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Abstract

The efficiency of an unstructured grid finite volume RANS solver is significantly
improved using two implicit methods based on differing philosophies. The LU-SGS
multigrid method aims to improve performance, while maintaining the low memory
requirements and robustness of an explicit scheme. The First-Order Krylov Implicit
(FOKI) method sacrifices these to some extent, in order to achieve high convergence
rates and also avoid the use of a multigrid method, whilst care is taken that the
method remains practical for large 3d cases. The speeds of the two schemes are
compared with that of an existing, highly-tuned Runge-Kutta multigrid method, and
it is seen that a factor of two speed-up can be obtained with no additional memory
overhead using LU-SGS, and a factor of ten with FOKI. Attention is then turned to
the efficiency of aerodynamic design optimization using gradient-based methods. Use
of the Jacobian from the implicit methods allows construction of the adjoint of the
flow solver. This adjoint is exact in the sense of being based on the full linearization
of all terms in the solver, including all turbulence model contributions. From this
starting point various approximations to the adjoint are derived with the intention of
simplifying the development and reducing the memory requirements of the method.
The effect of these approximations on the accuracy of the resulting design gradients,
and the convergence and final solution of optimization problems is studied. The result
is a tool for extremely rapid sensitivity evaluations.
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Chapter 1

Introduction

The efficiency of a Computational Fluid Dynamics (CFD) solver for the compressible
Navier-Stokes (NS) equations is critical to its success as an engineering tool. As fi-
nite volume based NS methods have become established in the aircraft design process,
they are subject to ever increasing demands on their abilities, from three principal
directions. Firstly there is a requirement for modelling of increasingly complex ge-
ometries, which is met through the use of unstructured and hybrid grids. Secondly
there is a demand for more accurate physical modelling, whereby the main area of
interest is advanced turbulence models such as Reynolds Stress Models (RSM) and
unsteady simulation in the form of Detached- and Large-Eddy Simulation (DES and
LES). Finally there is a desire to use the existing flow solvers within inner loops for
the purposes of optimization, trimming, and stability and control analysis.

The first two of these requirements have the effect of increasing the cost of in-
dividual flow calculations. Experience shows that flow solvers based on structured
grids can be made significantly more efficient than unstructured grid solvers, partly
because solution methods, in particular multigrid, are more effective on structured
grids (Wild, 2004). The cost of improving the physical modelling is even greater.
Use of RSM for compressible flow in three-dimensions requires 12 unknown variables
per grid point, as compared to 6 for a one-equation turbulence model, with corre-
spondingly increased costs. In addition the resulting equations are extremely poorly
conditioned. On the other hand using DES on a complete aircraft configuration has
only recently become possible as a research exercise, alone due to the computing re-
sources required (Spalart & Bogue, 2003); its use in design may be considered still to
be distant (Johnson et al., 2003).

However high performance is demanded even from stationary RANS calculations
with simple turbulence models, when large numbers of such analyses must be per-
formed within an outer optimization loop, for example. For calculations on unstruc-
tured grids, performance of the solver is often the bottleneck which prevents the use of
CFD for more complex applications. While computer performance is still improving
exponentially, improvements in algorithmic convergence acceleration are also essen-
tial for achieving the desired modelling complexity. In fact some sources note that
improvements in algorithms over the past 50 years have kept pace with improvements
in computer power over the same period (Mavriplis, 1998)1.

Efficiency of solver algorithms is therefore one of the most critical questions in

1For Poisson’s equation.
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12 CHAPTER 1. INTRODUCTION

modern CFD, and it will be addressed in the context of finite volume RANS methods
using one-equation turbulence models in this thesis. In particular the application of
the class of implicit time stepping methods is considered, see Section 1.1.

For the particular case of aerodynamic design, the high cost of the flow analysis
makes gradient-based optimization algorithms attractive. However the evaluation of
the design gradients is also an expensive operation; this difficulty will be tackled us-
ing the adjoint method, see Section 1.2. The resulting performance improvement, in
combination with the improvement in the efficiency of the flow solver itself via im-
plicit algorithms, are two essential parts of a system which can very rapidly optimize
aerodynamic shapes. This thesis ends with some closing remarks in Chapter 6.

1.1 Implicit Time Stepping Methods

We are concerned with the solution to steady-state of ordinary differential equations
of the form

dWi

dt
+Ri(W ) = 0,

where W are the unknowns and R is the non-linear residual resulting from the spatial
discretization of the RANS equations. In particular we use pseudo time stepping and
are interesting in optimizing the convergence of the resulting iteration.

Implicit methods for the above equation are characterized by the presence of the
residual evaluated at the unknown time-level, R(W n+1), creating in general a non-
linear algebraic system of equations to be solved for W n+1. The method of resolving
this system by choosing some linearization of the residual R and thus reducing the
non-linear system to a linear algebraic equation, forms the class of implicit methods
studied here (the compliment being implicit methods solved at each step using a
non-linear sub-iteration, e.g. the dual-time method). A further distinction can be
made between methods that perform the necessary linearization on the continuous
governing equations, and those that linearize the discretized equations. The later
approach is much more widely used in CFD, perhaps because it has the advantage of
decoupling the time and space discretizations (known as the method of lines), thereby
allowing relatively independent investigation of each. It is also the approach adopted
here.

Implicit methods of this sub-class can in turn be classified by three important
choices made during their formulation:

(a) Temporal discretization formula, e.g. Backward-Difference Formula (BDF).

(b) Choice of approximation of the Jacobian of R.

(c) Solution of the resulting linear system: which solver, to what accuracy etc.?

Consequently, the most well-known implicit method, Newton’s method, is specified
by: (a) the backward-Euler formula with ∆t → ∞, (b) use of the exact Jacobian of
R, and (c) exact solution of the linear system, whereby the choice of particular linear
solver is of secondary importance.

Evaluation of the exact Jacobian, and solution of the linear system to machine ac-
curacy tend to be two extremely expensive operations; as such Newton’s method is one
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Jacobian 1st-Order Jacobian 2nd-Order
Approximate Exact Approximate Exact

LU-SGS Y N N/S N/S
SGS N Y N N

Jacobi N N N/S N/S
Line solver ??? ??? ??? ???

Krylov N N N/S N/S
Precon. Krylov N Y Y Y
Findiff. Krylov N N N N

Linear Multigrid ??? ??? ??? ???

Table 1.1: Schematic of implicit methods for CFD. Key: Y = Examined in this
thesis and found to be useful; N = Examined in this thesis and found to be inferior
to other comparable methods; N/S = Nonsensical, unlikely to be useful because of
the LHS accuracy-linear solver accuracy mismatch; ??? = Performance unknown.

of the most computationally expensive implicit methods per step. As is well known,
in the limit of close proximity to the exact solution, the convergence is quadratic, and
the method in this region is therefore superior to all other methods that show purely
linear convergence. However in practical aerodynamics, solution of the non-linear
equations to such high accuracy is not required. Rather, most effort is expended in
reducing the norm of the residual by 3 to 5 orders of magnitude. In this critical
region, a more efficient method may be obtained by suitable choice of approximate
Jacobian and inexact linear system solver, as will be shown. For convergence to a
steady state, the solution is independent of the choice of temporal discretization, and
the simplest possible option is taken: backward Euler.

Consequentially there is a two-parameter family of schemes to investigate, shown
schematically in Table 1.1. For a second-order accurate spatial discretization, a nat-
ural Jacobian approximation is a Jacobian based on a first-order accurate convective
flux discretization (henceforth denoted by the first-order Jacobian). The Jacobian
may be the exact derivative of the first-order fluxes or may contain additional sim-
plifying approximations. The second-order Jacobian is considerably more expensive
to formulate and store, but may also be evaluated exactly or approximately. Linear
systems formed with these Jacobians may then be solved with any of the methods
shown, which represent the main classes of iterative linear solvers for sparse systems.
All the methods represented in Table 1.1 are investigated in this thesis, with the
exception of those based on the line-implicit solver and linear multigrid.

The various combinations of linear solver and Jacobian are classified according to
their performance and practicability, as explicitly examined herein. Question marks
indicate schemes which have not been examined here and therefore have unknown
performance.

Starting at the top of Table 1.1: LU-SGS will here be shown to be an effective
scheme when combined with a suitably chosen approximate first-order Jacobian, but
much less effective when the exact first-order Jacobian is used, see Chapter 3. Fur-
ther, the alternative fixed-point iterations, symmetric Gauss-Seidel (SGS) and Jacobi
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are shown to be inferior to LU-SGS for the problems considered, unless a much more
accurate first-order Jacobian is taken. In that case SGS is significantly more efficient
than Jacobi. A line solver has not been investigated here, but is known to be effec-
tive, especially for viscous flows (Mavriplis, 1998). All these methods however are
ineffective in combination with a second-order Jacobian due to the increased stiffness
and reduced diagonal-dominance of the system, as well as the more expensive matrix-
vector product. For such a system fixed-point iterations must generally be used in
combination with either a Krylov-subspace solver or multigrid on the linear system.

Although it is possible to apply a Krylov method directly to the linear system,
indicated by the line “Krylov” in Table 1.1, this technique is generally only effective
for relatively well-conditioned systems. The only systems that can be described as
well-conditioned are some approximate first-order Jacobian systems, which are later
seen to be more efficiently solved with LU-SGS. Krylov methods preconditioned using
one of the fixed-point iterations described above on the other hand is very generally
applicable, and widely used in CFD with both first-order Jacobians (Dubuc et al.,
1996) and second-order Jacobians (Chisholm & Zingg, 2002). Explicit evaluation
and storage of the Jacobian can be avoided using a finite difference approximation,
however this tends to be more costly in CPU time than the explicit formulation due
to the number of residual evaluations involved.

The two methods examined in Chapter 4 both use the exact first-order Jacobian,
one using an SGS iteration (FOGSI), the other a preconditioned Krylov iteration
(FOKI). As can be seen from the table, both prove to be effective methods.

Finally, multigrid in CFD is most often used in the Full-Approximation Storage
(FAS) form (Jameson & Baker, 1984), but may also be used inside an implicit method
as a linear solver, a possibility that shows some considerable promise (Mavriplis,
2002), but which is not investigated here.

1.1.1 Literature Review

One of the most widely used convergence acceleration algorithms in CFD today was
described in all significant details more than 20 years ago (Jameson & Baker, 1984).
The method uses a particularly simple explicit Runge-Kutta (RK) method, whereby
the dissipative part of the convective fluxes is evaluated only at certain RK stages.
In addition local time stepping, directional implicit smoothing of the residuals, and
Full-Approximation Storage (FAS) multigrid combine to make an extremely effective
scheme. A variant of this method formed the only time stepping scheme of the DLR
unstructured RANS solver TAU, up until the work presented in this thesis, and is
a highly tuned method, experience in its use having been accumulated over many
years. The scheme will henceforth be referred to as the Runge-Kutta (RK) method,
and will be used as a reference scheme throughout.

Implicit methods with approximate first-order Jacobians and weak linear solvers
in CFD were first proposed in the context of structured grid methods with implicit
treatment of lines in the direction normal to the wall, as presented in (Venkatakrish-
nan, 1998) and (Turkel et al., 1999), and the Alternating Direction Implicit (ADI)
scheme, in which implicit line treatment in each grid direction is performed (Peaceman
& Rachford, 1955). These methods are well known to be unconditionally unstable in
three-dimensions however, leading to a common modification, Diagonally Dominant
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(DDADI) schemes (Faßbender, 2003).
The previous methods are restricted to structured grids, but have been used on

structured parts of mixed-element (hybrid) grids with great success (Mavriplis, 1998),
and even time-accurately (Yoh & Zhong, 2004). General unstructured grids require
an alternative solution method, proposed first in CFD for aerodynamics in (Jameson
& Turkel, 1981), where a symmetric Gauss-Seidel (GS) sweep was used on a struc-
tured grid to solve a heavily approximated linear system. This became known as the
LU-SGS (or LU-SSOR) method, and was further developed in (Yoon & Jameson,
1986b; Yoon & Jameson, 1988) and more recently in (Luo et al., 1998; Sharov et al.,
2000). A method incorporating a modified form of LU-SGS has also been shown, for
simple configurations and a particular discretization, to allow convergence of Euler
computations within 10 multigrid cycles (Jameson & Caughey, 2001). Also reported
by several sources is that by using a single Jacobi sweep rather than GS, for discretiza-
tions including matrix dissipation, a scheme resembling a matrix preconditioner may
be effective (Pierce, 1997; Pierce et al., 1997). Generally all these methods are used
as multigrid smoothers.

Implicit methods with exact first- or second-order Jacobians are less common,
possibly due to the considerably greater development effort, and increased memory
requirements and parallelization problems (Cai et al., 1995). A means of avoiding
storage of the Jacobian is via Jacobian Free Newton-Krylov (JFNK) methods (Knoll
& Keyes, 2004), which approximate Jacobian-vector products using finite differences.
Zingg and coworkers use an explicitly stored first-order Jacobian to precondition a
JFNK method, allowing the use of the very effective ILU method as a precondi-
tioner (Chisholm & Zingg, 2002; Wong & Zingg, 2005). Others avoid exact Jacobians
completely by using a first-order Jacobian in the Newton method (Cantariti et al.,
1999; Cantariti et al., 1999), whereby both storage, and effort in the linear system so-
lution are saved. The effects of various Krylov solvers on Newton problems resulting
from CFD has been studied (Meister, 1998), as have the effects of various precon-
ditioners. A recently proposed scheme (Rossow, 2005) is one of few to use accurate
Jacobians and not a Krylov method, but a GS iteration, thereby reducing memory
requirements.

1.1.2 Overview

Two novel variants of implicit methods are proposed for a spatial discretization in-
volving the JST (Jameson et al., 1981) scheme. Throughout this thesis we take two
distinct attitudes to the question of memory requirements of the algorithms. Initially
we attempt to devise an implicit scheme that uses no more memory than that of the
Runge-Kutta, thus allowing it to be a slot-in replacement for that scheme in every
situation. Later we recognize that some increase in memory requirements may be
acceptable, and necessary for further improvement in solver performance. Hence the
trade-off between memory and efficiency is explored in some detail.

The first method resembles the LU-SGS method of (Yoon & Jameson, 1988) used
as a multigrid smoother is examined, Chapter 3. The goal is to devise a scheme with
all the advantages of Runge-Kutta, i.e. low memory requirements, low computational
effort per iteration, easy parallelizability, and easy implementation, but that addition-
ally admits a high CFL number. The former allows the scheme to function as a slot-in
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replacement for Runge-Kutta, and thereby admits application to very large test cases.
The later will allow faster convergence rates than seen with Runge-Kutta. This is
achieved by noting that the Jacobian of the JST scheme takes a very simple form in
the interior of the field, in particular its block diagonal at each point is a multiple of
the identity matrix. By simplifying the Jacobians of boundary conditions and viscous
fluxes this property is preserved, and the approximate Jacobian block diagonal can
be stored with a single floating-point number at each grid point. Inversion is then
trivial, and off-diagonal entries may be rapidly calculated on the fly. The turbulence
model treatment follows a similar pattern, whereby the mean flow and turbulence
equations are fully decoupled in the Jacobian but calculated simultaneously, allowing
rapid matrix and residual evaluation as well as separate treatment.

Comparisons with the highly tuned explicit Runge-Kutta method already de-
scribed are undertaken, and the method is found to converge 10-50% faster in terms
of iterations, while one LU-SGS iteration costs approximately 90% of one RK itera-
tion.

Secondly in Chapter 4 the priorities are changed; a scheme with significantly
greater memory requirements is allowed, but it should perform well without multigrid.
The novel scheme developed is denoted the First-Order Jacobian, Krylov Implicit
(FOKI) scheme, which is similar to the scheme considered in a structured context
for upwind discretizations in (Cantariti et al., 1999), but differs in its application
to unstructured grids and the JST scheme, and in the treatment of the turbulence
equations. The exact Jacobian of the first-order discretization is considered, includ-
ing boundary conditions and viscous fluxes. Because the turbulence discretization
includes only immediate point neighbours in its stencil it is linearized exactly, and is
solved decoupled from and independently of the mean flow problem.

The solution method consists of ILU(0) preconditioned GMRES, and convergence
is compared with the LU-SGS scheme of the previous chapter. A factor of 4-5 im-
provement in CPU time over that method is recorded for turbulent cases at high
Reynolds numbers.

1.2 The Adjoint Method of Flow Sensitivities

Given the considerable effort required to evaluate the exact Jacobian of the full finite
volume discretization in order to build a Newton method, as described in Section 4,
it is worth considering whether this construction - which amounts to a linearization
of the entire flow solver - may be useful in other contexts. Indeed there are several
potential applications, and one in particular that promises to be of very considerable
use in the aerodynamic design process, the adjoint method, which has been further
developed in the context of this thesis, and which is the subject of this chapter.

In aerodynamic design one typically starts from a baseline geometry, a parameter-
ization of the shape of the geometry, and a quantity of interest such as aerodynamic
drag on the geometry (the cost function). The objective is to find the choice of coef-
ficients of the parameterization (the design variables), such that the cost-function is
minimized. Additionally the problem may be subject to one or more constraints.

Two features distinguish aerodynamic design from other design problems. Firstly
the evaluation of the cost-function is typically very expensive, one evaluation corre-
sponds to a solution of the Navier-Stokes equations on the given geometry. Secondly,
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because shapes must be parameterized, the problem is often characterized by very
large numbers of design variables. For two-dimensional design of a profile, 10-30
design variables are typical, and when designing a three-dimensional wing several
profiles and a wing planform may be parameterized, routinely leading to of the or-
der of 100 design variables. The optimization problem then consists of a search in
a 100-dimensional design space, which combined with the expense of cost-function
evaluations, means that only gradient-based optimization methods are admissible.

Gradient-based optimization characterized by the steepest descent method re-
quires two basic steps: first the evaluation of the search direction - the gradient of
the cost-function with respect to the design variables - which results in the most
rapid improvement of the design locally; and second a one-dimensional search in this
direction, consisting of repeated evaluations of the cost-function until a minimum is
found in this one-dimensional subspace; this basic process is repeated until no fur-
ther improvement is obtained. The derivative of the cost-function with respect to a
large number of design variables is therefore required. The adjoint method provides
a means of performing this with an effort only weakly dependent on the number of
design variables; the technique is described in detail in Section 5.3.

One of the earliest applications of adjoint methods to aerodynamics problems
is found in the works of Pironneau, who devised optimality conditions for drag on
two-dimensional bodies, first in Stokes flow (Pironneau, 1973), then for convection
dominated flow (Pironneau, 1974). The work was shortly thereafter applied numer-
ically to aerodynamic design (Glowinski & Pironneau, 1975). Effort has since been
applied to the treatment of increasingly complex problems. Jameson popularized the
method in the aerodynamic community with design of profiles using a continuous
adjoint of the Euler equations (Jameson, 1988). Since then a contentious issue has
been the choice of continuous or discrete adjoint (Sirkes & Tziperman, 1997). The
former involves adjointing the continuous equations before discretizing them in order
to solve them numerically (Gauger & Brezillon, 2003; Brezillon & Gauger, 2004);
the later adjoints the already discretized equations. Each has advantages, but the
discrete has gained dominance recently, due to its straightforward formulation, and
its ability to treat general viscous problems (Nadarajah & Jameson, 2001; Kim et al.,
2002). As a result it has become a relatively mature technique (Giles et al., 2003).
However recent work suggests a generalization of the continuous adjoint for viscous
problems may be possible (Castro et al., 2006).

Recently (Mavriplis, 2006), building on previous work (Nielsen & Park, 2005;
Mavriplis, 2005), showed that by adjointing not only the flow solver, but the entire
optimization chain in a discrete manner, including surface mesh parameterization
and grid deformation, an optimization of the wing of a transport aircraft with an
extremely large number of design variables could be performed in less than 6 hours
on a standard 16 processor cluster. However, the effort required to develop a discrete
adjoint of a given flow solver is very high, as it involves differentiating all parts
of the discretization, and often storing the resulting Jacobian matrix (Brezillon &
Dwight, 2005). One effort to avoid this overhead uses Automatic Differentiation (AD)
tools (Griewank, 2000; Griewank & Walther, 2002), but these are not yet mature
enough to be applied to complete flow solvers. Another uses a modified form of finite
differences in complex variables, and has been applied to large test cases (Nielsen &
Kleb, 2005).
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Here we consider a third approach, which involves using an approximation to the
Jacobian; a modification which must influence the resulting gradients. Despite the
fact that the idea is widely used (Löhner et al., 2003; Soto et al., 2004; Reuther
et al., 1999), there have been few studies into its effect on the resulting optimization.
Nielsen compared the gradients of several approximations (Nielsen, 1998), and Kim et
al. examined the effect on optimization of a constant eddy-viscosity assumption (Kim
et al., 2003).

In Chapter 5 an exact adjoint method is constructed, and then five different sim-
plifying approximations are made, each with the aim of reducing the development
and computational effort involved. Optimizations are then performed on two test
problems using two optimization strategies, and the optima achieved and the con-
vergence behaviour are compared with those of the exact adjoint. It is seen that the
Jacobian may be simplified significantly without seriously damaging the optimization
result, see also (Dwight & Brezillon, 2006).



Chapter 2

Discretization and Jacobians

2.1 Introduction

It is our objective to significantly improve the efficiency of the unstructured finite
volume Navier-Stokes solver of the DLR, the TAU-Code, which is widely used in
industry and research, and consequently has been validated against experimental
results and other numerical methods for a large variety of applications (Gerhold
et al., 1997; Rudnik et al., 2004; Kroll & Fassbender, 2005).

