is approximately flat. A point of the matrix is evaluated, each time 
the point is on the path of a very long random vector. The first part of this vector is displayed in Fig 8. 
 
For a beam propagating 300 km with a divergence angle of 500 µrad, the ratio of the matrix extent to the beam diameter 
is about 0.05 in the receiver plane. We can therefore assume that the mean intensity is constant over the matrix extent of 
our simulations and that the matrices present only statistics of the center of the Gaussian beam. 



Fig. 8: Creation of a time vector. In this example, the thickness 
of the line corresponds to the size of the integrating aperture. 

Fig. 9: Distribution of the evaluated matrix elements 
over the cross section of the intensity matrix. 

Firstly, vectors have been extracted from the simulation results of scenario 1 and scenario 2 by using a point receiver. 
Each resulting temporal intensity vectors contained 500 000 samples. The number of PS comprised in the optical path 
were 4 and 30 for the respective scenarios. The intensity PDFs as derived from the one-dimensional vectors are 
displayed on Fig 10. Again, spatial ergodicity has been assumed. All curves displayed, were processed by averaging of 
results from three independent realizations. The corresponding SI estimates are σI

2 = 0.420 and σI
2 = 1.822 for scenarios 

1 and 2 respectively. Shapes of typical intensity PDFs of the weak- and strong- fluctuation regimes can be recognized 
here. Their corresponding normalized intensity covariance functions are shown in Fig. 11. Their corresponding 
correlation lengths were evaluated at 0.237 m and 0.0578 m for scenarios 1 and 2 respectively. 
Secondly a temporal power vector was derived for scenario 2 by using a 200 mm aperture at the receiver. This shows a 
major advantage of our method, -namely  aperture averaging effects are taken into account. In Fig. 10 the difference 
between the intensity PDF and the power PDF becomes clear. The two different PDFs of scenario 2 points out, that the 
probability of deep fades is decreased by aperture averaging. The probability that the received signal is below a given 
value equals the integration of the PDF from zero to this value. The value of the variance is also reduced by aperture 
averaging 

Fig. 10: PDF of a best-case 300 km scenario (scenario 1) with 
the PDF of a worst-case 600 km scenario (scenario 2). 

Fig. 11: Normalized intensity covariance functions 
for same scenario realizations as Fig. 10. 

 



6. CONCLUSIONS AND OUTLOOK 
 
We have described a simulation method for beam propagation through an extended random media with the phase screen 
split-step approach. We implemented this method in Cartesian coordinates. For long horizontal links between 
stratospheric platforms we introduced an algorithm to keep the appropriate resolution of the transverse optical field. 
 
Two different scenarios were analyzed. For the 300 km scenario the simulation results for Cn

2(h) were the same as for 
constant Cn

2. We found out that a reliable statistical evaluation of the simulated intensity distribution at the receiver 
necessitates to run a large number of propagation realizations. For the second scenario we tested different numbers of 
phase screens for our simulation method. The variance of the scintillation indices estimates derived from the different 
realizations was not primary influenced by the number of phase screens. The same attribute was observed for the 
intensity correlation length. To derive reliable values from simulations, a lot of realizations must be simulated and 
evaluated. The introduced method for the computation of a temporal signal vector from the simulation resuts also takes 
aperture averaging effects into account. 
 
In the last section, we proposed a way to generate a direct-detected signal with a relatively arbitrary aperture. This 
method assumes, through the frozen turbulence hypothesis, a constant wind velocity along the propagation path. In case 
of turbulent layers with different velocities, a situation encountered in an optical up- or downlink with a LEO satellite3, 
our method is not suitable to generate a temporal signal. A natural extension of our simulation methodology addressing 
this problem would be to simulate several propagations through a fixed set of phase screens, in succession. Prior to each 
subsequent simulation run, the phase screens would virtually be moved individually according to some lateral wind 
profile and time interval. 
 

7. APPENDIX 
 
In the following formulas we assume a continuous intensity field. 

7.1 Calculation of the scintillation index estimate from a two-dimensional intensity matrix 
 
Let ρ a two-dimensional vector and I(ρ) the intensity field. We set I(ρ) = 0 for ρ outside the valid region V (see Fig. 8). 
The scintillation index is estimated as 
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where ^ denotes “estimate”. ρ is a two-dimensional vector, V0 is the area of the valid region V and <I> is the mean 
intensity. 
 

7.2 Calculation of the spatial covariance function estimate from a two-dimensional intensity matrix 
 
Let WV the window function of V: 
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The unbiased estimate of the 2-dimensional intensity covariance function was calculated as 
 

                                                           
3 When tracking a LEO satellite from earth, the relative motion between the beam and the turbulent layers is very high and dominates 
over wind velocities for most of the path. 
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where HV(ρ2) represents the area of overlap of two valid regions: 
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The 1-dimensional covariance function estimate is then given by averaging over the polar angle θ : 
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and the estimate of the normalized covariance function  bI(ρ) is 
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The correlation length is defined as the 1/e-crossing point of the normalized covariance function. 
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