We therefore adopt the philosophy that the spatial discretization is given and
immutable, and that our objective is purely to improve the efficiency of the solution
of the resulting discrete equations. This has the disadvantage of allowing little flex-
ibility - and it is often the case that a small change in discretization can result in a
considerable simplification of the Jacobian, see for example Section 2.8. On the other
hand it has the considerable advantage of eliminating the need for further verification
and validation work on the numerical results. Provided that the equations are fully
converged, their solution is independent of the convergence method used (neglecting
the possibility of multiple solutions, which are rarely observed in practice1). For this
reason the previous works (Kroll & Fassbender, 2005) are considered sufficient valida-
tion of the spatial discretization described below, and no comparison of experimental
with numerical results is given herein.

The solver TAU includes a wide variety of spatial discretizations. In this chapter
a complete and accurate description of one particular spatial discretization, including
boundary conditions and turbulence model, is given. This is the discretization most
commonly used for transonic aerodynamics applications, and that which is used to
obtain the majority of numerical results given in this thesis.

The focus of this thesis is on implicit methods, an important component of which
- the Jacobian - is derived directly from the spatial discretization. For this reason
derivatives are presented alongside discretizations for certain elements of the scheme.
It is not the intention of the author to give a complete Jacobian for the scheme, which
would run to at least a hundred pages; rather to give an impression of the process,
the necessary steps and effort required. Where Jacobians of certain elements of the
scheme are particularly simple, or where a suitable approximation can simplify the
Jacobian significantly, these are given.

1With the notable exception of inviscid calculations on aerofoils with blunt trailing edges and no
explicit enforcement of the Kutta condition.
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Whereas the spatial discretization is certainly not original to this thesis, having
been developed in TAU principally by others (Gerhold et al., 1997; Galle, 1995; Galle,
1999), and bearing a strong resemblance to many well known schemes in the litera-
ture (Jameson et al., 1981; Mavriplis, 1997; Pierce et al., 1997); and the derivation of
the Jacobian of a finite volume method is also nothing new (Woodgate et al., 1997;
Nielsen et al., 1995; Meister, 1998), the details of the efficient constuction of the
Jacobian given here, for example where a suitable choice of spatial discretization or
derivative approximation leads to particularly simple expressions for the derivatives,
are unique to this thesis. Also an original theoretical justification is presented for the
common practice of neglecting the derivatives of the dissipation coefficients in the
JST scheme, Section 2.6.2, which demonstrates that the terms which are neglected
are of higher order in the grid spacing ∆x, than the remaining terms.

2.2 The Navier-Stokes Equations

The governing equations considered are the compressible Euler and Navier-Stokes
equations. We consider first instantaneous equations, which implicitly contain the
physics of turbulence, and then average them in time to eliminate turbulence fluctu-
ations, whose effect will instead be modelled.

2.2.1 The Instantaneous Equations

The compressible Navier-Stokes equations in conservation form are

∂W

∂t
+∇ · (f c(W )− f v(W )) = 0, (2.1)

or equivalently

∂W

∂t
+
∂

∂xi
f ci (W )− ∂

∂xi
f vi (W ) =

∂W

∂t
+ R(W ) = 0, (2.2)

where summation convention is applied on the index i, and where W is the conser-
vative state vector,

W =




ρ
ρu
ρv
ρw
ρE



, (2.3)

and the convective and viscous flux tensors f c and f v are composed of the inviscid
and viscous flux vectors f ci and f vi in the three coordinate directions, i ∈ {x, y, z}.
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In 3D they are

f cx =




ρu
ρuu+ p
ρuv
ρuw
ρHu



, f vx =




0
τxx
τxy
τxz

τxiUi + qx



,

f cy =




ρv
ρvu

ρvv + p
ρvw
ρHv



, f vy =




0
τyx
τyy
τyz

τyiUi + qy



, (2.4)

f cz =




ρw
ρwu
ρwv

ρww + p
ρHw



, f vz =




0
τzx
τzy
τzz

τziUi + qz



,

where U = (u, v, w)T is the velocity vector, τ is the viscous shear stress tensor and
q is the heat flux vector. The solution of the Euler equations will also be considered;
they are obtained by neglecting the viscous fluxes in (2.1).

For a calorically perfect gas, pressure is defined by the state equation

p = (γ − 1)ρ

{
E − 1

2
U2

}
, (2.5)

where E is the specific total energy per unit mass, and γ is the gas dependent ratio
of specific heats, which is taken to be 1.4 for air, and additionally the total enthalpy
is defined as

H = E +
p

ρ
. (2.6)

The viscous shear stresses are given by

τ = µl
(
∇U +∇UT

)
+ λl∇ · U I (2.7)

(where I is the identity matrix), or equivalently by

τxx = 2µl
∂u

∂x
+ λl∇ · U,

τyy = 2µl
∂v

∂y
+ λl∇ · U,

τzz = 2µl
∂w

∂z
+ λl∇ · U, (2.8)

τxy = τyx = µl

{
∂u

∂y
+
∂v

∂x

}
,

τxz = τzx = µl

{
∂u

∂z
+
∂w

∂x

}
,

τyz = τzy = µl

{
∂v

∂z
+
∂w

∂y

}
,
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where local laminar bulk viscosity by Stokes hypothesis for a monatomic gas is

λl = −2

3
µl. (2.9)

The heat fluxes are given by Fourier’s law,

q = κl∇T, (2.10)

with the thermal conductivity and the temperature defined by

κl =
cpµl
Prl

, T =
p

ρ< , (2.11)

where < is the universal gas constant, which is set to unity when non-dimensionalizing
the equations. The local variation of molecular viscosity with temperature is modelled
by Sutherland’s Law,

µl = µl,∞ ·
(
T

T∞

)1.5

· T∞ + T̄

T + T̄
, (2.12)

whereby T̄ = 110.4K is Sutherland’s constant. The law is used to model the local
variation in thermal conductivity in exactly the same way, so that

µl
µl,∞

=
κl
κl,∞

, (2.13)

and the Prandtl number

Prl =
cpµl,∞
κl,∞

, cp = < γ

γ − 1
, (2.14)

is constant everywhere.

2.2.2 The Favre Averaged Equations

In order to respect the influence of turbulence without resolving every turbulent eddy,
the flow equations are Favre averaged, i.e. time-averaged with mass weighting. The
instantaneous flow quantities in (2.2) are substituted for Favre averaged quantities
plus a time-dependent fluctuation, i.e.

W = W̃ +W ′′, (2.15)

where the mass-average is defined as

W̃ (x) =
1

ρ̄
lim
t′→∞

1

t′

∫ t+t′

t

ρ(x, s)W (x, s) ds, (2.16)

where ρ̄ is the conventional Reynolds averaged density. Thus the procedure rests on
the assumption that the time scale of turbulent motion is much shorter than that of
the mean motion. By mass-averaging the result, the Favre averaged Navier-Stokes
equations are obtained.
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The equations are substantially identical to the instantaneous flow equations with
instantaneous replaced by mean quantities, except for the introduction of the turbu-
lence correlations

ρU ′′ ⊗ U ′′, ρU ′′ ⊗ U ′′ · Ũ , ρh′′U ′′, τ · U ′′, 1

2
ρU ′′(U ′′ · U ′′), (2.17)

which are modelled using some closure approximations. All models under consider-
ation here use the Boussinesq eddy viscosity assumption (Boussinesq, 1877), which
states that the Reynolds stress tensor may be modelled as

−ρU ′′ ⊗ U ′′ = µt

(
∇U +∇UT − 2

3
∇ · U I

)
− 2

3
ρ̄k I, (2.18)

for a suitable turbulent viscosity µt and turbulent kinetic energy k defined as

k =
1

2

ρU ′′ · U ′′
ρ̄

. (2.19)

Thereupon the momentum equations reduce to the instantaneous equations with a
modified effective viscosity µe,

µe = µl + µt, (2.20)

and a modified pressure

p∗ = p− 2

3
ρ̄k, (2.21)

and the second correlation in (2.17) results in an extra term in the energy equa-
tion. Similarly ρh′′U ′′ is approximated as a heat flux, giving an effective thermal
conductivity κe,

κe = κl + κt, (2.22)

which replaces κl in the viscous terms. Typically

κt =
cpµt
Prt

, (2.23)

and the turbulence Prandtl number Prt is a constant. The last two correlations
of (2.17) may be interpreted as diffusion of k, and are therefore included as an extra
k diffusion term in the energy equation. See (Wilcox, 1998) for a more complete
discussion.

The purpose of a turbulence model is then to provide a value for µt and possibly
k. One-equation models such as Spalart-Allmaras (Spalart & Allmaras, 1992) consist
of a transport equation for some modified eddy-viscosity ν̃t, and terms involving k
are typically neglected. Two-equation models such as Wilcox k − ω (Wilcox, 1998)
provide transport equations for k and one other quantity, µt is then modelled as some
function of these.

2.3 Flow Regime

The equations of the previous section display radically different behaviour depending
on the flow regime, therefore it is also necessary to indicate the values of the three



24 CHAPTER 2. DISCRETIZATION AND JACOBIANS

Quantity Symbol Typical value
Mach number M∞ ≈ 0.2− 1.5
Reynolds number Re ≈ 1× 106 − 100× 106

Prandtl number Prl ≈ 0.72
Turb. Prandtl number Prt ≈ 0.9
Reynolds Length xRe ≈ 0.1− 10.0 m
Ratio of specific heats γ ≈ 1.4
Temperature T ≈ 273.15 K
Pressure p ≈ 15000− 200000 Nm−2

Velocity ‖U‖ ≈ 10− 500 ms−1

Density ρ ≈ 0.2− 2.0 kg m−3

Table 2.1: Dimensional flow parameters and typical values for flow quantities in SI
units, representing flow over large transport aircraft at standard atmospheric condi-
tions.

flow parameters: the Mach number M∞, the Reynolds number Re, and the Prandtl
number Pr. Typical values representing flow over transport aircraft at standard
atmospheric conditions are given in Table 2.1.

Of particular consequence is the large Mach number range, which demands the
consideration of compressibility effects at the high end, while making standard meth-
ods for compressible fluids stiff at the low end, where the speed of sound dominates the
speed of convection. Of even more importance are the exceptionally high Reynolds
numbers, which cause thin boundary-layers to form on no-slip walls, which in turn re-
quire high grid resolution in the wall normal direction. The large discrepancy between
the wall-normal and wall-tangent grid length scales is the dominant source of stiffness
in the problems considered. The Prandtl numbers have a relatively minor influence
on the flow. The equations are non-dimensionalized before being discretized (Le
Chuiton, 2004).

2.4 Finite Volume Discretization

The governing equations may be derived by considering conservation of mass, mo-
mentum and energy within an arbetrary stationary control volume Ω. Because these
quantities are conserved the rate of change of each within Ω must be equal to the
flux of each through the walls of Ω. In integral form this statement may be written

∂

∂t

∫

Ω

W dΩ +

∮

∂Ω

{
f cT (W )− f vT (W )

}
· n d(∂Ω) +

∫

Ω

ST (W ) dΩ = 0, (2.24)

where ∂Ω is the boundary of Ω, with outer normal n, and where S(W ) represents
some non-conservative source term vector, that may arise in turbulence models and
which is zero for the mean-flow equations, and the subscript T indicates that the flux
tensors have been extended to include the - as yet unspecified - turbulence transport
equations. All other quantities are as in Section 2.2.1.
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The problem domain is divided into a grid of non-overlapping control-volumes
(or cells) Ωi, each with an associated central node, chosen such that the integrals
of (2.24) are easy to approximate numerically. In particular TAU works on the dual
grid of approximate Voronöı volumes of a primary grid consisting in 3D of tetrahedra,
triangular prisms, pyramids and hexahedra, whereby no hanging nodes or hanging
edges are allowed. See Figures 2.1 and 2.2 for depictions of the dual-grid metric cells
and nodes. Also Figure 3.13 depicts some primary grids.

The full discretization of the second and third integrals in (2.24) on the given grid
is denoted the residual R, so that

∂

∂t

∫

Ωi

Wi dΩ +Ri(W ) = 0, (2.25)

is the semi-discrete version of (2.24). The Jacobian will be denoted ∂R/∂W .
In this thesis we are concerned solely with second-order accurate methods. The

values of the flow variables are approximated as constants on the control-volumes2,
resulting in discontinuities at the cell interfaces. Hence f c · n and f v · n must be
approximated by numerical fluxes f̂ c and f̂ v in the surface integral of (2.24). The
obvious central discretization for the convective terms

f̂ cij =
1

2
(f c(Wi) + f c(Wj)) · nij, (2.26)

is unstable because the stencil of the scheme at node i does not include node i itself,
resulting in the decoupling of neighbouring points. The instability may be shown
by applying Fourier analysis for regular structured grids (Jameson, 1995), or using
numerical experiments on unstructured grids.

A stable method may be achieved by adding artifical dissipation terms to the
central discretization (Section 2.6), or by setting the numerical flux to be an approx-
imate Riemann problem solver (also called upwind fluxes) (Radespiel & Kroll, 1995;
Quirk, 1994), such as van Leer (Van Leer, 1982) or Roe (Roe, 1986), which may
be seen to implicitly contain dissipation terms. In the latter case, the method as
described is 1st-order accurate in ∆x the grid spacing; this can be increased to ∆x2

by calculating an approximation to the gradients of the flow quantities at the nodes,
and reconstructing values onto the cell faces using these gradients.

Given that the method is implemented conservatively, and that numerical viscosity
is present, shocks are captured by the scheme automatically. On the other hand for
normally 2nd-order accurate methods in space and higher, the order must be reduced
near shocks to avoid solution oscillations. This takes the form of slope limiters for
the upwind fluxes, and mixed 2nd- and 4th-order dissipation for central fluxes.

Discretization of the viscous terms is not as problematic, see Section 2.8, and
the turbulence model equations are typically only discretized to O(∆x), though their
source terms can cause stability problems.

At this point some unstructured grid terminology must be introduced: in the
following a quantity with a single index, e.g. |Ωi|, indicates a quantity evaluated at
a node (in this case the volume of the cell of node i), and a quantity with a double

2And consequently the fluxes are assumed to be constant on the individual faces of the control-
volumes.



26 CHAPTER 2. DISCRETIZATION AND JACOBIANS

index, e.g. nij, indicates a quantity evaluated on the grid face connecting two nodes
(in this case the normal vector of said face). The set N(i) of neighbours of i contains
indices of all control-volumes that share a face with node i. Similarly B(i) contains
indices of all faces of i that lie on the boundary of the computational domain, and is
the empty set if i is not a boundary point. Sometimes it is useful to consider the first
node that lies normal to the boundary at point i. The set Bnear(i) contains this point
if i is on the boundary, and is otherwise the empty set. The stencil of the discrete
residual R is denoted M.

Henceforth the indices i, j, k, etc. refer to the indices of grid nodes/control-
volumes, unless otherwise stated.

2.5 Construction of the Jacobian

In addition to constructing the discrete residual of the scheme R, the Jacobian of the
discrete residual ∂R/∂W is required for implicit methods.

Consider the structure of the Jacobian. R is a vector of size n × N , where n is
the number of nodes in the grid, and N is the number of equations per node. In
principle R may be a function of all W , and W is a vector of the same size as R.
Then ∂R/∂W is a matrix with dimensions (n×N)× (n×N). The structure of the
matrix is dependent on the ordering of the degrees of freedom. It is most convenient
to consider orderings of the form

(ρ0, u0, v0, p0, ρ1, u1, · · · , ρn−1, un−1, vn−1, pn−1) ,

in which case the Jacobian may be written as an n×n matrix of N×N blocks. Then
the notation ∂Ri/∂Wj refers to the block matrix obtained by differentiating the N
components of Ri with respect to the N components of Wj.

However, Ri is not a function of Wj for all j, but only of a small number of Wj

in the vicinity of i. The set of such j corresponds to the stencil of Ri, denoted M(i),
which is almost always either (a) only i, (b) i and the immediate neighbours of i, or
(c) i and the immediate and next-neighbours of i. Figure 2.1 shows these sets for a
simple grid.

If a point j is not in the stencil of Ri then ∂Ri/∂Wj ≡ 0, otherwise it is non-zero.
Hence the Jacobian is sparse and the amount of fill-in is determined by the size of M.
The Jacobian is typically very large, even accounting for its sparsity, and therefore
computationally intensive to calculate and store. The problem of efficient handling
of the Jacobian is the main issue in algorithms involving it, and hence forms one of
the principal themes of this thesis.

To see the importance of stencil size consider Table 2.2 which gives the number of
immediate neighbours and next-neighbours for several grid types. In three dimensions
the stencil size increases by at least a factor of four between neighbours and next-
neighbours, resulting in a corresponding increase in the fill-in of the Jacobian.

Remark 2.1. It is often the case that we consider the contribution of a flux over a
face to the Jacobian. If the flux f̂ij has a stencil of {i, j} only, then contributions are
made to the Jacobian at four points. Consider the case that the flux modifies R as

Ri := Ri + f̂ij,

Rj := Rj − f̂ij,
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Figure 2.1: A stylized example of an unstructured dual-grid resulting from the Voronöı
volumes of a primary grid of equilateral triangles. The nodes of the dual volumes are
the same as the nodes of the primary grid. The shaded control-volumes show possible
stencils of parts of the residual R calculated at the point i. For example the stencil
of a 1st-order upwind flux includes i and the immediate neighbours of i, while the
stencil of a 2nd-order upwind flux includes additionally the next-neighbours of i, e.g.
k.

Figure 2.2: As for Figure 2.1, but in the region of a boundary. Important to note is
that some nodes lie directly on the boundary. The values of the flow quantities at
these nodes are taken to represent the state on the boundary (e.g. for a no-slip wall,
zero velocity).
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Dimensions Grid Type Neighbours Next-neighbours
2 Structured 5 13
2 Unstructured 7 19
3 Structured 7 33
3 Semi-Structured 9 35
3 Unstructured 15 ≈77

Table 2.2: The number of nodes neighbouring any given node on regular 2d and 3d
grids. Here “Structured” indicates a regular square or hexahedral mesh, “Unstruc-
tured” a regular triangular or tetrahedral mesh, and “Semi-Structured” a mesh of
triangular prisms. The node counts are inclusive: “Neighbours” includes the point
itself and “Next-neighbours” includes neighbours. The values provide an indicator of
the relative sizes of Jacobians on the various meshes, with the two stencil sizes.

then it modifies the Jacobian as

∂R

∂W
:=

∂R

∂W
+




. . .
∂f̂ij
∂Wi

· · · ∂f̂ij
∂Wj

...
. . .

...

− ∂f̂ij
∂Wi

· · · − ∂f̂ij
∂Wj

. . .




. (2.27)

2.6 Central Convective Fluxes

The most commonly used convective flux in TAU is a central flux with blended
2nd- and 4th-undivided differences representing 2nd- and 4th-order artificial dissipa-
tion, and is an unstructured generalization of the well-known Jameson-Schmitt-Turkel
(JST) scheme (Jameson et al., 1981). The term undivided difference simply refers to a
standard finite difference approximation to a derivative, but without a denominator;
for example the LHS of

Wi+1 − 2Wi +Wi−1 ≈ ∆x2 d2W

dx2
.

The 4th-order dissipation is used in the majority of the field as the dissipation
terms are of order ∆x3 and therefore do not detract from the order of accuracy of
the method, which is dominated by the error incurred when approximating the fluxes
as constant on faces (∆x2). However the operator is unstable at discontinuities and
introduces overshoots, so 2nd-order dissipation terms of order ∆x are used there
instead. This reduction of order means it is important to have higher grid resolution
near shocks than elsewhere. The detection of discontinuities is performed with a
pressure gradient sensor.

The scheme may be written

f̂ JST
ij =

1

2
(f c(Wi) + f c(Wj)) · nij −

1

2
D̄ij, (2.28)

where f c are the exact convective fluxes as given in (2.4), and D̄ contains the dissi-
pation terms. The derivatives of f c · n are given in various variables in Appendix A.
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2.6.1 Scalar Dissipation for the Central Scheme

We give the exact form of the dissipation D̄ of (2.28) as implemented in TAU. For a
control-volume i the total contribution to the residual R is

Di =
∑

j∈N(i)

D̄ij, (2.29)

whereby the dissipation on a face is a sum of 1st- and 3rd-undivided differences

D̄ij = λcij

[
ε̄

(2)
ij (Wj −Wi)− ε̄(4)

ij (Lj(W )− Li(W ))
]
, (2.30)

and ε̄(2) and ε̄(4) control the levels of the two types of dissipation, which themselves
consist of three terms:

ε̄
(2)
ij = ε

(2)
ij s

c2
ij φ̄ij, (2.31)

ε̄
(4)
ij = ε

(4)
ij s

c4
ij φ̄ij. (2.32)

The ε(2) and ε(4) act as the shock switch, sc2 and sc4 are intended to make the level
of dissipation independent of the number of neighbours of a cell, and φ̄ is intended
to increase the amount of dissipation across the larger faces of anisotropic cells and
decrease it across the smaller faces. In particular

φ̄ij =
4φ

(i)
ij φ

(j)
ji

φ
(i)
ij + φ

(j)
ji + ε

, (2.33)

where ε = 10−16 is a constant chosen simply to prevent a divide-by-zero condition in
the arithmetic. The φ

(i)
ij are defined by

φ
(i)
ij =

(
max0

(
1
2
λti − λcij

)

2λcij

) 1
2

, (2.34)

where max0(·) = max(·, 0) and λti is the sum of the maximum convective eigenvalues
over all faces of volume i. The maximum convective eigenvalue denotes is defined
in (2.45). Given that φ

(i)
ij and φ

(j)
ji are approximately the same - which is the case in the

absence of rapid changes in cell size - (2.33) reduces to φ̄ ≈ 2φ
(i)
ij . Then (2.34) causes

the dissipation over the face of a cell with the larger eigenvalue λc to be relatively
increased, and that with the smaller eigenvalue to be decreased. In particular, in
anisotropic boundary-layer cells, the eigenvalue of the long side dominates that of the
short side and so extra dissipation normal to the wall is included.

The expressions chosen in order to attempt to remove dependence on the number
of faces of a control volume are

sc2ij =
3(Ni +Nj)

NiNj
, (2.35)

sc4ij =
9
[
(1 +Ni)Ni + (1 +Nj)Nj

]

(1 +Ni)Ni(1 +Nj)Nj
, (2.36)
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where Ni is the number of faces of cell i,

Ni =
∑

j∈N(i)

(1) +
∑

b∈B(i)

(1). (2.37)

The coefficients ε(2) and ε(4) are more familiar, being taken directly from Jame-
son (Jameson et al., 1981),

ε
(2)
ij = k(2) max(Ψi,Ψj), (2.38)

ε
(4)
ij = max0(k(4) − ε(2)

ij ), (2.39)

where k(2) and k(4) are constants allowing specification of absolute levels of dissipation,
typically 1/2 and 1/64 respectively, and the remaining terms control the relative levels
of 2nd- and 4th-dissipation using the estimate of the pressure gradient

Ψi =

∣∣∣∣
pdif
i

pΣ
i

∣∣∣∣ , (2.40)

where

pΣ
i =

∑

j∈N(i)

(pi + pj) +
∑

m∈Bnear(i)

(3pi − pm), (2.41)

pdif
i =

∑

j∈N(i)

(pj − pi) +
∑

m∈Bnear(i)

(pi − pm), (2.42)

so that for a smooth solution Ψ and so ε(2) are of order ∆x2, while at a shock both
are of order unity.

The 3rd-difference is constructed as a difference of two 2nd-undivided differences,

Li(W ) =
∑

j∈N(i)

(Wj −Wi) +
∑

m∈Bnear(i)

(Wi −Wm), (2.43)

where the use of the boundary near points here is intended to avoid asymmetry of
the Laplacian on boundaries. The total maximum eigenvalue for a cell is

λti =
∑

j∈N(i)

λcij +
∑

b∈B(i)

λcb, (2.44)

whereby the maximum eigenvalues on the faces are

λcij = max
m

[
λm

(
∂f cij
∂W

)]
= 1

2
|(Ui + Uj) · nij|+ 1

2
(ai + aj)‖nij‖, (2.45)

λcb = max
m

[
λm

(
∂f cb
∂Wb

)]
= |Ub · nb|+ ab‖nb‖, (2.46)

where λm(·) returns the mth eigenvalue of the matrix argument, thus completing the
scheme.
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Remark 2.2. This scheme is derived from the JST method (Jameson et al., 1981)
which has proven extremely effective on structured grids. The chief difficulty in the
extension to unstructured grids is the unidirectional nature of the coefficients of the
dissipation in the original scheme. For example the pressure sensor given by Jameson
to construct the shock switch is unidirectional,

ΨIJ =
|pI+1,J − 2pI,J + pI−1,J |
|pI+1,J + 2pI,J + pI−1,J |

, (2.47)

and repeated in each coordinate direction; here I and J are the structured grid cell
indices. Equation (2.40) is an attempt to model this expression without direction in-
formation. Similarly (2.33) is an attempt to reproduce the commonly used structured
grid anisotropic cell scaling

φ̄I+ 1
2
,J,K = 1 + max

(
λc
I,J+ 1

2
,K

λc
I+ 1

2
,J,K

,
λc
I,J,K+ 1

2

λc
I+ 1

2
,J,K

) 1
2

, (2.48)

in three dimensions, where e.g. λc
I+ 1

2
,J,K

is the average of the eigenvalues of the faces of

cell I, J,K with face normals pointing in the I direction. The coefficients sc2 and sc4

have no equivalent in the structured scheme and are chosen such that the unstructured
scheme on a regular hexahedral dual grid has the same level of dissipation as the
structured scheme on a regular structured grid.

2.6.2 Jacobian of Dissipation under a Constant Coefficient

Approximation

As seen in Section 2.6.1 the full dissipation operator is rather complex, and the exact
derivatives thereof are therefore also very complex. By assuming that the derivatives
of the coefficients of the difference operators in the scheme - namely ε̄(2), ε̄(4) and λc

- may be treated as constants with respect to W , a considerable simplification in the
Jacobian is achieved.

Remark 2.3. We attempt to justify this approximation: consider the relative magni-
tudes of the terms that are neglected in the derivative, and the remaining terms. For
concise presentation consider only the second difference operator without the shock
switch,

D̄2nd
ij = λcij(Wj −Wi). (2.49)

The full derivative of this may then be written

∂λcij
∂Wk

(Wj −Wi) + λcij
∂

∂Wk

(Wj −Wi), (2.50)

however, under the assumption λc = const., only the second term appears. Consider
the magnitude of these quantities in terms of ∆x the grid spacing.

If k /∈ {i, j} then all derivatives in (2.50) are zero, so consider the case k ∈ {i, j}.
For a smooth solution (Wj −Wi) is of order ∆x, whereas its derivative is of order
unity. Also λcij and its derivate are always order ∆x (due to the presence of the face
normal n). Therefore the first term in (2.50) has order ∆x2 and the second term
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order ∆x. Hence the first term may be neglected for smooth solutions on sufficiently
fine grids, and the approximation λc = const. is justified.

Extending this argument to the full dissipation operator, is complicated by the dif-
ferences present in pdif, whose derivatives are also of order unity, but a similar result
is eventually achieved. Experiences using the approximate Jacobian in Chapter 5 bear
out the conclusions given here.

The derivatives may then be written

∂Di

∂Wk
=

∑

j∈N(i)

∂D̄ij

∂Wk
(2.51)

=
∑

j∈N(i)

λcij

[
ε̄

(2)
ij

∂

∂Wk
(Wj −Wi)− ε̄(4)

ij

∂

∂Wk
(Lj(W )− Li(W ))

]
, (2.52)

whereby choosing the conservative variables for the differentiation pays off in a par-
ticularly simple form for the difference derivatives:

∂

∂Wk
(Wj −Wi) =





−I k = i

I k = j

0 otherwise

, (2.53)

where I is the identity matrix, so that the derivative of their sum is

∂

∂Wk

∑

j∈N(i)

(Wj −Wi) =





∑
j∈N(i)(−I) k = i

I k ∈ N(i)

0 otherwise

. (2.54)

The pseudo-Laplacian derivatives are similarly

∂Li(W )

∂Wk

=





∑
j∈N(i)(−I) +

∑
m∈Bnear(i)(I) k = i

I k ∈ N(i) ∩ Bnear(i)

0 otherwise

, (2.55)

and the expression for the Jacobian is complete.
Comparing this result with the exact Jacobian given in Section 2.6.3 highlights

the enormous potential benefits of well-chosen approximations.

2.6.3 Full Jacobian of Scalar Dissipation

The full expression for the exact Jacobian of the scalar dissipation operator is given
in the following. Note that extensive use is made of the chain rule to divide the
operation into manageable parts. Each expression of Section 2.6.1 is differentiated
in turn, writing the derivative in terms of derivatives of the other quantities. No
attempt is made to collect terms in an effort to reduce the number of expressions.
This helps reduce the likelihood of an error and allows the scheme derivative to be
easily verified against the scheme statement.
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Starting with the dissipation contribution to the residual at a node,

∂Di

∂Wk

=
∑

j∈N(i)

∂D̄ij

∂Wk

(2.56)

=
∑

j∈N(i)

{
∂λcij
∂Wk

[
ε̄

(2)
ij (Wj −Wi)− ε̄(4)(Lj − Li)

]

+ λcij

[
∂ε̄

(2)
ij

∂Wk
(Wj −Wi) + ε̄

(2)
ij

∂

∂Wk
(Wk −Wi) (2.57)

−
∂ε̄

(4)
ij

∂Wk
(Lj − Li)− ε̄(4)

ij

∂

∂Wk
(Lj − Li)

]}
;

comparing with (2.52) the extra effort required is already apparent. The individual
fluxes are then

∂ε̄
(2)
ij

∂Wk
= sc2ij

(
∂ε

(2)
ij

∂Wk
φ̄ij + ε

(2)
ij

∂φ̄ij
∂Wk

)
, (2.58)

∂ε̄
(4)
ij

∂Wk
= sc4ij

(
∂ε

(4)
ij

∂Wk
φ̄ij + ε

(4)
ij

∂φ̄ij
∂Wk

)
, (2.59)

whereby

∂φ̄ij
∂Wk

=

4

[(
∂φ

(i)
ij

∂Wk
φ

(j)
ji + φ

(i)
ij

∂φ
(j)
ji

∂Wk

)
(φ

(i)
ij + φ

(j)
ji + ε)− φ(i)

ij φ
(j)
ji

(
∂φ

(i)
ij

∂Wk
+

∂φ
(j)
ji

∂Wk

)]

(φ
(i)
ij + φ

(j)
ji + ε)2

. (2.60)

Note that the ε used to prevent a divide-by-zero condition in the arithmetic of the
flux, prevents this condition in the derivative as well.

The appearance of max(·, ·) in the expression for φ
(i)
ij (and similarly, the appear-

ance of | · | in the expression for Ψ), leads to the derivative of φ
(i)
ij being undefined at

(1
2
λti − λcij). This problem will be discussed further later; for the moment differenti-

ate the function correctly where possible, and choose the limit from one side for the
derivative at the discontinuity:

∂φ
(i)
ij

∂Wk
=





∂
∂Wk

( 1
2
λti−λcij
2λcij

) 1
2 1

2
λti − λcij ≥ 0

0 1
2
λti − λcij < 0

. (2.61)

Experience shows that such effects are not harmful to the linearization. Continuing
the derivation

∂

∂Wk

(
1
2
λti − λcij
2λcij

) 1
2

=




(
1
2

∂λti
∂Wk
− ∂λcij

∂Wk

)
2λcij −

(
1
2
λti − λcij

)
2
∂λcij
∂Wk

(λcij)
2




· 1

2

(
1
2
λti − λcij
2λcij

)− 1
2

, (2.62)
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and the shock switch introduces another discontinuity,

∂ε
(2)
ij

∂Wk
= k(2) ∂

∂Wk

[
max(Ψi,Ψj)

]
=

{
k(2) ∂Ψi

∂Wk
Ψi > Ψj

k(2) ∂Ψj
∂Wk

Ψi ≤ Ψj

, (2.63)

∂ε
(4)
ij

∂Wk
=

∂

∂Wk

[
max0(k(4) − ε(2)

ij )
]

=

{
−∂ε

(2)
ij

∂Wk
k(4) − ε(2)

ij > 0

0 otherwise
, (2.64)

and again,

∂Ψi

∂Wk
=

∂

∂Wk

∣∣∣∣
pdif
i

pΣ
i

∣∣∣∣ =





∂
∂Wk

(
pdif
i

pΣ
i

)
pdif
i

pΣ
i
≥ 0

− ∂
∂Wk

(
pdif
i

pΣ
i

)
pdif
i

pΣ
i
< 0

, (2.65)

whereby

∂

∂Wk

(
pdif
i

pΣ
i

)
=

∂pdif
i

∂Wk
pΣ
i + pdif

i
∂pΣ
i

∂Wk

(pΣ
i )2

. (2.66)

The derivatives of the pressure differences are comparatively straightforward,

∂pΣ
i

∂Wk
=





∑
j∈N(i)(

∂pi
∂Wi

) +
∑

m∈Bnear(i) 3 ∂pi
∂Wi

k = i
∂pk
∂Wk

k ∈ N(i) ∩ Bnear(i)

0 otherwise

, (2.67)

∂pdif
i

∂Wk

=





∑
j∈N(i)(− ∂pi

∂Wi
) +

∑
m∈Bnear(i)

∂pi
∂Wi

k = i
∂pk
∂Wk

k ∈ N(i) ∩Bnear(i)

0 otherwise

, (2.68)

and can be further simplified by performing the differentiation in primitive variables.
The pseudo-Laplacians are exactly as in Section 2.6.2

∂Li(W )

∂Wk
=





∑
j∈N(i)(−I) +

∑
m∈Bnear(i)(I) k = i

I k ∈ N(i) ∩ Bnear(i)

0 otherwise

, (2.69)

and finally the derivatives of the maximum eigenvalues on the faces are

∂λcij
∂Wk

=

{
1
2
∂
∂Wk

[(Ui + Uj) · nij + (ai + aj)‖nij‖] (Ui + Uj) · nij ≥ 0,
1
2
∂
∂Wk

[−(Ui + Uj) · nij + (ai + aj)‖nij‖] (Ui + Uj) · nij < 0,
, (2.70)

whereby

∂

∂Wk

[
1
2
(Ui + Uj) · nij + 1

2
(ai + aj)‖nij‖

]
=





1
2

∂Ui·nij
∂Wi

+ 1
2
∂ai
∂Wi
‖nij‖ k = i

1
2

∂Uj ·nij
∂Wj

+ 1
2

∂aj
∂Wj
‖nij‖ k = j

0 otherwise

,

∂

∂Wk

[
−1

2
(Ui + Uj) · nij + 1

2
(ai + aj)‖nij‖

]
=

{
similarly,

completing the expression for the Jacobian.
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2.7 Gradient Approximation

In the construction of the viscous fluxes and turbulence source terms, the gradients
of the flow quantities in space are needed. These may be obtained by a least-squares
method, i.e. fitting a plane to a local collection of nodes, but a particularly elegant
and efficient gradient on a general grid is obtained with the Gauss integral theo-
rem (Blazek, 2001). Consider the identity

∫

Ωi

∇Wi dΩ =

∮

∂Ωi

Wi n · d(∂Ω), (2.71)

whereby approximating these integrals numerically gives

Ωi∇WGG
i :=

∑

j∈N(i)

1

2
(Wi +Wj)nij +

∑

m∈B(i)

Wi nm, (2.72)

where including the integral over boundary faces ensures that the approximate sur-
face integral is closed. This procedure is known as the Green-Gauss method for the
gradient.

2.7.1 Green-Gauss Jacobian

Another advantage of Green-Gauss gradients is that their derivatives are particularly
simple. In particular

Ωi
∂

∂Wk

∇WGG
i =





∑
j∈N(i)

1
2
nij +

∑
m∈B(i) nm k = i

1
2
nik k ∈ N(i)

0 otherwise

. (2.73)

Here it is also apparent that the stencil of the gradient consists of immediate neigh-
bours only.

2.8 Viscous Flux Modelling

The modelling of viscous fluxes is not as critical as that of the convective fluxes, as
there are no related stability problems. The exact expressions for the viscous fluxes
are used to model the fluxes on cell faces, and therefore all that is required are the
values of the flow variables and their gradients on the face. The flow variables are
always averaged from the two neighbouring cells,

Uij :=
1

2
(Ui + Uj) , (2.74)

but there are several approaches to obtain the gradient on the face.
Most simply the average of the gradients in the neighbouring cells are taken,

∇Uij :=
1

2
(∇Ui +∇Uj) , (2.75)
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where ∇U is approximated by Green-Gauss, Section 2.7. On the other hand it seems
clear that the most accurate and stable approximation to the gradient normal to the
face is the difference

(∇Uij · nij) ≈
Uj − Ui
‖xj − xi‖

, (2.76)

where xi is the coordinate of node i, so that a better full gradient approximation
might be

∇̃Uij =
Uj − Ui
‖xj − xi‖

∆̃x +
{
∇Uij −

(
∇Uij · ∆̃x

)
∆̃x
}
, (2.77)

where ∆̃x = (xj − xi)/‖xj − xi‖.
Both these expressions for the gradient have the disadvantage of having stencils

consisting of all immediate neighbours of both i and j - leading to a next-neighbour
fill-in in the viscous Jacobian. On the other hand by neglecting completely face-
tangential gradient components we have

∇UTSL
ij ≈ Uj − Ui

‖xj − xi‖
, (2.78)

which also has a simple expressions for its derivatives. Viscous fluxes based on this
gradient will be denoted the Thin Shear-Layer (TSL) fluxes, due to their similarity
to a method in structured codes in which only viscous fluxes normal to the wall are
considered. Here, however, fluxes in all directions are considered.

It may be shown that the use of the TSL gradient results in a consistent vis-
cous flux discretization, and numerical tests show that the influence on the solution
is very minor, even for cases sensitive to viscous effects such as high-lift configura-
tions. Further, it is used in some unstructured codes, on the basis that it improves
robustness (Mavriplis, 1998).

2.8.1 TSL Viscous Flux Derivatives

The numerical viscous fluxes for a given face in conservative variables are

f̂ vij =




0
nlτlx
nlτly
nlτlz

nl(τlmUm + ql)



,

where τ and q are given in Section 2.2.1. If TSL gradients are used, derivatives of µ
and κ are neglected, and if further the differentiation is performed with respect to the
alternative primitive variables, Appendix A.2, then the Jacobian takes a particularly
simple form. With respect to the alternative primitive variables at nodes i and j



2.9. SOLID WALL BOUNDARY CONDITIONS 37

respectively it is

∂f̂ vij
∂Wi/j

= ∓ µ

∆x




0 0 0 0 0

0 θx ηz ηy 0

0 ηz θy ηx 0

0 ηy ηx θz 0

φ±ρ θ
∓∆x
2µ
nlτlx + πx

∓∆x
2µ

nlτly + πy
∓∆x
2µ

nlτlz + πz φ±p θ



,

(2.79)
where

θ = n2
x + n2

y + n2
z

θx =
4

3
n2
x + n2

y + n2
z, θy = n2

x +
4

3
n2
y + n2

z, θz = n2
x + n2

y +
4

3
n2
z,

ηx =
1

3
nynz, ηy =

1

3
nxnz, ηz =

1

3
nxny,

and further

φ+
ρ = −κTL

µρL
, φ−ρ = −κTR

µρR
,

φ+
p =

κ

µρL
, φ−p =

κ

µρR
,

πx = uθx + vηz + wηy,

πy = uηz + vθy + wηx,

πz = uηy + vηx + wθz.

2.9 Solid Wall Boundary Conditions

With regard to numerical implementation there are two fundamental types of bound-
ary conditions to be considered, weak and strong. The type also has a significant effect
on the manner in which the Jacobian must be formulated. Note that all boundary
conditions described in this thesis are specific to discretizations with control points
lying on the boundary, i.e. typically cell-vertex methods.

2.9.1 Slip-Wall

A numerically weak boundary condition is here defined as a boundary condition
imposed by setting only the flux over the boundary face. As an example take the
slip-wall condition, which demands that the velocity component normal to the wall
must be zero. This is imposed using a flux of

f̂ s−w
b =




0
pb nb,x
pb nb,y
pb nb,z

0



, (2.80)

over the slip-wall faces with associated node b.
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2.9.2 Slip-Wall Jacobians

The Jacobian due to this flux written in conservative variables is simply

∂f̂ s−w
b

∂Wc
=
∂f̂ s−w

b

∂Wp
· ∂Wp

∂Wc
=




0 0 0 0 0
0 0 0 0 nb,x
0 0 0 0 nb,y
0 0 0 0 nb,z
0 0 0 0 0



· ∂Wp

∂Wc
, (2.81)

where initially computing the derivatives with respect to the primitive variables Wp,
simplifies the calculation considerably. Note that this Jacobian appears on the block
diagonal of the full Jacobian, as the flux makes a contribution to the residual at node
b, using only flow quantities from node b. The stencil therefore consists of only the
node itself, and hence implementation is particularly simple.

2.9.3 No-Slip Wall

A numerically strong boundary condition is here defined as a condition imposed by
setting the values of the flow variables on the boundary directly. For example a no-
slip isothermal wall condition, which demands that the flow velocity at the wall is
zero, and the temperature is a given constant, may be numerically enforced simply by
setting the velocity vector on the surface to zero, and the temperature to the specified
value.

2.9.4 No-Slip Wall Jacobians

Strong boundary conditions represent a challenge when building the full Jacobian
of the scheme. When the velocity vector is set to zero for a node on a viscous
wall, the momentum components of all fluxes passing into that boundary cell are
discarded. This alters the Jacobians of these fluxes, and so it is not only the diagonal
of the Jacobian that must be modified for this condition. This holds for all strongly
implemented boundary conditions.

The situation may be clarified by rewriting the equation system R(W ) = 0 in the
form

(I −B) ·R(W ) = 0, B ·W = 0, (2.82)

where B is a projection matrix that extracts the component of the residual to be
discarded, which in the case of the no-slip wall is the boundary velocity (Giles et al.,
2003).

By considering a small perturbation ∆W , (2.82) may be linearized as

(I −B) · ∂R
∂W
·∆W = 0, B ·∆W = 0, (2.83)

which formally specifies that all derivatives of the momentum components of the
boundary cell residual are zero, and that all local perturbations on the boundary are
disallowed, B ·∆W = 0. Note that the first condition implies that the Jacobian will
be singular, as

∂RρU
b

∂Wi
= 0, ∀i, (2.84)
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where RρU are the momentum components of the residual, so the Jacobian will have
three rows of zeros for each viscous wall node. This is the direct result of having
three fewer degrees of freedom in the problem for each no-slip boundary node, while
maintaining the same number of equations.

Invertability may be recovered either by removing the superfluous degrees of free-
dom, or by merging the two equations of (2.83) into

[
B + (I −B) ·R

]
·∆W = 0, (2.85)

whereupon a diagonal block of the Jacobian lying on a no-slip wall has the form

∂Rb

∂Wb
=




∂Rρb
∂ρb

∂Rρb
∂(ρu)b

∂Rρb
∂(ρv)b

∂Rρb
∂(ρw)b

∂Rρb
∂(ρE)b

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

∂RρEb
∂ρb

∂RρEb
∂(ρu)b

∂RρEb
∂(ρv)b

∂RρEb
∂(ρw)b

∂RρEb
∂(ρE)b




. (2.86)

Further since ∆W on a no-slip wall must be zero, ∂R/∂(ρU)b may also always con-
sistently be taken to be zero.

2.10 Permeable Boundary Conditions

The computational domain is a finite grid, whereas a typical problem in aerodynamics
is an aerofoil moving at a constant speed through an infinite domain. Hence at the
edges of the grid an external flow or farfield boundary condition must be imposed. At
such a boundary some flow information is transported into the computational domain
from the ambient flow, whilst other information leaves the domain. In order to specify
a physically consistent boundary condition it is necessary to know exactly which
flow quantities are transported in which direction. This information is obtained by
considering characteristic theory for the compressible Euler equations. Viscous effects
are small in the farfield, except possibly in the wake of a body, and are neglected.

The derivation of the characteristic variables will be performed with respect to
the primitive variables to simplify the algebra. The Euler equations of (2.2), locally
linearized with respect to a state W0 are

∂Wi

∂t
+ Aij,k(W0)

∂Wj

∂xk
= 0, (2.87)

where the subscripts are no longer node indices, but tensor indices, and the summation
convention has been used on j and k. In primitive variables

A · κ =




U · κ κxρ κyρ κzρ 0

0 U · κ 0 0 κx/ρ

0 0 U · κ 0 κy/ρ

0 0 0 U · κ κz/ρ

0 κxρa
2 κyρa

2 κzρa
2 U · κ



, W =




ρ

u

v

w

p



, (2.88)
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and κ is an arbitrary vector which fixes the direction in which we desire to know the
information transport properties of the equations. When deriving boundary condi-
tions κ is the surface normal vector. The eigenvalues of A · κ describe the speed of
propagation of the various waves in the direction κ, the characteristic speeds, and are

λ =
(
λ+, λ−, λ0, λ0, λ0

)
,

where
λ+ = U · κ+ a, λ− = U · κ− a, λ0 = U · κ.

The corresponding eigenvectors describe the quantities transported with these waves
in terms of the primitive variables; they are the rows of the matrix X, where

X =




0 κx κy κz 1/(ρa)

0 −κx −κy −κz 1/(ρa)

κx 0 κz −κy −κx/a2

κy −κz 0 κx −κy/a2

κz κy −κx 0 −κz/a2



,

and result in the characteristic variables of transported quantities Λ,

Λ =




Λ+

Λ−

Λ0


 = X(W0, κ) ·W =




p/(ρ0a0) + U · κ
p/(ρ0a0)− U · κ

(ρ− p/a2
0)κ+ U × κ




=




p/(ρ0a0) + uκx + vκy + wκz

p/(ρ0a0)− uκx − vκy − wκz
(ρ− p/a2

0)κx + vκz − wκy
(ρ− p/a2

0)κy + wκx − uκz
(ρ− p/a2

0)κz + uκy − vκx



, (2.89)

and X(W0, κ) again refers to the fact that the result is only valid linearly local to
W0, and with respect to the direction κ.

That the Λ are the transported quantities, with transport speeds λ may easily be
seen by substituting (2.89) into the Euler equation in primitive variables (2.87), to
obtain the Euler equations in characteristic variables:

∂Λi

∂t
+ λiδij,k

∂Λj

∂xk
= 0,

where δij,k is the Kronecker-Delta, repeated three times (on the index k), once for
each coordinate direction, and there is no summation on i above.

Having now complete information about the characteristic speeds and variables,
it is possible to derive permeable boundary conditions as follows: by considering the
signs of the characteristic speeds, determine how many flow quantities are transported
onto the boundary, and how many are transported away. For example in the case
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of subsonic flow out of the domain λ+ and λ0 are positive while λ− is negative,
implying that Λ+ and Λ0 are transported onto the boundary from the field, and Λ−

is determined at the boundary. Hence one may choose a single flow variable to be set
on the boundary termed the physical boundary condition; in general one must choose
a set of variables corresponding to the number of negative eigenvalues3.

Having chosen a variable, or set of variables to specify on the boundary, the
remaining flow quantities are found as solutions of the numerical boundary conditions.
Since the characteristic variables are transported directly onto the boundary, we must
have

Λi
b(Wc) = Λi

e(Wc)

for all those Λi for which λi is positive. Here b signifies a point on the boundary, and
e an imaginary point immediately outside the domain near b. The linearization in
the computation of the characteristic variables is performed with respect to the state
at b.

In TAU the farfield boundary condition is implemented as follows: for each bound-
ary point λ are found, and so the condition type determined, subsonic or supersonic,
inflow or outflow. For subsonic outflow the pressure at e is specified as the physical
condition, for subsonic inflow pressure and velocity at e are specified. The boundary
is then regarded as a Riemann problem and solved as such for the flux through the
associated boundary face, resulting in a weak boundary condition. The approximate
Riemann solver used bears no relation to that used for the interior fluxes.

The derivation of the numerical boundary condition for the subsonic outflow case
is given as an example in the following section.

2.10.1 Subsonic Outflow Condition

Consider the case of specifying the pressure pBC on a subsonic outflow surface,
whereby κ is chosen to be the surface normal vector n. From the previous section the
conditions at the boundary are

pb = pBC - one physical condition

Λ+
b (Wb) = Λ+

e (Wb) - one numerical condition

Λ0
b(Wb) = Λ0

e(Wb) - three numerical conditions

and so the numerical conditions expanded read

(Ue · n) + pe/(ρbab) = Λ+
b (Wb),

(ρe − pe/a2
b)n+ Ue × n = Λ0

b(Wb).

By substituting pBC for pe in both equations, and taking the dot product of the
second equation with n, a simple expression for ρe is obtained. An expression for Ue
then follows directly giving:

We =




ρe

Ue

pe


 =




Λ0
b · n+ pBC/a

2
b(

Λ+
b − pBC/(ρbab)

)
n+ n× Λ0

b

pBC


 , (2.90)

3The choice of variables to set is not completely free however; it is obviously not possible to set
Λ+ on a subsonic outflow boundary for example. See (Hirsch, 1989) for a complete discussion.
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whereby it has been noted that the tangential velocity component Ut satisfies

Ut = n× Λ0 = n× (U × n) = U − (U · n)n.

Equation (2.90) may be simplified further by substituting in the expressions for Λb,
and is the desired boundary condition.

2.11 Turbulence Model Discretization

Two classes of turbulence models are used in this thesis: one-equation models typified
by Spalart-Allmaras (SA) (Spalart & Allmaras, 1992), introduce a transport equation
for a quantity closely related to the turbulence eddy viscosity, denoted ν̃t. Two-
equation models introduce transport equations for the turbulent kinetic energy k and
one other quantity, typified by the Wilcox k − ω model.

In both cases the transport equations are given by

∂(ρφ)

∂t
+∇ · (ρUφ− µte∇φ)− S, (2.91)

where ρφ is the transported quantity, convected with the flow, µte is a turbulence
effective viscosity, and S is a source term acting as a volume contribution to the
residual rather than a conservative flux.

The source terms in all models considered here are discretized such that the source
term at node i requires flow quantities and gradients at node i only, i.e. they have
a stencil of immediate neighbours. Thus use of only 1st-order accurate convective
fluxes together with the choice of TSL gradients in the diffusion terms, means that
the stencil of the entire turbulence model discretization may consist only of immediate
neighbours. This reduces the fill-in of the Jacobian, and hence allows the effective
use of implicit methods for the turbulence equations.

In this section the SA and closely related Spalart-Allmaras-Edwards (SAE) (Ed-
wards & Chandra, 1996) models are fully described as they are implemented in TAU.

2.11.1 Expression for the Eddy-Viscosity

Given the SA/SAE transported quantity ν̃t at a given point, there is an explicit
algebraic expression for the eddy-viscosity νt, there:

νt =
χ3

χ3 + c3
v1

ρmax(ν̃t, 0), (2.92)

χ =
ν̃t
νl
, (2.93)

where cv1 is a turbulence model constant taken as 7.1.

2.11.2 Convective Fluxes

In TAU the convective terms occurring in all turbulence models are discretized using
the same fully upwinded scheme with piecewise constant face reconstruction (re-
gardless of the discretization of the mean-flow convection), having therefore order of
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accuracy ∆x in space. If the turbulent transported quantity is (ρφ) then the flux
function may be written

f̂ c,tij = 1
2
qij(ρiφi + ρjφj)− 1

2
|qij|(ρjφj − ρiφi), (2.94)

where
qij = 1

2
(Ui + Uj) · nij, (2.95)

so that if qij > 0, (2.94) is independent of Wj and vice versa.

2.11.3 Diffusion Fluxes

Similarly to the convective fluxes, all turbulence model transport equations share a
diffusive flux discretization. Again using ρφ for the transported quantity,

f̂ v,tij = µte∇φ · n (2.96)

≈ µte
φj − φi
‖∆x‖ , (2.97)

i.e. TSL gradients, where the effective turbulent viscosity µte is different from the
effective viscosity of the mean-flow equations µe, and is defined differently for one-
and two-equation models. For SA/SAE it is simply

µte =
µl + µtt
σm

, (2.98)

µl = 1
2
(µl,i + µl,j), (2.99)

µtt = 1
2
(ρiν̃t,i + ρj ν̃t,j) (2.100)

where σm = 2
3

is a model constant.

2.11.4 Spalart-Allmaras Source Terms

The Spalart-Allmaras source term at a given node (indices dropped for simplicity) is

SSA = P −D + d,

P = cb1 · ρν̃t ·
(
|ω|+ fv2 ·

ρν̃t
ρκ̄2d2

wall

)
,

D = cw1 ·
(ρν̃t)

2

ρd2
wall

· fw,

d =
cb2
σm

ρ‖∇ν̃t‖2,

where P , D and d are production, destruction and diffusion terms respectively, dwall
is the distance to the nearest wall, and

fv2 = 1− χ

1 + χ · fv1
, fv1 =

χ3

χ3 + c3
v1

, χ =
µ̃t
µl

=
ρν̃t
µl
,

fw = g · g1/6
lim, g = r + cw2 ·

(
r6 − r

)
, r =

rs
ω + fv2 · rs

,

rs =
ρν̃t

ρκ̄2d2
wall

, glim =
1 + c6

w3

g6 + c6
w3

,
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where ω is the vorticity,

ω2 =

(
∂u

∂y
− ∂v

∂x

)2

+

(
∂v

∂z
− ∂w

∂y

)2

+

(
∂w

∂x
− ∂u

∂z

)2

, (2.101)

κ̄ = 0.4100 is the Karman constant, and all quantities remaining undefined are other
model constants. In particular

cb1 = 0.1355, cb2 = 0.6220, cv1 = 7.1000,

cw1 =
cb1
κ2

+
1 + cb2
σm

, cw2 = 0.3000, cw3 = 2.0000,

σm = 0.6667.

2.11.5 Spalart-Allmaras-Edwards Source Terms

The only difference between the SA and SAE models lies in the source term. The
SAE source term for a single node is

SSAE = P −D + d,

P = cb1 · ρν̃t · frot · sfac · σ,
D = cw1ρν̃t · rs · fw,
d =

cb2
σm

ρ‖∇ν̃t‖2,

where once again P , D and d are production, destruction and diffusion terms respec-
tively, dwall is the distance to the nearest wall, and

σ =
√

max(vσ, 0), sfac = fv1 +
1

max(χ, ε)

and frot ≡ 1 if no rotation correction is used. In addition

vσ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2

− 2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

,

and

s = max(sfac · σ, ε) fv1 =
χ3

χ3 + c3
v1

, χ =
µ̃t
µl

=
ρν̃t
µl
,

fw = g · g1/6
lim, g = r + cw2 ·

(
r6 − r

)
, r =

tanh(rs/s)

tanh(1)
,

rs =
ρν̃t

ρκ̄2d2
wall

, glim =
1 + c6

w3

g6 + c6
w3

,

where ε = 10−16 prevents a divide by zero condition, and where all remaining unde-
fined quantities are model constants, taking values identical to those given in Sec-
tion 2.11.4.
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2.11.6 Boundary Conditions

Farfield boundary conditions are trivial, as there is only one convective speed in the
turbulence equations, the flow speed, and no production or destruction. For fully
turbulent calculations some fraction of the laminar viscosity at the farfield is taken
for ν̃t,∞, i.e.

ν̃t,∞ = σ∞νl,

where σ∞ is some turbulence model constant. On viscous walls ν̃t is set to zero,
corresponding to the absence of turbulent eddies very near to the wall.

2.12 Summary

A complete finite volume scheme on unstructured grid has been described for the
Favre averaged Navier-Stokes equations, including a description of certain one-equation
turbulence models. In parallel with the description of the discretization, the deriva-
tives of the terms involved have been calculated and described, insofar as this is pos-
sible in limited space. For those terms of the discretization for which a particularly
compact Jacobian exists, or for which through a suitable simplicifaction a compact
Jacobian can be produced, the Jacobians have been given and the simplification jus-
tified. In particular, an original argument has been given for a common simplification
of the derivatives of the JST scheme (that of the assumption of constant coefficients).
No justification for this approximation has been seen previously in the literature by
the author.

The solution of the discretized equations presented in this chapter is considered
in the remainder of the thesis. The Jacobians developed are used as part of an
implicit method, whereby the complexity of these Jacobians, demonstrated here in
Section 2.6.3, limits the extent to which the exact derivatives can be applied. On the
other hand the exact Jacobians without approximation will be seen to be useful in
other contexts, in particular in aerodynamic design, Chapter 5.



Chapter 3

Approximately Factored Implicit
Schemes

3.1 Introduction

An implicit method for convergence acceleration for stationary solutions of the RANS
equations is developed based on the requirements that (i) the memory usage should
not significantly exceed that of Runge-Kutta, (ii) implementation should be relatively
easy, (iii) parallelization should be possible and efficient, (iv) the method should be
at least as robust as RK. A method satisfying these conditions would then be a slot-
in substitute for Runge-Kutta in any application. If in addition it achieves better
convergence performance in terms of CPU time, then the performance of the solver
will have been improved with no drawbacks.

The method developed in this chapter is a novel variant of the Lower-Upper Sym-
metric Gauss-Seidel (LU-SGS) scheme, which has its origins in CFD in (Jameson &
Turkel, 1981), which considers a Newton method with a very lax Jacobian approx-
imation, resulting in a linear system that is inexactly solved using a single step of
a symmetric Gauss-Seidel method. The name LU-SGS implies in particular the use
of a first-order Jacobian, introduced in (Yoon & Jameson, 1986a), and the use of
the resulting scheme as a FAS multigrid smoother (Yoon & Jameson, 1986b; Yoon
& Jameson, 1988). The novel aspects of the scheme presented here are described in
Section 1.1.2.

The body of this chapter is divided into three sections. Section 3.2 contains a full
description of the modifed LU-SGS scheme as it applies to finite volume discretiza-
tions of the RANS equations on unstructured grids, including details such as implicit
handling of dual-time iterations. Section 3.3 contains a detailed theoretical analysis
of the scheme; principally an assessment of the stability of the Gauss-Seidel itera-
tion by means of a generalized theory of diagonal dominance, Fourier analysis, and a
demonstration of the time-accuracy of the scheme. Section 3.4 is then concerned with
numerical results, the cornerstones of which are an investigation of the effects of the
various approximations made in Section 3.2, parallel performance results, and finally
a comparison of the relative efficiencies of LU-SGS and Runge-Kutta as multigrid
smoothers for large engineering test cases. In the following “Runge-Kutta” refers to
the explicit Runge-Kutta method with residual smoothing, local time stepping and
FAS multigrid, as described in (Jameson & Baker, 1984).

46
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3.2 Description of the Scheme

Starting with the governing equations in a semi-discrete form, from (2.25):

∂

∂t

∫

Ωi

Wi dΩ +Ri(W ) = 0, (3.1)

and assuming that the node i is at the baricenter of the control volume Ωi, and further
that W varies linearly within Ω, we have

|Ωi|
dWi

dt
+Ri(W ) = 0, (3.2)

where |Ωi| is the volume of Ωi. The system is further discretized in time. A somewhat
general three-level discretization may be written

|Ωn
i |M̂n

i

∆tn
∆W n

i = − β

1 + α
Rn+1
i − 1− β

1 + α
Rn
i +

α

1 + α

|Ωn−1
i |M̂n−1

i

∆tn−1
∆W n−1

i , (3.3)

Here ∆W n = W n+1−W n, Rn = R(W n), and M̂ is the mass matrix. The superscripts
denote the time level, with all quantities up to and including time level n known, and
W n+1 unknown. Since only the steady state solution is of interest, the mass matrix
is lumped: M̂ = I, and we set α = 0, which eliminates dependence on the solution
at time tn−1, giving

|Ωn
i |

∆tn
∆W n

i = −βRn+1
i − (1− β)Rn

i . (3.4)

Equation (3.4) is a non-linear algebraic system for ∆W n, which may be solved by ap-
plication of Newton’s method as follows. The system is linearized about the solution
at time tn, so that

Ri(W
n+1) = Ri(W

n) +
∂Ri(W

n)

∂t
∆tni + O(∆t2),

= Ri(W
n) +

∑

j∈M(i)

∂Ri(W
n)

∂Wj

∂W n
j

∂t
∆tni + O(∆t2), (3.5)

where the time step ∆t may vary within the grid such that the CFL number is
constant, and where M(i) is the set of grid points in the stencil of Ri, emphasising
that contributions from ∂Ri/∂Wj where j 6∈ M(i) are zero. Substituting (3.5) into
(3.4), and applying

∂W n
j

∂t
∆tn = ∆W n

j + O(∆t2), (3.6)

results in the linear algebraic system

{ |Ωi|
∆ti

δij + β
∂Ri(W

n)

∂Wj

}
·∆W n

j = −Ri(W
n), (3.7)

A(W n) ·∆W n = −R(W n), (3.8)

where A represents the implicit system matrix. Equation (3.8) encapsulates the
implicit scheme: the right-hand side (RHS) of this equation is known as the RHS of
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the scheme and contains all elements of the spatial discretization. However if Ŵ is the
exact solution of the discrete system, then R(Ŵ ) ≡ 0 and therefore by (3.8), ∆W = 0
independently of A, provided only that it is non-singular. Hence the left-hand side
(LHS), of (3.8) has no effect on the converged solution, and may be freely chosen to
improve convergence.

The method for solving the steady state system R(W ) = 0 might then proceed as
follows:

• Linearize (3.4) about W n; in particular evaluate A(W n) to form (3.8).

• Solve (3.8) to obtain ∆W n and hence W n+1.

• Repeat until ∆W n < εtol or ‖R(W n)‖ < εtol.

For 1/∆t = 0 and β = 1 the method reduces to Newton’s method which has
the properties of quadratic convergence for W 0 in the domain of approximate zeros of
R (Butcher, 1987). In practice the region of W 0 for which the method converges tends
not to contain the typical initial condition, which is taken as constant flow values,
everywhere conforming to the farfield condition (while other boundary conditions are
violated), which is possible as time accuracy is not required. Thus some distinct
start-up technique is required.

This chapter considers only methods which use approximate Jacobians (known as
approximate Newton methods), inexact linear system solvers (inexact Newton meth-
ods), and finite values of ∆t. Such methods tend not to have the undesirable proper-
ties of Newton methods, and in addition are much easier to formulate, as the Jacobian
need not be calculated exactly. Further the additional flexibility in the construction
of such methods allows the avoidance of many problems traditionally associated with
implicit schemes, namely large memory requirements, high computational cost per
iteration, and difficulty of parallelization.

There are two critical choices to be made when defining an implicit method, the
approximation to the Jacobian, and the method for solution of the resulting linear
system. These choices cannot be made independently, as discussed in Section 1.1, it
making little sense to solve a very approximate system to extremely high accuracy,
and just as little to spend a great deal of effort building an exact Jacobian, and then
incurring a large error by solving very approximately. Since it is the aim of this chap-
ter to develop a method of very low memory requirements, and it is expected that
many approximations to the Jacobian must be made in order to achieve this goal,
only low-powered linear solvers are candidates. There are only two main possibilities,
Jacobi and Gauss-Seidel, with the option perhaps to use a line solver in structured
regions of the grid. Symmetric Gauss-Seidel has the advantage of achieving commu-
nication between every pair of nodes in the grid, within one iteration, and is therefore
the starting point. This method is described in the next section, followed by details
of the approximate Jacobian.

3.2.1 Symmetric Gauss-Seidel (SGS) Solution

The Gauss-Seidel method may be written as follows: given a non-singular linear
system A · x = b, decompose the system matrix A into a purely lower triangular part
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L, a diagonal part D and and upper triangular part U such that

A · x = (L +D + U) · x = b. (3.9)

Of course in the context of the implicit method A is the implicit system matrix, x is
the update ∆W , and b is the residual −R. Then two possible Gauss-Seidel iterations
with unknown xn are

(D + L)xn+1 = b− U · xn, and

(D + U)xn+1 = b− L · xn,

whereby if either of these iterations converges, then xn+1 = xn = x the solution of the
linear system. These iterations shall be known as the forward sweep and backward
sweep respectively. Note that for the forward sweep xn+1

i is a function of all xn as
well as xn+1

j for j < i, while for the backwards sweep xn+1
i is a function of all xn and

xn+1
j for j > i. Hence for a composite of the two sweeps, for instance

(D + L)x∗ = b− U · xn,
(D + U)xn+1 = b− L · x∗, (3.10)

xn+1
i will be a function of all xn and xn+1. This corresponds to the Courant-Friedrichs-

Lewy (CFL) condition being automatically satisfied. This is the Symmetric Gauss-
Seidel (SGS) iteration.

In the case of a single SGS iteration, which will be seen to be the optimal number
of iterations in our case, and by imposing the restriction that x0 = 0, (3.10) reduces
to

(D + L)x∗ = b,

(D + U)x1 = Dx∗, (3.11)

which may be written
(D + L) ·D−1 · (D + U)x1 = b, (3.12)

which is the so-called LU-SGS iteration. Equation (3.12) highlights an alternative
interpretation of the method, as the system A · x = b has been replaced by an
alternative system Ā · x = b, the two systems being related by

A = (L+D + U)

= (D + L) ·D−1 · (D + U)− L ·D−1 · U
= Ā− L ·D−1 · U, (3.13)

i.e. an approximate factorization of A with factorization error L ·D−1 · U .
The SGS method introduces an iteration on a linear system in addition to the

iteration of the Newton method. In the following an iteration on a linear system,
by SGS or some other iterative linear solver, will be referred to as an inner or linear
iteration. An iteration on the non-linear system will be referred to as an outer or non-
linear iteration. A non-linear iteration can be characterized by the need to re-evaluate
the non-linear residual R(W ) at least once.
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For the purposes of comparison, the Jacobi method for solution of the linear
system is also examined in Section 3.4, written

Dxn+1 = b− (U + L) · xn, (3.14)

whereby Jacobi(n) will refer to a scheme with n Jacobi iterations per non-linear step.
In constrast to SGS, two nodes in the grid with a shortest connecting path of m grid
edges, will only communicate with each other after m Jacobi iterations. Hence the
CFL condition is limited by m times the local cell dimension.

3.2.2 Inviscid Flux Jacobians

Next the construction of the Jacobian of the method is described. Consider the
inviscid flux balance on an control volume using a numerical flux f̂ , and a numerical
boundary flux f̂b. Let the values on the left and right sides of the face WL, WR be
approximated by piecewise constant reconstruction of the cell values, so thatWL = Wi

and WR = Wj, then

Ri =
∑

j∈N(i)

f̂(WL,WR;nij) +
∑

m∈B(i)

f̂b(WL;nm)

=
∑

j∈N(i)

f̂(Wi,Wj;nij) +
∑

m∈B(i)

f̂b(Wi;nm), (3.15)

where as before N(i) is the set of all immediate neighbours of point i in the grid, and
B(i) is the set of all neighbouring boundary faces. Assuming that f̂ may be written
in dissipation form

f̂(WL,WR;nij) =
1

2
(f c(WL) + f c(WR)) · nij −

1

2
D(WL,WR;nij), (3.16)

where f c is the exact convective flux tensor given in (2.4), and further noting that
the central part of this flux consists of terms of the form of the product f c · n, allows
rewriting (3.15) as

Ri =
1

2
f c(Wi) ·

∑

j∈N(i)

nij +
1

2

∑

j∈N(i)

f c(Wj) · nij

− 1

2

∑

j∈N(i)

D(Wi,Wj;nij) +
∑

m∈B(i)

f̂b(Wi;nm). (3.17)

For a closed control volume i, not touching any boundaries
∑

j∈N(i)

nij = 0, (3.18)

and thus for such a control volume the dependence of Ri on Wi occurs only over the
dissipation D. Differentiating Ri with respect to Wi results in the diagonal of the
Jacobian matrix, which for a non-boundary control volume is now just

∂Ri

∂Wi

=
1

2

∑

j∈N(i)

∂D(Wi,Wj;nij)

∂Wi

. (3.19)
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Thus choosing a flux function with a particularly simple dissipation component deriva-
tive, results in a particularly simple Jacobian matrix diagonal. For example taking
the first order Lax-Friedrichs numerical flux

f̂LF (WL,WR;n) =
1

2
(F (WL;n) + F (WR;n))

− 1

2
|α| (WR −WL), (3.20)

|α| =

∣∣∣∣ρ
(
∂F

∂W

)∣∣∣∣
= |U · n|+ ‖n‖a, (3.21)

and treating α as constant with respect to W when differentiating, gives the Jacobian
of the convective residual

∂DLF (Wi,Wj;nij)

∂Wi
=

1

2
|α|I. (3.22)

So that the derivative of the dissipation, and by (3.19) the diagonal of the Jacobian
matrix, is a positive scalar multiple of the identity matrix.

In contrast off-diagonal blocks of the Jacobian matrix are in general dense, and
are constructed exactly for the Lax-Friedrichs scheme as

∂Ri

∂Wj
=

1

2

∂f cj
∂Wj

− 1

2
|α|I, (3.23)

where the convective flux-Jacobian ∂f/∂W is given explicitly in Appendix A.
Note that for the LU-SGS method, the only part of the Jacobian that must be

stored and inverted directly is the block diagonal, see (3.11). Thus the property
described by (3.22) is very desirable: firstly it implies that rather than having to
store an N × N matrix at each grid point, it is only necessary to store a scalar,
reducing the memory cost by 25 times for the Euler equations. Secondly the cost of
inverting the diagonal is reduced from that of an N ×N matrix inversion to a single
division.

Of course these savings are only preserved if all other components of the LHS
discretization (f̂b, viscous fluxes, turbulence fluxes and sources, etc.), have Jacobians
whose diagonal blocks are also diagonal. This will be discussed in the following
sections.

3.2.3 Viscous Flux Jacobians

The construction of the viscous Jacobian proceeds in the same manner as that of the
inviscid. First the operator is simplified such that the stencil of Ri contains only the
immediate neighbours of the point i. In the case of the viscous fluxes this is done
by replacing the full, Green-Gauss gradient based flux by the TSL approximation of
Section 2.8.

The off-diagonal entries of the Jacobian may be taken directly from the formu-
lae given in Section 2.8.1, but the Jacobian block diagonal is not diagonal itself,
damaging the simplicity and memory requirements of LU-SGS. This is corrected by
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approximating the viscous Jacobian in diagonal blocks by the largest eigenvalue of
the operator. The eigenvalues of (2.79) are

λ

(
∂f̂ vij
∂Wi

)
=




0

− (γ−1)κA2

ρ∆x

−4
3
µA2

ρ∆x

−µA2

ρ∆x

−µA2

ρ∆x




, (3.24)

so that the proposed Jacobian approximation is

∂f̂ vij
∂Wi

≈ λmax

(
∂f̂ vij
∂Wi

)
· I = max

{∣∣∣∣
4

3

µA2

ρ∆x

∣∣∣∣ ,
∣∣∣∣
(γ − 1)κA2

ρ∆x

∣∣∣∣
}
· I, (3.25)

which can be simplified further using (γ − 1)κ = γµ/Pr (for non-dimensionalized
quantities such that < = 1). For turbulent flow the viscosity µ, is replaced by its
effective value.

An analogous treatment of boundary conditions is employed. As already seen,
boundary conditions contribute only to the block diagonal of the Jacobian, and in
general produce non-diagonal blocks which are here approximated by their spectral
radii. For example the slip-wall Jacobian of Section 2.9.1 is approximated as

∂f̂ s−wb

∂Wc
≈ ρ

(
∂f̂ s−wb

∂Wc

)
· I = (γ − 1) |unx + vny + wnz| · I. (3.26)

Boundary conditions whose spectral radii are too complex to evaluate conveniently are
approximated using the maximum eigenvalue of the local flow, which is particularly
appropriate for the farfield condition. Neglecting the contribution of a boundary
condition completely would artificially reduce the diagonal dominance of the Jacobian,
leading to a stiffer linear system, and is therefore avoided. The no-slip wall condition
may be accounted for simply by allowing no updates of the momentum equations at
the wall nodes.

3.2.4 Turbulence Jacobians

In this work only the Spalart-Allmaras (SA) and Wilcox k − ω turbulence models
are considered explicitly (Wilcox, 1998). Given the number of available models, an
individual treatment of each one is impractical. Rather numerical evidence suggests
that most 1-equation models are sufficiently similar to SA to converge well with a
Jacobian obtained from SA, and similarly for 2-equation models and k − ω. In the
context of implicit methods this may be viewed as the use of different models on the
RHS and LHS, similar to the treatment of the convective fluxes.

Mean-Flow Turbulence Coupling

A critical design decision is that of either treating the turbulence and mean-flow
equations as a coupled system, or to artificially decouple them. Decoupling is by far
the most widely used strategy, for two reasons:
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• The mean-flow equations have a very different character to the turbulence equa-
tions. For mean-flow, stability considerations are dominated by acoustic waves,
while the stability of the turbulence equations is dominated by source terms.

• The two sets of equations are coupled over the turbulent viscosity µt in the mo-
mentum and energy equations, a turbulent contribution to the energy equation,
and for models involving the turbulent kinetic energy k, also over the perfect
gas relations. Further, the expressions for source terms and µt tend to be com-
plex. Accounting for all this coupling in the Jacobians in an accurate manner
for each and every model is difficult.

The unknowns and convective fluxes are hence spilt such that

f c = f̄ c + f̃ c = f̄ c(W̄ , W̃ ) + f̃ c(W̄ , W̃ ), (3.27)

where for a 2-equation k − ω-like model

f̄ c · n =




ρV
ρV u+ pnx
ρV v + pny
ρV H

0
0



, f̃ c · n =




0
0
0
0

ρV k
ρV ω



, (3.28)

and similarly for the unknown vector. Hence the Jacobian may be written

∂f c

∂W
=




∂f̄ c

∂W̄

∂f̄ c

∂W̃

∂f̃ c

∂W̄

∂f̃ c

∂W̃


 , (3.29)

and a decoupling of the equations is accomplished by setting

∂f̄ c

∂W̃
= 0,

∂f̃ c

∂W̄
= 0. (3.30)

For convenience all turbulent quantities are treated as constants within the mean flow
equations, e.g. µt which is also a function of mean-flow variables.

The implicit scheme of (3.8) based on this decoupling may then be written
( |Ω|

∆t̄
+
∂R̄

∂W̄

)
∆W̄ = −R̄,

(
|Ω|
∆t̃

+
∂R̃

∂W̃

)
∆W̃ = −R̃, (3.31)

whereby it must not generally be the case that ∆t̄ = ∆t̃. The submatrix ∂R̃/∂W̃ is
simplified in a similar manner to ∂R̄/∂W̄ , and for the same reasons. In particular
the sum of convective flux-Jacobians over an internal cell is a diagonal matrix1.

1In TAU convective fluxes for the turbulence equations are modelled using a first-order upwind
scheme, and so the LHS and RHS of the implicit system match much better for the turbulence
equations than for the mean-flow equations.
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On an implementational note: it is not necessary to solve the two systems of
(3.31) separately; in fact it is more efficient in terms of operation counts to formulate
and solve them simultaneously, as many quantities (e.g. the coefficient of artificial
viscosity) appear in the fluxes and Jacobians of both systems.

Turbulence Diffusion Fluxes

Referring to Section 2.11.3 for the definition of the turbulence diffusion fluxes based
on TSL flow gradients, the Jacobian can be seen to be

∂f̂ v,tij
∂W[ji]

= ±Aijµ
t
e

∆xij
, (3.32)

with respect to primitive variables. For 2-equation turbulence models this derivation
proceeds independently for each turbulence variable, and hence the resulting 2 × 2
matrix is diagonal.

Turbulent wall boundary conditions are treated strongly, therfore the discussion
of Section 3.2.3 with regard to the no-slip wall applies. It remains to consider source
terms.

Source terms for Spalart-Allmaras

The sources of SA contain terms of the form ∂u/∂x. A full differentiation of these
terms with respect to all variables would imply differentiation of the gradient of
U , resulting in off-diagonal terms in the Jacobian. In contrast, differentiation of
the sources with respect to the turbulent variables alone results in a block diagonal
Jacobian; hence decoupling the mean-flow and turbulence equations has simplified
the scheme dramatically.

Even so, the complexity of the expressions for the source terms encourages further
approximations to the Jacobian. In particular the exact differentiation is complicated
by the terms rs and g in Section 2.11.4, so several considerable approximations are
made (e.g. constant χ) to obtain the approximate Jacobians of the production, de-
struction and cross-flow terms for LU-SGS:

dP

d(ρν̃t)
≈ cb1

(
|ω|+ 2fv2

ρν̃t
ρκ2d2

wall

)
, (3.33)

dD

d(ρν̃t)
≈ 2cw1k

ρν̃t
ρκ2d2

wall

fw, (3.34)

dd

d(ρν̃t)
≈ −cb2s

2

ρ
(∇ν̃t · ∇ρ). (3.35)

It is common practice in turbulence modelling to ensure that the source term Jacobian
is positive thereby avoiding the use of a limiter (Spalart & Allmaras, 1992). Since
the source term is subtracted from the residual, e.g. in 2.91, only negative terms are
kept:

dSSA
d(ρν̃t)

≈ − dD

d(ρν̃t)
+ min

{
dd

d(ρν̃t)
, 0

}
≤ 0. (3.36)

This treatment has a serious deficiency: it may be the case that the production and
destruction Jacobians are both very large, but almost cancel each other out. But from



3.3. ANALYSIS OF THE SCHEME 55

(3.36) a large contribution will be made to the Jacobian, which may be interpreted
as a reduction of the time step. In such a situation very poor convergence will occur.
However in this case stability considerations outweigh efficiency considerations.

3.2.5 Dual-Time Treatment

Dual-time is a time-accurate stepping method consisting of solving an implicit time
discretization, such as a backward difference formula (BDF), by writing the solution
at each time step as a steady state problem, and solving this using known, time-
inaccurate methods, see (Jameson, 1991).

In this case the time derivative of (3.2) is discretized with a BDF, and the resulting
algebraic system is solved by progressing the equation

∂W ∗

∂τ
= −

{ |Ω|(3W ∗ − 4W n +W n−1)

2∆t
+R(W ∗)

}
= −R∗(W ∗) (3.37)

to a steady state in τ . Here τ is an artificially introduced pseudo time, W ∗ is the
iterate, and the iterations are known as inner iterations. At a steady state ∂W ∗/∂τ =
0 and hence W ∗ = W n+1. This system strongly resembles the original problem
(3.2) for the steady state case, and so LU-SGS may be applied here. Note that the
modification to the residual modifies the Jacobian in the scheme as

∂R∗

∂W ∗ =
∂R

∂W ∗ +
3

2∆t
· I, (3.38)

so that the correct treatment of the additional term increases the diagonal dominance
of the system. Numerical experiments show that when using this technique, LU-SGS
is more stable than usual.

3.3 Analysis of the Scheme

Though it is easy to quantify the performance of a scheme in practical applications,
simply by implementing and testing it, such a procedure offers few insights into why
the scheme behaves as it does, where it is particularly weak, and how it may be
improved. For such insight theoretical results are vital, even involving - as they
generally do - substantial simplifications.

The convergence of the LU-SGS scheme is first investigated using the theory
of stability of linear fixed-point iterations extended to account for block-structured
matrices, Section 3.3.1. It is shown that the exact Jacobian of the Euler spatial dis-
cretization is not block diagonally dominant (a weaker condition than diagonal domi-
nance), nor is the approximate Jacobian of LU-SGS. Thereupon a modified Jacobian
is proposed that is only just diagonally dominant, and therefore the SGS iteration
is guaranteed to converge. The new scheme (LU-DD) is implemented and it is seen
numerically that while the inner SGS iteration converges much better than the orig-
inal scheme, the non-linear convergence is much poorer due to the greater mismatch
between the residual and Jacobian. Hence it is concluded that diagonal-dominance is
much too strong a condition on the Jacobian, and hence the corresponding stability
results are not useful in this context.



56 CHAPTER 3. APPROXIMATELY FACTORED IMPLICIT SCHEMES

Section 3.3.2 performs a Fourier analysis of LU-SGS applied to a scalar convection-
diffusion-source term equation. The Fourier analysis necessitates also the assump-
tions of a Cartesian grid with constant-spacing and periodic boundary conditions.
The Jacobian is based on the derivatives of a first-order upwind discretization while
the spatial discretization is central, modelling the residual-Jacobian mismatch of the
scheme. Despite this and the approximate LU factorization, the Fourier analysis
continues to show that the scheme behaves similarly to an exact implicit scheme,
damping low frequency error modes strongly. This result is somewhat inconsistent
with the numerical results of Section 3.4, suggesting that some feature of the method
not treated by the analysis, most likely coupled equations or boundary conditions
have an important influence on the method. The effect of the source term on the
scheme is also examined and it is seen that the stability of a forward-Euler step is
strongly dependent on its magnitude, but - at least in one dimension - LU-SGS is at
least as stable as the model equation itself, independently of the source term and the
time step.

Finally in Section 3.3.3 the time-accuracy of the scheme is examined, and on the
basis of numerical results it is concluded that the time-accurate form may be useful
for DES and LES simulations (Dwight, 2004). Based on these results the scheme has
since been used for DES calculations of aerofoils on unstructured grids (Van der Ven
& Weinman, 2004; Soda et al., 2005).

3.3.1 Theoretical Stability Conditions for Fixed-Point Itera-

tions

A well known sufficient condition for Jacobi and Gauss-Seidel iterations of a linear
system to be stable is that the system matrix be diagonally dominant. Here this
result is extended to block-Jacobi and Gauss-Seidel iterations, and the corresponding
block diagonal dominance condition is examined for the scheme of Section 3.2.

General Convergence Conditions

For any splitting N , M of a matrix A, where M is invertible, a linear fixed-point
iteration

Mψn+1 = b−Nψn, (3.39)

converges to the solution of Aψ = b for all initial conditions ψ0 and RHSs b if and
only if ρ(M−1N) < 1, where ρ(A) represents the spectral radius of A. This result
may be immediately seen by writing ψn in terms of ψ0:

ψn =

{
n−1∑

j=0

(−1)j
(
M−1N

)j
}
M−1b+ (−1)n

(
M−1N

)n
ψ0, (3.40)

where the sum represents a Taylor series for the inverse of I + M−1N , and hence
the first term tends to A−1b as n → ∞ if the series converges. Further the rate of
convergence also depends upon of the magnitude of ρ(M−1N).

However, ρ(A) is difficult to evaluate. We might use the fact that

ρ(A) ≤ ‖A‖, ∀ matrix norms ‖ · ‖, (3.41)
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to obtain another sufficient condition for convergence, but matrix norms are also
costly to evaluate and difficult to simplify algebraically. A simpler and popular (but
relatively weak) bound is obtained via Gerschgorin’s Circle Theorem for the eigen-
values of a general matrix (Saad, 2003). The final result is that if

|aii| >
n∑

j=1;j 6=i
|aij|, ∀i ∈ {1, . . . n}, (3.42)

then Jacobi and Gauss-Seidel iterations converge for any ψ0. If a matrix A satisfies
(3.42) then it is said to be strictly diagonally dominant.

The Jacobian of the NS equations however has a block structure,

A =




A11 A12 · · · A1n

A21
. . .

...
...

. . .
...

An1 · · · · · · Ann


 , (3.43)

where each Aij is a 5 × 5 block matrix for the Euler equations, or a 6 × 6 matrix
if a 1-equation turbulence model is used, etc. Let the particular decomposition into
blocks be called a partitioning and let the dimension of each Aij be N . Applying
condition (3.42) to A would then result in N separate conditions to be satisfied.

A more natural approach is to use a block-generalized version of the above re-
sults. Such a generalization (Feingold & Varga, 1962), defines block strict diagonal
dominance relative to a given partitioning, as

(
‖A−1

ii ‖
)−1

>

n∑

j=1;j 6=i
‖Aij‖, ∀i ∈ {1, . . . n}, (3.44)

which in the special case of 1 × 1 blocks reduces to (3.42). Note that a matrix that
is not diagonally dominant, may be block diagonally dominant under some suitable
partitioning.

For this definition of block diagonal dominance there exists a result corresponding
to Gerschgorin’s Theorem: for the partitioned matrix A of (3.43), each eigenvalue λ
of A satisfies

(∥∥(Aii − λIi)−1
∥∥)−1

>

n∑

j=1;j 6=i
‖Aij‖, (3.45)

for at least one i ∈ {1, . . . n} (Feingold & Varga, 1962). Again this reduces to the
original theorem for N = 1, and may be extended to convergence conditions for
Jacobi and Gauss-Seidel. However it holds only for matrix norms defined by

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ , (3.46)

for some vector norm ‖ · ‖. Note that under this definition

(‖A−1‖)−1 = inf
x6=0

‖Ax‖
‖x‖ , (3.47)



58 CHAPTER 3. APPROXIMATELY FACTORED IMPLICIT SCHEMES

whenever A is non-singular.
Given this, a sufficient convergence condition for the Jacobi iteration may be

derived as follows: consider M−1N = D−1(L + U) whose eigenvalues satisfy

λDx = (L + U)x, (3.48)

where x is partitioned to correspond to the partitioning of A. Now there exists a block
element of x with largest norm: ‖xi‖ ≥ ‖xj‖, ∀j. Normalize x such that ‖xi‖ = 1
and ‖xj‖ ≤ 1, ∀j 6= i. Equation (3.48) for block i is then

λAiixi =

n∑

j=0;j 6=i
Aijxj, (3.49)

implying directly that

|λ|‖Aiixi‖ ≤
n∑

j=0;j 6=i
‖Aij‖‖xj‖ ≤

n∑

j=0;j 6=i
‖Aij‖, (3.50)

where the triangle inequality and consistency of the matrix norm to the vector norm
have been applied to obtain the first inequality. Furthermore by defining zi = Aiixi,

‖Aiixi‖ =
‖Aiixi‖
‖xi‖

=
‖zi‖
‖A−1

ii zi‖
≥
(
‖A−1

ii ‖
)−1

, (3.51)

from the definition of the matrix norm (3.46) and (3.47). Combining (3.50) and (3.51)
we have

|λ| ≤
n∑

j=0;j 6=i
‖A−1

ii ‖ · ‖Aij‖, (3.52)

so that a sufficient condition for convergence of the Jacobi iteration is

n∑

j=0;j 6=i
‖A−1

ii ‖ · ‖Aij‖ < 1. (3.53)

Exactly the same result holds for Gauss-Seidel, and has a similar derivation with
a little more algebra.

Non-Diagonal Dominance of LU-SGS (LU-Original)

The general results of the previous section are applied to the algorithm described
in Section 3.2, with particular reference to the simplification of Section 3.2.2. In
the following the time step is taken to be infinite. Considering only internal control
volumes, by (3.22) the diagonal blocks of the Jacobian are multiples of the identity
matrix, so ∥∥A−1

ii

∥∥ =
∥∥(σiI)−1

∥∥ =
1

σi
, (3.54)

where

σi =
1

2

∑

j∈N(i)

|αij|. (3.55)
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For the off-diagonal blocks inequality (3.41) gives

‖Aij‖ ≥ ρ(Aij) = ρ

(
1

2

∂Fj
∂Wj

− 1

2
|αij|I

)
, (3.56)

which value may be easily found, since if λ is an eigenvalue of A then λ + µ is an
eigenvalue of A+ µI. In this case the eigenvalues of Aij are

λ (Aij) =




V − − a
V −

V − − 1
2
a

V − − 1
2
a

V − − 1
2
a




(3.57)

where

V − =
1

2
(V − |V |), (3.58)

from which it may be seen that

ρ(Aij) = |α−ij| = −V − + a. (3.59)

A graph of |α−| and 1
2
|α| against V is plotted in Figure 3.1. It may be immediately

seen that for V < a, i.e. for a face Mach number less than 1, that

|α−ij| >
1

2
|αij|,

and combining this with (3.56) gives

‖Aij‖ >
1

2
|αij|, ∀i, j for V < a,

but this implies that

∑

j∈N(i)

‖Aij‖ >
1

2

∑

j∈N(i)

|αij| =
1

‖A−1
ii ‖

,

and hence the system matrix is not diagonally dominant for face Mach numbers less
than one, and infinite ∆t.

From this derivation a condition on ∆t may be obtained that guarantees the diag-
onal dominance of A; however the condition of diagonal dominance is only sufficient
for convergence, and as will be seen it is too strict, and hence the bound on ∆t is too
strict as well.

Diagonal Dominance for a Modified LU-SGS (LU-DD)

Consider now a modified version of LU-SGS in which the observation of Section 3.2.2
is not made, namely that the Jacobians of the exact fluxes on summed over the faces
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V

a

a/2

a

|a|/2

|a |
+

|a |
-

Figure 3.1: Comparison of the magnitudes of the spectral radii of diagonal and off-
diagonal Jacobian blocks, as a function of V .

of a cell cancel. Instead approximate each flux Jacobian on each face by its spectral
radius, thus diagonalizing the diagonal of the Jacobian as follows

∂Ri

∂Wi
=
∑

j∈N(i)

∂hij
∂Wi

=
1

2

∑

j∈N(i)

(
∂Fi
∂Wi

+ |αij|I
)

≈ 1

2

∑

j∈N(i)

ρ

(
∂Fi
∂Wi

+ |αij|I
)
I (3.60)

=
1

2

∑

j∈N(i)

|α+
ij|I,

where the spectral radius has been calculated as before, resulting in

|α+
ij| = V + + a, V + =

1

2
(V + |V |). (3.61)

If in addition the off-diagonal blocks are approximated by their spectral radii, so that

∂Ri

∂Wj

≈ |α−ij|I = (−V − + a)I, (3.62)

then the diagonal dominance condition of (3.53) reduces to (neglecting the influence
of Ω/∆t again): ∑

j∈N(i)(−V − + a)
∑

j∈N(i)(V
+ + a)

< 1, (3.63)

whereby (dropping the index on the sums for readability)
∑

(V + + a)−
∑

(−V − + a) =
1

2

∑
(V + |V |+ V − |V |)

=
∑

V

=
∑

Uij · nij (3.64)

=
∑

(U0 + ∆Uij) · nij
≈ O(∆U∆x) ≈ O(∆x2),
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Number of SGS iterations Number of non-linear iterations
Test case LU-Original LU-DD LU-Original LU-DD

NACA0012 45.4 6.7 285 (402) 885 (1373)
M6 Wing 67.3 5.7 445 (610) 996 (1607)

Table 3.1: Average number of symmetric Gauss-Seidel iterations required to converge
the inner residual to 1× 10−8 for two transonic Euler test cases and the two LU-SGS
scheme Jacobians. Average is over non-linear iterations. Also number of non-linear
iterations of the LU-SGS schemes need to converge the outer residual to 1×10−3(1×
10−4) (with only one SGS iteration per non-linear step).

so that the system is exactly on the boundary of diagonal dominance for infinite ∆t
and tends to a weakly diagonally dominant system as ∆x → 0. In this case any
Jacobi or Gauss-Seidel iteration is likely to be stable for any ∆t.

Discussion

In constructing an efficient implicit scheme, two convergence and two stability results
must be considered: those of the non-linear outer iteration, and those of the linear
inner iteration.

In general, the fewer approximations involved in the formulation of the system
matrix, the more the scheme resembles a Newton method, and the better is the non-
linear convergence. On the other hand, the more accurate the system matrix is, the
less diagonally dominant it is likely to be, and therefore the less likely the linear solver
is to converge.

Two versions of LU-SGS have been presented: the first (which we shall name
LU-Original) has been shown to result in a system matrix that is never diagonally
dominant (for subsonic flow), while the second (LU-DD) has been shown to be almost
diagonally dominant, and may be made diagonally dominant - guaranteeing conver-
gence of the linear system - given some weak restriction on ∆t. Therefore LU-DD will
outperform LU-Original on the inner iteration, and no concern needs to be made over
the stability of LU-DD. This result may be verified numerically for particular test
cases, by performing a large number of symmetric Gauss-Seidel iterations for each
non-linear step, and examining the inner convergence. As expected LU-DD converges
in all cases tested, but so does LU-Original, although the convergence of LU-DD is
much faster and therefore presumably much more stable, see the first two columns of
Table 3.1.

On the other hand, in terms of non-linear iterations needed for convergence, LU-
Original is much faster than LU-DD, as may be seen in the second pair of columns
of Table 3.1, this time with only one SGS iteration per non-linear step, i.e. LU-
SGS. Thus LU-Original is a much more desirable scheme than LU-DD, its poor
linear convergence being unimportant. For all these computations, 1/∆t = 0, and no
multigrid has been used.

These results suggest that block diagonal dominance is too stringent a condition
on the Jacobian for fixed point iterations for the Euler equations. At the point at
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which diagonal dominance is achieved, the Jacobian is too far removed from the true
Jacobian for the non-linear iteration to be effective. Furthermore block diagonal
dominance is generally a significantly looser condition than simple diagonal domi-
nance (Feingold & Varga, 1962), and hence it may be asserted that diagonal dom-
inance in general represents too stringent a requirement on the Jacobian for these
methods.

Viscous Jacobian Approximation

Consider now the effect on the diagonal dominance of the approximation of (3.25),
i.e. replacing the viscous Jacobians by their largest eigenvalue. This approximation
increases the diagonal dominance of the system matrix, under both definitions given
in Section 3.3.1, definition (3.42) trivially, and definition (3.44) since for a general
matrix A

1

‖A−1‖ ≤ λi ≤ ‖A‖, ∀λieigenvalues of A, (3.65)

for all matrix norms ‖ · ‖. Hence under the arguments of Section 3.3.1 the inner
SGS iteration is more likely to be stable, and to converge more rapidly. The diag-
onal dominance may be further increased by approximating the off-diagonal viscous
Jacobians by their spectral radii as in (3.25), where here the second inequality of
(3.65) is applied. However making such an approximation has the associated cost of
worsening the approximation of the Jacobian and therefore also worsening the rate of
convergence of the non-linear iteration. The influence of this approximation on linear
and non-linear convergence is evaluated numerically in Section 3.4.3.

Influence of Sum of Jacobians on Diagonal Dominance

One additional difficulty arising from the extension of the scheme to viscous terms is
that each block matrix of the Jacobian is the sum of at least two matrices: ∂f c/∂W
and ∂f v/∂W . The explicit expression for the spectral radius of this sum is too
complex to be useful analytically, and so the spectral radius is approximated by the
sum of the individual spectral radii in the scheme of Section 3.2. This approximation
may artifically reduce the diagonal dominance of the scheme; this is noteworthy as all
the other approximations we have made increase diagonal dominance. The problem
is as follows:

For Hermitian matrices A and B with real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, the
inequality

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B), (3.66)

holds for k = 1, 2, · · · , n, see e.g. (Bhatia, 1997). A special case of this is

ρ (A +B) ≤ ρ (A) + ρ (B) , (3.67)

which is exactly what is needed to ensure that the sum of the spectral radii of the
convective and viscous Jacobians dominates the spectral radii of their sum. Result
(3.66) is also true for any matrices A and B forming part of a real vector space whose
elements are matrices with real eigenvalues, and an analogous result holds for normal
matrices but no such result exists in general. The Jacobians under consideration
satisfy none of these conditions.
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One approach to bounding the eigenvalues of

A+B =
∂f c

∂Wc
+
∂f v

∂Wc
,

is to introduce a set of variables in which the convective and viscous Jacobians are
both symmetric (and hence normal). The parabolic symmetrizing variables Ws′ , and
associated change of basis matrices, are given in Appendix A.5. Let N = ∂Ws′/∂Wc,
and A′ and B′ be the Jacobians in the variables Ws′, then

ρ(A +B) ≤ ‖A+B‖ =
∥∥N−1A′N +N−1B′N

∥∥
≤ ‖N−1‖ · ‖N‖ {‖A′‖+ ‖B′‖}
= κ(N) {ρ(A′) + ρ(B′)}
= κ(N) {ρ(A) + ρ(B)}

where the definition of the condition number κ(A) = ‖A−1‖ · ‖A‖ ≥ 1 has been used,
as well as the fact that ‖A‖ = ρ(A) for a normal matrix, and that the eigenvalues of
similar matrices are identical. Unfortunately κ(N) can be very large, in particular

κ(N) ≥ ρ(N)ρ(N−1) =
max

{√
ρ3

p
, ρ,
√

ρ
(γ−1)p

}

min
{√

ρ3

p
, ρ,
√

ρ
(γ−1)p

} ,

where the eigenvalues here have been read directly from the diagonal of the triangular
matrix ∂Ws′/∂Wc. An alternative may be to formulate the implicit scheme entirely
in the variables Ws′ whereupon κ(N) = 1.

Further study is required to determine if the reduction of diagonal dominance due
to this approximation has an effect on the stability of the scheme.

3.3.2 Von Neumann Analysis of the Scheme

Von Neumann analysis, also known as Fourier analysis, is a technique for determin-
ing the damping behaviour of a numerical scheme applied to a linear equation on
an infinite periodic domain by considering each frequency component of the solution
separately. Despite neglecting effects occurring in non-linear equations with bound-
ary conditions, Fourier analysis has proven to be a useful tool in the study of the
discretization of such equations. A basic knowledge of von Neumann analysis has
been assumed in the following, see any introductory text on numerical analysis, rec-
ommended is (Hirsch, 1989). In this section von Neumann analysis is applied to a
convection-diffusion equation with LU-SGS time stepping.

Modelling of the Residual

A model problem for the Navier-Stokes equations in two dimensions is the linear,
scalar equation

∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
= µ

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ S · ψ, (3.68)
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i.e. a convection-diffusion equation with constant coefficients and a source term. Con-
sider a finite uniform rectangular mesh aligned with the coordinate axes, with a cell
spacing ∆x and ∆y. A discretization of (3.68) on this mesh with a general formulation
of the convective terms and central differencing for the viscous terms is

Z · ψij = ZC · ψ
− Λµx(ψi−1j − 2ψij + ψi+1j)

− Λµy(ψij−1 − 2ψij + ψij+1) (3.69)

− S · ψij,

where Z is the Fourier symbol corresponding to the residual R of (3.68), and Λ are
the eigenvalues of the spatial operators:

Λx = u∆y, Λy = v∆x,

Λµx = µ
∆y

∆x
, Λµy = µ

∆x

∆y
. (3.70)

It is expected that the combination of LHS and RHS discretizations plays an im-
portant role in the damping properties of the implicit scheme, hence several RHS
discretizations are considered. A second-order upwind scheme is modelled by

ZCU · ψij =
1

2
Λx(3ψij − 4ψi−1j + ψi−2j)

+
1

2
Λy(3ψij − 4ψij−1 + ψij−2), (3.71)

but a discretization that corresponds better to the JST scheme is central differencing
with a 4th-order dissipation term,

ZCC · ψij =
1

2
Λx(ψi+1j − ψi−1j) +

1

2
Λy(ψij+1 − ψij−1)

+ Λxdx(ψi+2j − 4ψi+1j + 6ψij − 4ψi−1j + ψi−2j) (3.72)

+ Λydy(ψij+2 − 4ψij+1 + 6ψij − 4ψij−1 + ψij−2),

where dx, dy are the dissipation coefficients. A deficiency of this model is that the
dissipation is calculated independently for each coordinate direction, which is typi-
cally not the case for unstructured flow solvers. The Tau-code for example uses a
non-divided Laplacian to approximate a second-order dissipation, and a Laplacian of
a Laplacian for fourth-order dissipation. A corresponding operator in this context is

D2nd · ψij = ∆y(ψi+1j − 2ψij + ψi−1j) + ∆x(ψij+1 − 2ψij + ψij−1), (3.73)

from which a fourth-order difference operator may be constructed

D4th · ψij = ΛxD2nd · (ψi+1j − 2ψij + ψi−1j)

+ ΛyD2nd · (ψij+1 − 2ψij + ψij−1), (3.74)

resulting in a convective flux of

ZCC,iso · ψij =
1

2
Λx(ψi+1j − ψi−1j) +

1

2
Λy(ψij+1 − ψij−1)

+
1

2
dxyD4th · ψij,
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where the single dissipation coefficient is dxy.
The Fourier symbols of these operators are obtained by substituting for a harmonic

solution with amplitude ψ̂
ψ = ψ̂eI(iφx+jφy), (3.75)

where the phase angles φx, φy vary in the range [−π, π), and thereby cover all fre-
quencies up to the highest frequency representable on the mesh. The Fourier symbols
of the upwind and directional central scheme are then

Z̃CU = Λx

{
I sinφx(2− cosφx) + (1− cos φx)

2
}

+ Λy

{
I sinφy(2− cosφy) + (1− cosφy)

2
}
, (3.76)

Z̃CC = Λx

{
I sinφx + 4dx(1− cosφx)

2
}

+ Λy

{
I sinφy + 4dy(1− cosφy)

2
}
, (3.77)

while the Fourier symbol of the non-directional central scheme may be constructed by
considering the symbol of the second-order dissipation (3.73) with an offset (λx, λy)

D̃
(λx,λy)
2nd = ∆y

{
eI((λx+1)φx+λyφy) − 2eI(λxφx+λyφy) + eI((λx−1)φx+λyφy)

}

+ ∆x
{

eI(λxφx+(λy+1)φy) − 2eI(λxφx+λyφy) + eI(λxφx+(λy−1)φy)
}
, (3.78)

using which the symbol of the fourth-order dissipation (3.74) is

D̃4th = Λx

(
D̃

(1,0)
2nd − 2D̃

(0,0)
2nd + D̃

(−1,0)
2nd

)

+ Λy

(
D̃

(0,1)
2nd − 2D̃

(0,0)
2nd + D̃

(0,−1)
2nd

)
, (3.79)

and therefore the symbol of the central scheme with isotropic dissipation is

Z̃CC,iso = I(sinφx + sin φy) +
1

2
dxyD̃4th. (3.80)

Modelling of LU-SGS

Note that because the model equation is linear, the error satisfies the same equation
as the solution. Any explicit or implicit scheme used to solve the discretized model
equation will be stable if the amplitude ψ̂ of every harmonic of the error does not
grow in time, that is if

|g| =
∣∣∣∣∣
ψ̂n+1

ψ̂n

∣∣∣∣∣ ≤ 1 ∀φx, φy, (3.81)

where g is known as the amplification factor or damping factor of the combined time-
space discretization.

For the problem on the structured grid the LHS of the implicit system (3.8) may
be written {

I

∆t
+
∂R

∂ψ

}
=

{
I

∆t
+ A+B + Aµ +Bµ + T

}
, (3.82)

where A, B are the convective Jacobians, Aµ, Bµ the viscous Jacobians and T the
source term Jacobian. The discrepancy between the fluxes and the Jacobians in the
true scheme is taken into account by using a first-order upwind discretization for
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A and B, as well as an implicit damping coefficient ωrelax for the dissipation. The
viscous Jacobians are taken to be exact with respect to the RHS. Corresponding to
(3.23) it may be shown that

A± =
1

2
(Λx ± ωrelax|Λx|) ,

B± =
1

2
(Λy ± ωrelax|Λy|) ,

Aµ = Λµx (3.83)

Bµ = Λµy

T = S

where + and − denote differentials with respect to ψ at points i+ 1 / j+ 1 and i− 1
/ j − 1 respectively. If the grid points are lexicographically ordered then the matrix
operators are

L · ψij = −A+ψi−1j −B+ψij−1 − Aµψi−1j − Bµψij−1,

U · ψij = A−ψi+1j +B−ψij+1 − Aµψi+1j − Bµψij+1, (3.84)

D · ψij =

{
1

∆t
+ ωrelax (|Λx|+ |Λy|) + 2(Aµ +Bµ) + T

}
ψij,

with Fourier symbols

L̃ = −A+e−Iφx −B+e−Iφy − Aµe−Iφx −Bµe−Iφy ,

Ũ = A−eIφx +B−eIφy − AµeIφx − BµeIφy , (3.85)

D̃ =

{
1

∆t
+ ωrelax (|Λx|+ |Λy|) + 2(Aµ +Bµ) + T

}
.

By noting that the Fourier symbol of an inverse operator is the reciprocal of the
Fourier symbol of the original operator,

L̃−1 =
1

L̃
, (3.86)

the amplification factor of LU-SGS may be deduced directly from (3.12), using (3.85):

|g| =
∣∣∣∣∣1−

Z̃

(L̃+ D̃)D̃−1(Ũ + D̃)

∣∣∣∣∣ . (3.87)

Influence of the Source Term

The presence of the source term S in the model equation (3.68) is an attempt to
represent the source terms occurring in the turbulence equations, and has been studied
extensively in the context of von Neumann analysis (Faßbender, 2003). The coefficient
S is taken to be constant, i.e. uniform production or destruction over the entire
domain. This equation differs slightly from the typical convection diffusion model
equation, and so we consider firstly some of its properties.
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The exact solution of linear equation on a periodic domain may be found by
substituting in a Fourier mode and solving for the coefficient a of t in the exponent.
A two parameter family of exact solutions of the scalar model equation is then

ψ = ψ̂ exp

{
I

(
x

∆x
φx +

y

∆y
φy

)
+ at

}
,

a = −I
(
u
φx
∆x

+ v
φy
∆y

)
− µ

(
φ2
x

∆x2
+

φ2
y

∆y2

)
+ S,

where x and y have been normalized using ∆x and ∆y such that when φx = π or
φy = π the mode’s frequency corresponds to the highest frequency representable on
the mesh. By Fourier’s Theorem these are all solutions - up to linear superposition -
of the model equation. As may be immediately seen, a mode grows exponentially in
time if

S

µ
>

φ2
x

∆x2
+

φ2
y

∆y2
, (3.88)

i.e. for an ellipse in the phase plane, and is otherwise stable. A consequence is that
for positive S the solution always grows unboundedly for sufficiently low frequencies.
Note that due to the linearity of the model equation, any error in an approximate
solution satisfies the same equation as the solution itself, and hence also grows expo-
nentially for the frequencies specified by condition (3.88).

Given that the model equation itself is “unstable” for these low frequencies, it
is unreasonable to expect numerical methods to be stable there, and indeed Fourier
analysis shows that they are typically not. Figure 3.2 shows the damping factor |g| for
a 4-stage Runge-Kutta scheme for the model equation with source term; in particular
S = 1/20, µ = 1/10, ∆x = 1 and ∆y = 2/5. In the centre of the contour plot it
can be seen that the amplification factor increases above 1, taking a maximum value
at (φx, φy) = (0, 0). The central, bold-dashed ellipse shows the limit of the stability
region of the model equation, as given by (3.88). It can be seen that the method is
only unstable when the model equation itself has an unbounded solution.

In this case the natural criteria for judging the stability of a numerical method,
namely that the amplifaction factor is always less than or equal to one, is no longer
suitable. The only alternative is to suggest that a method be considered stable if the
amplification factor in the region of stability of the model problem is always less than
one. Such a property we will call compatibly stable. Then the method of Figure 3.2 is
not stable, but it is compatibly stable, as the scheme only amplifies the error where
the model equation does.

It is of interest to determine for which values of S, µ and ∆t the methods described
above are compatibly stable, which may be done by determining at which frequencies
the amplification factor passes through 1. For compatible stability in one dimension
we require that

|g(φ)| ≤ 1 for all φ ∈
[

∆x

√
S

µ
, π

]
.

Since in the cases above |g| is a continuously differentiable function of φ, and varies
continuously with S, µ and ∆t, it can only change from being stable to unstable when
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Figure 3.2: Damping factor for a 4-stage Runge-Kutta scheme applied to the mod-
el equation with a source term. The Runge-Kutta coefficients are ( 1

4
, 1

3
, 1

2
, 1), with

∆t = 3/10, and S = 1/20, µ = 1/10, ∆x = 1, ∆y = 2/5, and u = v = 1. The central
ellipse shows the limit of the stability region of the model equation.

one of its end points passes through 1, i.e.
∣∣∣∣∣g
(

∆x

√
S

µ

)∣∣∣∣∣ = 1 or |g (π)| = 1, (3.89)

or when a maxima or minima passes through 1, i.e. when for some φ = φ0

d|g|
dφ0

= 0 and |g(φ0)| = 1. (3.90)

By solving these equations for e.g. ∆t given S and µ, the boundaries of the stability
region may be found, and hence the domain divided into compatibly stable and un-
stable regions. It remains then only to test a single point in each region, to determine
which are stable. Unfortunately even for the simplest time stepping scheme these
stability boundaries cannot be evaluated analytically and so numerical evaluation for
special cases is performed.

Firstly forward Euler integration with second-order central convective fluxes, vis-
cous fluxes with µ = 0.05 and source term is tested. The amplification factor for this
scheme is |g| = |1 + ∆tZ|. Figure 3.3 shows the region of the S−∆t plane where the
scheme is compatibly stable and compatibly unstable, showing the amount to which
the time step is limited by the influence of the source term. The lines shown are
solutions of (3.89), the solutions of (3.90) are always complex in this case. Note that
for S ≥ π2µ/∆x2 the region of instability of the model equation covers the entire
numerical frequency domain, and therefore every numerical method is compatibly
stable, here the critical value being S ≈ 0.49.

The most striking feature of Figure 3.3 is that a small source term limits the
time step more than a large source term. This is due to compatible stability being
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Figure 3.3: Compatible stability region of the forward Euler time stepping scheme
for a range of source terms S with respect to the time step ∆t. The coefficient of
viscosity µ is 0.05, the convective fluxes are modelled with a central scheme.

a stronger condition for small source terms, as the region of φ for which the scheme
must be stable is larger. At any rate the source term has a limiting effect on the time
step.

In contrast, the compatible stability plot for LU-SGS shows stability for all values
of the source term and all positive ∆t, Figure 3.4, indicating that the source term
has no bearing on the choice of time step. Hence for the model equation LU-SGS is
a significantly better choice of scheme.

It remains to be seen how this analysis may be extended to two dimensions, for
which the stability of LU-SGS is not assured. However algebraic determination of the
stability regions may not be possible and must probably be performed numerically.
There remains also the question of the applicability of these results to non-linear
equations with source terms, which are of course not guaranteed to be unstable, as
are linear equations. These are topics for future work.

Behaviour of LU-SGS

In Figure 3.5 the amplification factor of LU-SGS with ωrelax = 1.0 and a purely con-
vective RHS is plotted against the frequency components of the mode. The most
remarkable feature of this result is that low frequencies are well damped, and high
frequencies poorly damped. This behaviour is in stark contrast to the known be-
haviour of fixed-point iterations for the Euler equations (Blazek, 2001), and is a first
indication that the approximations made for the Fourier analysis - in particular the
reduction to a scalar model problem - introduce discrepancies in this case. If this
result were correct there would be two surprising consequences of this behaviour:

• LU-SGS should be a poor smoother in combination with multigrid. The perfor-
mance of a scheme as a multigrid smoother is determined by the amplification
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Figure 3.4: Compatible stability region of the LU-SGS time stepping scheme for a
range of source terms S with respect to the time step ∆t. The coefficient of viscosity
µ is 0.05, the convective fluxes are modelled with a central scheme.
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Figure 3.5: Damping factor for LU-SGS with 2nd-order upwind RHS, ωrelax = 1.0,
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Figure 3.6: Damping factor for LU-SGS with 2nd-order upwind RHS, ωrelax = 1.5,
Λx/Λy = 2.0, ∆t = 1 · 105.

factor of modes lying outside the central box drawn in Figure 3.5, i.e. modes
with a high frequency in at least one direction. Modes within the box will be
damped at the next multigrid level where they become high frequency modes.
LU-SGS seems to damp exactly the wrong modes for multigrid. This statement
is borne out by Fourier analysis of a two-grid multigrid cycle with an LU-SGS
smoother in (Blazek, 1993).

• By alternating iterations of LU-SGS with another method, e.g. Runge-Kutta,
that damps high frequencies well, all frequencies should be damped well. In
fact LU-SGS with ωrelax = 1.5 has exactly this property, see Figure 3.6. The
amplification factor of the combined scheme is just the product of the individual
factors, and the result is shown in Figure 3.7. As can be seen the damping is
excellent almost everywhere; multigrid would be superfluous in this case.

In fact it will be seen in Section 3.4 that LU-SGS for the Euler equations is at least
as good a multigrid smoother as Runge-Kutta. With regard to alternating iterations
of LU-SGS(ωrelax = 1.0) and LU-SGS(ωrelax = 1.5), the resulting scheme performs
better than the former but worse than the latter, as might be expected if there was no
significant difference in the structure of the damping properties of the two schemes.

The Fourier analysis of LU-SGS with a centrally discretized RHS produces similar
results, Figure 3.8, with the best damping occurring also at low frequencies, a result
that is again inconsistent with the numerical results of Section 3.4. The dashed lines in
Figure 3.8 show the corresponding damping factor for isotropic artificial dissipation,
which has no significant effect on the results, as might have been deduced from
the strong similarity of the Fourier footprints of the two central schemes, shown in
Figure 3.9 for Λx/Λy = 2.

In summary, the von Neumann analysis as presented here completely fails to
predict the properties of LU-SGS as applied to the Euler equations. This implies that
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(b) Isotropic dissipation.

Figure 3.9: Footprints of central operators with 3rd-order dissipation, dx = dy =
dxy = 1/96.

some aspect of the discretization which is not modelled by the analysis is responsible
for a significant change in the behaviour of the scheme. It is well known that boundary
conditions can have a significant impact, as can irregular grids and multiple coupled
equations. The latter may be treated in the context of Fourier analysis (Pierce et al.,
1997), whereas the analysis of the first two aspects requires another approach, for
example eigenspectrum analysis (Roberts & Swanson, 2005).

Another cause of the discrepency might be the approximation of the Jacobian. For
the Euler equations the Jacobian is not constant, and although the error introduced
by using a different flux for the LHS than the RHS has been accounted for in (3.83),
other sources of error have not. An interesting experiment is to add a constant error
term εL to L in (3.84). The phase-damping plot is shown in Figure 3.10 for εL = 10.0.
As can be seen the damping pattern has been reversed with LU-SGS now behaving
as a high-frequency smoother, consistent with the observed behaviour. However the
result is sensitive to the magnitude of εL and cannot therefore be taken as a successful
analysis without a method for quantifying this value.

A method of analysis that could take into account all these effects, was recently
proposed in (Roberts & Swanson, 2005), whereby the complete eigensystem of a dis-
cretization is computed for a simple model problem, the unstable modes are identified
and their properties examined. Such a technique will be touched upon in Section 4.3.2.

In the interests of completeness, but with no suggestion of accuracy, the damping
factors for the LU-SGS scheme as applied to the full model equation (3.68) including
source term, diffusion, and an anisotropic mesh, with a central RHS, are shown in
Figure 3.11. Note that the central peak contains an amplification factor greater than
unity due to the source term, but this peak lies entirely within the ellipse of instability
of the model equation.

3.3.3 Time-Accuracy of the Scheme

Since large time steps are possible with LU-SGS, it is of interest to know whether the
code could be used directly for time-accurate computations. Given the large number
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Figure 3.10: Damping factor for LU-SGS with an artifically introduced constant error
of εL = 10 in L and ωrelax = 1.0. The RHS is 2nd-order upwind with Λx/Λy = 2.0,
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Figure 3.11: Damping factor for LU-SGS with ωrelax = 1.0. The RHS is central
with isotropic dissipation, dxy = 1/96, Λx/Λy = 0.2, Λµx = 4 · 10−3, Λµy = 1 · 10−1,
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of approximations made in the course of the derivation, it might be supposed that
the scheme is zero-th order in time, in fact it will be shown that it is first-order
provided that scalar preconditioning is not used. The following discussion is taken
from (Dwight, 2004), which also investigates a hybrid LU-SGS/dual-time scheme for
efficient time-accurate calculations of higher order.

Time-Accuracy - Theoretical Results

The time accuracy of the scheme may be derived by considering the order of error in
time introduced by the discretization and by each subsequent approximation thereof.

The time discretization may be chosen to be second-order by setting β = 1
2

in (3.4),
the backward difference formula on which the scheme is based. The error incurred by
the discretization itself is then O(∆t2). The term Ri(W

n+1) in (3.4) is approximated
by a Taylor expansion, of which terms of order ∆t2 and higher are neglected. Similarly
the substitution of (3.6) incurs only an O(∆t2) error.

The error due to the LU-SGS approximation is the factorization error multiplied
by the unknown update (3.13)

εLU−SGS =
(
L ·D−1 · U

)
∆W, (3.91)

where L, D and U are the lower, upper and diagonal entries of

A = L +D + U =

{
Ωi

∆t
δij +

1

2

∂Ri(W
(n))

∂Wj

}
. (3.92)

Since R has no ∆t dependence, ∂R/∂W has no ∆t dependence, and hence all terms
are O(1) in time with the exception of Ω/∆t which appears only on the diagonal.
Hence L and U are both O(1), and D is O(1/∆t). It may be shown that D−1 is
therefore O(∆t). By (3.6) again ∆W is O(∆t), and therefore εLU−SGS is O(∆t2).
This provides some justification for the LU-SGS approximation itself: as the time
step tends to zero the factorization error also disappears.

The final approximation is to substitute the exact Jacobian of (3.7) with the first-
order Jacobian, an O(1) approximation. This error is then multiplied by the O(∆t)
unknown update, giving a composite O(∆t) error.

In summary there are four sources of error in the time discretization:

• the discretization error of the trapezoidal scheme,

• the truncation error of the linearization of R(W (n+1)),

• the factorization error of the LU-SGS scheme LD−1U∆W ,

• the error due to the first-order approximation of the flux Jacobian.

All these errors, with the exception of the last, are nominally of size O(∆t2), but the
cost of increasing the last to second-order would seem to be the cost of formulating
a scheme with the exact second-order Jacobian, which leads to an entirely different
class of schemes, as already discussed. Hence the method is first-order accurate, with
leading-order error in time controlled by the approximation of the Jacobian.
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LU-SGS.

Time-Accuracy - Numerical Results

A convergence study on the time step ∆t is undertaken to numerically measure the
time accuracy of the LU-SGS method. A turbulent case is chosen to reflect all ap-
proximations made to the Jacobian.

A harmonically oscillating RAE2822 aerofoil is chosen, with pitch angle α =
3◦ ± 2.51◦, at a reduced frequency of k = ωlk/V∞ = 0.163. An onflow Mach number
of M∞ = 0.74 and Reynolds number of Re = 6× 106 were used, and the turbulence
model is Menter SST. Under these conditions the flow remains fully attached at
all stages of the motion. A third-order accurate dual time method, with 200 inner
iterations per time step and 1024 time steps per period (TSPP), was used to obtain
a reference solution. Unsteady solutions obtained with LU-SGS, and with a second-
order accurate dual time, for varying ∆t were compared with the reference solution
using the L2 norm of the difference in calculated lift coefficients over one period, once
transients had disappeared. The results are plotted in Figure 3.12.

Both the second-order behaviour of dual time and the first-order behaviour of
LU-SGS are readily apparent, confirming the theory of Section 3.3.3. However the
breakdown of the time accurate behaviour of LU-SGS occurs at relatively large values
of TSPP (about 300), which is probably a result of the ∆x dependence of the factor-
ization error in very thin viscous wall cells. Further note that, in terms of absolute
error, LU-SGS reaches the accuracy of 100 TSPP dual time with 10,000 TSPP. Since
one dual time inner iteration costs roughly as much as one LU-SGS step, the two
methods have roughly equal efficiency (assuming 100 dual time inner iterations per
step) for this level of accuracy.

Given this behaviour it is suggested that LU-SGS in time accurate form may be an
efficient method in applications where very small time steps are necessary anyway due
to physical considerations, e.g. LES. However it is clear that in any such application,
care must be taken that the time step is small enough for LU-SGS to behave in a
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time accurate manner.

3.4 Numerical Results

The purpose of this section is twofold. Firstly it is demonstrated that, after the two
major approximations of LUSGS: (a) considering only a first-order Jacobian, and (b)
solving the linear system with one SGS iteration, the influence of the subsequent
approximations made in Section 3.2 (in particular the use of the Lax-Friedrichs flux
and the replacement of the viscous flux Jacobians by their eigenvalues) on the non-
linear convergence is minor.

Secondly it is demonstrated that the algorithm thus derived may be applied to
a large case of practical engineering interest. Runge-Kutta with residual smoothing
and multigrid serves as a reference algorithm throughout, representing as it does the
next-best available algorithm.

Within this section the convergence of various algorithms must be compared. In
order that performance may be uniformly judged - and to avoid numerous conver-
gence plots - some metric for speed of convergence must be decided upon. A common
metric is the convergence rate, which is typically constant as the solution asymptoti-
cally approaches the exact solution. However, given that cases of engineering interest
typically involve convergence of no more than four orders of magnitude, and that
convergence behaviour in this range tends to be highly non-uniform, the convergence
rate varies considerably. Instead the following measure is used: the number of iter-
ations (or normalized CPU time) from the beginning of the calculation required for
the normalized residual to drop and remain below 1×10−3 and 1×10−4. The residual
in all cases is normalized against the residual calculated on the first step.

A second metric of the algorithm is taken, which has already been used in Sec-
tion 3.3.1: the number of linear iterations of SGS needed to drive the (also normalized)
linear residual below 1× 10−8. This provides a measure of the relative diagonal dom-
inance of the Jacobian, or the relative stability of the Gauss-Seidel iteration, for two
different methods. It will be used to verify the theoretical results of Section 3.3.

3.4.1 Approximations of the Jacobian

In Section 3.2 it was discussed how the use of a Jacobian derived from first-order
fluxes reduces the memory requirements and complexity of the scheme. In contrast
some of the other approximations made are useful but not essential. For example
the choice of the Lax-Friedrichs flux, which reduces the diagonal-block entries of the
Jacobian to diagonal matrices, could be replaced by a Roe flux, whose Jacobian con-
tains significantly more information about the flow. Hence each such approximation
is evaluated numerically for its effect on the linear and non-linear convergence rates.

First however it is useful to observe the effect the reduction of the order of the
Jacobian from second to first has on the convergence of the non-linear system, in-
dependently of other Jacobian approximations and given exact solution of the inter-
mediate linear systems. Refer to Section 1.1 for an overview of the types of implicit
methods discussed here.

Two implicit schemes, one using exact 1st-order Jacobians, and the other using
exact 2nd-order Jacobians are constructed in a Jacobian-Free manner using finite
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differences on the residual vector,

∂R

∂W
∆W ≈ R(W + ε∆W )− R(W )

ε
,

where ε is chosen small enough that the perturbation to R is approximately linear,
while large enough that the machine rounding error incurred through the subtraction
of two similar floating-point quantities is small. In general this quantity must be set
carefully in order to obtain quadratic convergence, but for the following simple cases
the choice

ε =
1× 10−8

‖∆W‖ ,

was sufficient. This method also makes it easy to compare various LHS Jacobians for
a given RHS discretization, without evaluating the Jacobians explicitly by hand. The
systems are solved using a GMRES Krylov solver, preconditioned with the LU-SGS
method, and converged to machine accuracy for each Newton step.

The non-linear convergence of these two schemes applied to an unstructured grid
about a 2d Euler NACA0012 aerofoil shown in Figure 3.13, is plotted in Figure 3.14,
whereby second-order van Leer flux-vector splitting (Van Leer, 1982) is used on the
RHS.

The method with the exact van Leer second-order Jacobian is a pure Newton’s
method, and therefore converges quadratically, and achieves machine accuracy in 5
iterations. Reducing the Jacobian to one based on first-order van Leer fluxes has
a dramatic effect on the convergence, as a factor 20 more iterations are required.
Compared to this, the effect of introducing a discrepancy between the particular flux
used on the LHS and RHS is insignificant, even when a central scheme (JST) rather
than an upwind scheme is used.

On the other hand a mismatch between flux functions with a second-order Jaco-
bian does play a significant role, seen in Figure 3.15 this time for a viscous NACA-
64A010 aerofoil calculation, as here the method is reduced from a Newton method
with quadratic convergence, to an approximate Newton method with merely linear
convergence. As a result the number of non-linear iterations required nearly trebles.

These results are intended to demonstrate that the approximation of the Jacobian
to first-order has a significantly greater effect on the non-linear convergence of the
method, than subordinate approximations such as the choice of flux function. Hence
many useful approximations may be made to the Jacobians without fear of damaging
convergence too much.

Note that the finite difference-based Newton method described here is not compet-
itive with the LU-SGS method based on the first-order Jacobian, principally because
of the necessity of repeatedly evaluating the non-linear residual, which is one of the
most expensive solver operations.

3.4.2 Influence of Linear Solver

LU-SGS is now compared to two other linear solvers: SGS(n) and the block-Jacobi
iteration, Jacobi(n), where in both cases n is the number of inner iterations. The
SGS scheme is described in Section 3.2.1. An identical Jacobian - as described in
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Figure 3.13: Some of the grids used in this thesis. From top to bottom: a NACA0012
Euler grid, a NACA0012 grid for laminar flow at Re = 5000, a RAE2822 grid for
turbulent flow at Re = 6 × 106, a EUROLIFT II high-lift configuration grid, and a
ONERA M6 wing Euler grid.
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Non-Linear Normalized Time Normalized Time
Linear Solver Iterations for One Iteration for Iterations
Runge-Kutta 553 (775) 1.09 2.12 (2.97)

LU-SGS 284 (401) 1.00 1.00 (1.41)
SGS(1) 284 (401) 2.19 2.19 (3.09)
SGS(2) 177 (239) 3.98 2.48 (3.35)
SGS(3) 129 (178) 5.13 2.33 (3.22)
SGS(4) 104 (152) 7.78 2.84 (4.16)
SGS(6) 92 (127) 9.52 3.08 (4.26)

SGS(10) 85 (135) 14.64 4.38 (6.87)
SGS(20) 97 (144) 16.21 5.54 (8.22)

Jacobi(1) 725 (1019) 0.92 2.35 (3.30)
Jacobi(2) 567 (816) 1.88 3.75 (5.40)
Jacobi(3) 475 (589) 2.91 4.87 (6.04)
Jacobi(4) 399 (610) 3.72 5.22 (7.99)
Jacobi(6) 315 (434) 4.67 5.18 (7.14)

Jacobi(10) 253 (344) 7.50 6.68 (9.08)
Jacobi(20) 210 (315) 9.82 7.26 (10.9)

Table 3.2: For a variety of linear solvers, and given Jacobian formulation, the num-
ber of non-linear iterations required to reach a residual of 1 × 10−3(1 × 10−4), the
normalized CPU time for each such iteration, and the normalized CPU time for the
iterations required to reach a residual of 1 × 10−3(1 × 10−4). The normalization is
performed with respect to the LU-SGS scheme. This for a 2d inviscid NACA0012
aerofoil calcuation in a transonic regime.

Section 3.2 - is used for all methods, in order to compare the methods fairly2.
Compared are the number of non-linear iterations required for convergence, the

CPU time required for one non-linear iteration (normalized), and the CPU time re-
quired for convergence (again normalized). The results for the inviscid 2d NACA0012
transonic aerofoil calculation are given in Table 3.2. No multigrid is applied in order
to observe the effects of the schemes in isolation.

Note that - as expected - the iteration counts of LU-SGS and SGS(1) are identical,
however the cost of the single SGS iteration is approximately twice that of LU-SGS.
This effect is due to the extra triangular matrix multiplication required per iteration
for SGS; compare (3.10) and (3.11). If this extra multiplication were not necessary,
the reduction in the number of non-linear iterations required by SGS(n) might make
it more efficient overall than LU-SGS for some n; as it is, it is alway less efficient.

Consider now the relative cost per iteration of Runge-Kutta and LU-SGS. The
overhead of Runge-Kutta is principally the re-evaluation of the residual at each stage,

2Of course it may be the case that the combination of a particular Jacobian approximation with
a particular solver produces the optimal time-efficiency for the non-linear convergence. In fact, in
the absence of theory, all combinations of solver and Jacobian must be tested, and this brute-force
investigation has been performed. The results of this chapter are intended to be illustrative of the
most significant tradeoffs that occur.
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whereas the SGS algorithms require only one evaluation of the residual for each non-
linear iteration. On the other hand the SGS algorithms must compute the Jacobian
and perform two Gauss-Seidel sweeps per inner iteration. If the residual is very
expensive to compute, it will drive up the cost of Runge-Kutta, and LU-SGS will be
comparatively efficient3. As it happens, the two extra residual evaluations are more
expensive than the LU-SGS overhead, and hence LU-SGS is more efficient per step.
Here the cheapest available flux is used (the JST flux), and hence the difference in
CPU time per step is relatively small; for matrix dissipation with preconditioning
LU-SGS is considerably faster per step than Runge-Kutta.

Jacobi(1) is slightly cheaper than LU-SGS, but Jacobi has poorer convergence
behaviour than Gauss-Seidel and the CFL condition limits the time step. Jacobi(2)
is already twice as expensive as LU-SGS, but to get the same convergence behaviour
with Jacobi, between 6 and 10 inner steps are required, at which point the expense
per step is prohibitive.

The reason that Jacobi iterations perform so poorly for this case is that the
diagonal-blocks of the Jacobian are simply multiples of the identity matrix, and hence
one step of (3.14) is equivalent to a forward-Euler method with a local time step.
In constrast, Jacobi iterations have been shown to be effective when applied to a
spatial discretization with matrix dissipation (Swanson et al., 2005; Mavriplis, 1998;
Pierce et al., 1997), where the coefficient of the dissipative fluxes contains the matrix
|∂f c/∂W | rather than simply the maximum eigenvalue thereof. In this case the
diagonal-block of the Jacobian contains significantly more flow information, and as
might be expected the method is therefore superior4. The use of such Jacobians with
scalar dissipation is however ineffective due to the mismatch between the residual and
Jacobian.

In conclusion LU-SGS is at least twice as efficient as the next best method tested
for the given Jacobian and the central discretization with scalar dissipation.

3.4.3 Influence of Viscous Flux Approximation

Three formulations of the viscous TSL Jacobian proposed in Section 3.2.3 are numer-
ically compared, from most accurate to least accurate they are:

Exact TSL No approximations are made, the TSL block Jacobian contributions are
exactly those given in Section 2.8.1.

Diagonalized Diagonal The TSL block Jacobians that occur on the diagonal are
replaced by the sum of their spectral radii, thus diagonalizing the block diagonal
as described in Section 3.2.3.

Fully Diagonalized All TSL block Jacobians occurring in the system matrix are
replaced by their spectral radii, thus removing all coupling of the equations over
the viscous terms.

3Runge-Kutta has here the advantage that the dissipation in the JST scheme is only calculated
on the first stage.

4This method is also known as matrix-preconditioning in reference to local time stepping as a
type of scalar preconditioning.
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SGS Non-Linear Normalized Normalized Time
Jacobian approx. Iterations Iterations Time/Iter. for Iterations

Runge-Kutta - 1473 (2369) 1.18 1.81 (2.91)
Fully Diagonalized 80.2 959 (1639) 1.00 1.00 (1.71)

Diagonalized Diagonal 96.1 821 (1436) 1.07 0.92 (1.60)
Exact TSL 122.9 707 (1193) 3.12 2.30 (3.88)

Table 3.3: For three different formulations of the viscous components of the Jacobian,
the number of SGS iterations required to reduce the linear residual below 1 × 10−8,
the number of non-linear LU-SGS iterations required to reduce the non-linear residual
below 1× 10−3(1× 10−4), the normalized time for one iteration, and the normalized
time for the required iterations. The normalization is performed with respect to the
Fully Diagonalized scheme. The multigrid cycle is 3W, and the turbulence model is
the NLR TNT model. This for the NACA64A010 aerofoil at transonic conditions.

SGS Non-Linear Normalized Normalized Time
Jacobian approx. Iterations Iterations Time/Iter. for Iterations

Runge-Kutta - 1921 (2708) 1.18 1.80 (2.54)
Fully Diagonalized 108.4 1259 (2123) 1.00 1.00 (1.69)

Diagonalized Diagonal 120.1 1063 (1817) 1.09 0.92 (1.57)
Exact TSL 156.8 953 (1666) 3.27 2.48 (4.33)

Table 3.4: As for Table 3.3 but for the ONERA M6 wing with α = 2.0◦, M∞ = 0.73,
and Re = 6.2× 106.

Each of two example test cases has been calculated with these three Jacobian
formulations, whereby the convergence of the inner SGS iteration was also recorded.
The results are given in Tables 3.3 and 3.4. The first case is the NACA64A010 aerofoil
at an angle of attack α = 4.0◦, M∞ = 0.789 and a Reynolds number Re = 11.88×106.
The grid is similar to the RAE2822 grid shown in Figure 3.13. The second case is the
finite swept ONERA M6 wing, with α = 2.0◦, M∞ = 0.73, and Re = 6.2× 106. For
both cases the two-equation TNT model from the NLR is used, and the multigrid
cycle is 3W. The geometry (but not the grid) may be seen in Figure 3.13. As
was the case for the different approximations of the convective flux-Jacobian, the
CPU time needed to evaluate the Jacobian does not vary significantly for the three
schemes. However the Exact TSL scheme is the only scheme considered so far to have
a non-diagonal block diagonal. The solution of the linear system therefore involves
the inversion of a 5 × 5 matrix for each grid point for each sweep (the turbulence
Jacobian is diagonal), which is performed directly using Gaussian elimination with
pivoting. This introduces the extra cost per iteration seen in the penultimate column
of Tables 3.3 and 3.4 for this scheme.

Otherwise as expected, the better the Jacobian approximation, the better the
non-linear convergence and the worse the linear convergence. However the time-
disadvantage incurred by the Exact TSL scheme reduces it to last place, the best
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SGS Non-Linear Normalized Time
Algorithm Iterations Iterations for One Iteration

Original Grid 67.3 58 (94) 1.00
Cache-block 45.3 58 (94) 0.86

Cuthill-McKee 44.0 60 (98) 0.97
Random 70.1 60 (102) 1.95

Table 3.5: Average number of symmetric Gauss-Seidel iterations needed to converge
the inner residual to 1×10−8 for an unstructured M6 wing case with various grid-point
orderings. Also number of iterations required for convergence to 1× 10−3 (1× 10−4)
for LU-SGS with a 4W multigrid cycle.

choice being the Diagonalized Diagonal scheme. It is used henceforth.

3.4.4 Influence of Point Ordering

The ordering of grid points has an effect on the transport of information across the
grid within a Gauss-Seidel sweep, and thus on the convergence. Table 3.5 gives
performance data for LU-SGS with different grid point orderings, for a transonic flow
on a fully unstructured grid Euler about an M6 wing, shown in Figure 3.13. In fact
the point ordering has almost no effect on the convergence of LU-SGS, but a large
effect on cache performance5. The use of symmetric Gauss-Seidel apparently reduces
the dependence on point ordering considerably, making further research into better
point orderings for LU-SGS unattractive.

3.4.5 Parallel Efficiency

LU-SGS is parallelized using the domain decomposition model, whereby the GS sweep
is applied to each domain individually, points outside the current domain being ac-
counted for in a Jacobi fashion (Sharov et al., 2000). Hence, unlike Runge-Kutta, the
convergence will depend to some extent on the grid partitioning. The magnitude of
this effect is measured for the 3d, transonic M6 wing Euler test-case on an unstruc-
tured grid with ≈160,000 points, see Figure 3.13. The results for 1-32 processors are
given in Table 3.6. As can be seen, Runge-Kutta convergence is completely inde-
pendent of the number of processors, but LU-SGS only has a very weak dependence,
indicating that the modifications made to the algorithm were justified.

The parallel efficiency of LU-SGS and Runge-Kutta is also of interest. From
examination of the two algorithms it may be seen that for a complete 3-stage Runge-
Kutta scheme the flow variables must be communicated to other domains four times,
while for LU-SGS they must only be communicated twice. Lower communication

5Not directly related to LU-SGS, but as a matter of some interest: the cache-block algorithm
for point reordering was designed to reduce cache misses on cache based processors for edge-based
codes (Löhner & Galle, 2002). Based on Table 3.5 it gives an performance improvement of 15%
on the original grid ordering (which ordering is due to the advancing front algorithm with which
the grid was generated), which is nevertheless dwarfed by the awful performance of the random
ordering. The lesson? Don’t try to do badly and you’ll be okay!
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Number of Processors
Algorithm 1 2 4 8 16 32

LU-SGS 4w 60 (101) 60 (101) 61 (103) 61 (104) 61 (104) 62 (105)
RK 4w 91 (169) 91 (169) 91 (169) 91 (169) 91 (169) 91 (169)

Table 3.6: Number of iterations required for convergence to 1 × 10−3 (1× 10−4) for
LU-SGS and Runge-Kutta with multigrid. The grid has 160,000 points.
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Figure 3.16: Time for one iteration - normalized against time for one iteration on
one processor - against number of processors, from 1-32. The diagonal line represents
perfect speed-up.

overhead should mean higher parallel efficiency, and this is measured for LU-SGS
and Runge-Kutta for the same grid as above on 1-32 processors of a Intel Xeon
cluster. The results are plotted in Figure 3.16, demonstrating that indeed LU-SGS
shows small benefits. The tail-off at 16-32 processors is due to the small size of the
grid.

3.4.6 Generic Delta-Wing

As a representative three-dimensional test case a generic delta-wing is chosen, shown
in Figure 3.17. The computation is intended to approximate a wind-tunnel test, and
hence the model support is taken into account. The half of the support nearest the
model is modelled as a viscous wall, but the other half as a slip-wall to avoid problems
at the farfield boundary; the cross-over can be seen in the pressure distribution on
the support.

This case was calculated with a farfield Mach number of M∞ = 0.5, with angle
of attack α = 9◦, a side-flow angle β = 0◦, and with zero roll. The Reynolds number
is Re = 3.5 × 106. The grid is hybrid, consisting of layers of squat prisms in the
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Figure 3.17: Visualization of the flow about a generic delta-wing configuration with
supporting strut. Contours show the pressuse distribution on the surface and within
the vortices, ribbons show the streamline. Both primary and secondary vortices are
visible. (Figure courtesy of A. Schütte, DLR.)
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Figure 3.18: Convergence behaviour of the ρ-residual and the rolling moment for the
generic delta-wing with two time stepping schemes: Runge-Kutta with CFL number
of 1.4, and LU-SGS with a CFL number of 10.0. Both schemes act as smoothers in
a 3V multigrid cycle.

boundary layer, and an unstructured mesh of tetrahedra in the field, for a total of
about 3.4 million points.

The performance of Runge-Kutta and LU-SGS in terms of multigrid cycles are
compared in Figure 3.18, whereby a suitable CFL number has been chosen for each
method, and both methods act as smoothers in a 3V multigrid cycle. The calculation
was performed on 48 processors of an Opteron cluster. It may be seen that LU-SGS
converges approximately twice as rapidly as Runge-Kutta here, and this may be taken
as a typical example of expected speed-up.

Of more interest however is the relative CPU time required for convergence us-
ing the two schemes. The time required for one iteration of LU-SGS in relation
to Runge-Kutta is shown in Figure 3.19, whereby this relation is dependent on the
spatial discretization. The time for one iteration is divided into time required for a
single residual evaluation, time required for any residual smoothing sweeps, and time
required for remaining operations.

The Runge-Kutta scheme has two main disadvantages in this competition. Firstly
it requires a residual smoothing step to be efficient, whereas LU-SGS does not, adding
a constant amount to the time required for one step. Secondly a three-stage Runge-
Kutta scheme requires three evaluations of the residual, whereas LU-SGS requires
only one. As the residual becomes more expensive the “Remainder” part of Runge-
Kutta becomes more expensive, whereas for LU-SGS it stays constant6.

The combination of improved convergence in terms of iterations, and reduced
CPU time per iteration implies that for this case LU-SGS requires between 30− 40%

6In fact the Runge-Kutta algorithm implemented in Tau evaluates the full residual only once,
and on later stages evaluates only the convective terms of the residual. For the central scheme the
dissipation is also not reevaluated.
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Figure 3.19: Normalized time required for a single iteration of Runge-Kutta and LU-
SGS for various spatial discretizations. The time for one iteration is divided into
three components: that due to the initial calculation of the spatial residual, that
due to any residual smoothing required, and that due to remaining operations. For
Runge-Kutta these remaining operations contain additional residual computations
necessary for subsequent stages.

of the CPU time of Runge-Kutta for convergence to a residual of 1 × 10−4 for this
case.

3.4.7 Wing-Body-Tail Configuration

One key requirement for the implicit algorithm is that it must be applicable to large
practical cases that appear in the aerodynamic development of aircraft.

The final and demanding test-case presented is a generic military transport air-
craft, with modelling of wing, body and tail, with wheel-house fairings and strake
visible in Figure 3.20. The grid has ≈ 22 million points, most of which are used in
the resolution of the boundary layer and the vortices expected to be produced by
the fairings and the strake. The farfield is 30 chord lengths distant and provides an
onflow at an angle of attack of 4◦ and Mach number of 0.68. The Reynolds number
is 3× 106.

The discretization consists of JST inviscid fluxes, full viscous fluxes, and the
Spalart-Allmaras one-equation turbulence model. The calculation is performed on 16
nodes of an HP IA64 cluster, for Runge-Kutta 3-stage with residual smoothing and
LU-SGS, both with a 3V multigrid cycle and local time stepping. The CFL number
used with RK was 1.5 and for LU-SGS 3.0, which approaches the empirically tested
stability limit of the respective schemes for this case. The convergence histories are
shown in Figure 3.21, together with the transient behaviour of the drag. The use
of LU-SGS results in an approximate doubling of the convergence rate, at least in
the initial stages of convergence. The CPU time required for one LU-SGS iteration
is approximately 90% of that of one Runge-Kutta iteration.
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Figure 3.20: Surface mesh of the generic military transport configuration showing
tail, fairings and strakes. The grid is composed of prisms in the boundary layer, and
tetrahedra elsewhere. (Thanks to Airbus for permission.)
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Figure 3.21: Convergence behaviour of Runge-Kutta and LU-SGS on the generic
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3.5 Summary

The LU-SGS scheme with multigrid has been investigated as it applies to the solution
of the RANS equations discretized using the finite volume method on unstructured
grids. In particular a variety of approximations to the Jacobian of the method,
and a variety of linear solvers, have been proposed, and the optimal combination
thereof chosen. This has been accomplished using results obtained from numerical
experiments supported by a theory of the stability of block Gauss-Seidel iterations,
and Fourier analysis.

The performance of the resulting method shows a typical improvement on 3-stage
Runge-Kutta, in terms of rate of convergence of 10%-50%, and in terms of CPU
time per iteration of 10%-40%. Even so the memory requirements are comparable to
those of Runge-Kutta, and the scheme converges for all those cases for which Runge-
Kutta converges. The method therefore represents a robust, fast, extremely memory
efficient, easily implementable and parallelizable implicit method, that works for a
variety of convective flux discretizations, but in particular the central scheme with
scalar dissipation. The method as described has been demonstrated for two large test
cases of practical engineering interest.

With this chapter a range of approximate and inexact Newton methods have been
examined based on very simple linear solvers. If the prerequisites for the algorithm
are modified slightly, so that much larger memory requirements are allowed, implicit
methods based on Krylov subspace linear solvers using more accurate Jacobians be-
come a possibility. These methods are the subject of the next chapter.



Chapter 4

Unfactored Implicit Schemes

4.1 Introduction

The philosophy of the development of the implicit scheme of Chapter 3 was that such
a scheme could be an effective alternative to an explicit Runge-Kutta method for
large applications in aerospace engineering, if it had similar memory requirements,
no start-up difficulties, and could be easily parallelized. This was achieved with the
LU-SGS scheme, whereby these restrictions (in particular the first) severely limited
the choice of Jacobian, and hence the convergence rate possible.

In this chapter these restrictions are relaxed, and schemes are considered that
may have significantly larger memory requirements than explicit methods. This may
be justified by noting that for the cluster computers which increasingly dominate the
scientific computing landscape, and which typically have large amounts of memory
per node, the limiting factor in common engineering applications is cluster CPU
time. For a given case and an efficient parallel solver, the total CPU time needed
is roughly a constant function of the number of processors used; however the wall-
clock time falls in inverse proportion to the number of processors. Engineers require
timely results and so use many processors, whereby the full memory capacity of the
individual nodes often remains unused. An implicit method, even with significantly
larger memory requirements, would be practical under such conditions, provided that
it is efficient in parallel. This is not to say that memory considerations may be ignored
altogether however, and efforts will be made to produce a memory-efficient method.

Another disadvantage of LU-SGS was that because the implicit operator developed
was not accurate enough to provide effective full-domain communication within one
iteration on its own, the method was only efficient when used as a multigrid smoother
(this is not the case for an exact Newton method, for example). While multigrid on
structured grids is extremely effective (Pierce et al., 1997), on unstructured grids
it often suffers under poor coarse-grid quality, due to the difficulty of producing a
cell agglomeration algorithm that results in smooth convex volumes in 3D. Some
selected coarse grid cells from the second multigrid level of a 3d calculation using
the TAU-code are shown in Fig. 4.1; note that even on the surface the volumes are
irregular, while in the field there is even a cell shaped like a banana. The influence of
the multigrid correction in this region of the mesh was shown to cause divergence of
the entire calculation in this case. One aim of the development of implicit methods in
this chapter is therefore the removal of non-linear multigrid from the solution process,

91
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XY
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Figure 4.1: Selected coarse dual grid control-volumes produced by a agglomeration
algorithm near a corner of a viscous wall. The non-convex shapes and large variation
in cell size are typical of coarse grids generated in this manner.

and consequently removal of the dependence on unreliable coarse-grid agglomeration
algorithms.

To this end more accurate Jacobians are hand-formulated and explicitly stored,
forming the basis for an exact Newton method. From this starting point, simpli-
fications to the Jacobian are made in order to reduce the stiffness of the resulting
linear system, and thereby allow their rapid solution. The result of this process is
a novel variant of a method using a Jacobian based on first-order convective fluxes,
that includes the exact Jacobians of all boundary conditions. The turbulence model
equations are decoupled from the mean flow equations, and treated with exact Ja-
cobians with respect to the turbulence variables. The linear inner-iteration is solved
with preconditioned Krylov methods.

As a result of the increased complexity of these new algorithms, large configura-
tions such as those shown in Chapter 3 will not be shown, rather the emphasis is on
finding methods that perform extremely well for simple cases such as 2d aerofoils,
and that have the potential to be extended to more complex configurations.
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4.1.1 Overview

This chapter begins with a general description of the methods used for the per-hand
implementation and verification of the Jacobian of the finite volume discretization of
TAU, see Section 4.2. The Jacobian is exact in the sense that each and every compo-
nent of R(W ) is differentiated exactly, including boundary conditions and turbulence
models, with no simplifications or approximations made. The techniques described
are applicable to the differentiation of flow solvers in general.

Corresponding to the stiffness of the non-linear problem the Jacobian is very
poorly conditioned, especially for Navier-Stokes problems. Section 4.3 examines the
solution of linear systems involving the exact Jacobian, and considers preconditioned
Krylov algorithms. In particular Incomplete Lower-Upper (ILU) preconditioned Gen-
eralized Minimal Residual Method (GMRES) is examined, and it is seen that for
timely convergence very large ILU fill-in levels are required, having correspondingly
large memory requirements. It is also seen, as previously reported (Campobasso &
Giles, 2002), that for linear systems resulting from Newton iterations based on par-
tially converged non-linear solutions, a necessary condition for convergence of Jacobi
or Gauss-Seidel iterations on the linear system is not satisfied. In this situation a
Krylov solver is essential, and Jacobi and Gauss-Seidel are poor preconditioners.

Using ILU preconditioned GMRES and an explicitly stored Jacobian, an exact
Newton method is constructed and tested on a turbulent RAE2822 test case. Quadra-
tic convergence is observed, and the method is much faster than LU-SGS, but requires
ILU(4) preconditioning and may only be started after five orders of magnitude re-
duction in the residual have been achieved.

Given these significant difficulties with exact Newton methods, attention is again
turned to approximate Newton methods. Section 4.5 considers a method based on
an explicitly stored, first-order Jacobian. As the reduction to first-order is more
natural for upwind schemes, the investigation begins with an implicit method for
Roe’s scheme. This is briefly compared with another recently proposed and similar
method, also for Roe (Rossow, 2005). However the goal is to improve performance
using the JST scheme as the spatial discretization. Hence a first-order JST Jacobian
is proposed and solved with ILU preconditioned GMRES. The method is shown to
be 4-5 times faster than the LU-SGS method for the cases considered, has no reliance
on geometric multigrid, and may be easily parallelized.

Throughout this chapter the RAE2822 Test-Case Definitions 9 and 10 will be
used, which have come to be standard reference cases in CFD, in particular in the
area of turbulence modelling. They are defined in (Cook et al., 1979) along with
detailed experimental results. Both cases are transonic flows about the non-symmetric
RAE2822 single element aerofoil, with chord Reynolds numbers of 6.5 × 106 and
6.2× 106, at Mach numbers of 0.73 and 0.75 respectively. The angle-of-attack is 2.8◦.
Both cases are transonic with normal shocks on the aerofoil upper surface. Case 9
is fully attached, while Case 10 has a small area of separated flow near the trailing
edge. The grid used is shown in Figure 3.13 and has about 14× 103 points.
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4.2 Construction of the Exact Jacobian

Implementation of an exact Newton method requires the ability to formulate and
solve linear systems of the form

∂R

∂W
∆W = −R(W ),

with respect to ∆W . The residual R is taken to be readily available here, whereas
the Jacobian ∂R/∂W may be difficult to obtain.

One option is to use finite differences to approximate the Jacobian-vector product,
and use solution algorithms that require only this product, and not the Jacobian
explicitly. This was examined briefly in Section 3.4.1, and was found not to be
competitive with LU-SGS because of the expense of repeated evaluations of R. It
may be the case that an alternative Krylov solver/preconditioner combination would
require less Jacobian-vector products, but a more promising alternative is to use an
explicitly stored Jacobian.

The Jacobian may be evaluated by hand, which is a straightforward exercise as
R may be written explicitly in terms of W , while being very time-consuming as
R is typically extremely complex, as illustrated in Section 2.6.3. However, as R is
a sum of convective fluxes, viscous fluxes, boundary conditions etc., each of these
may be differentiated independently, and may be further subdivided into manageable
chunks by application of the chain rule. The operation of differentiation is further
simplified by choosing primitive variables as working variables. Because the equations
themselves remain in conservative form, this choice has no effect on the final solution,
however the update ∆W will then be in terms of primitive variables. Strong boundary
conditions such as the specification of zero velocity on viscous walls are handled as
discussed in Section 2.9.4.

The accuracy of the implementation of the derivatives of the individual fluxes is
verified by applying finite differences to the original routines, and comparing with the
hand-calculated Jacobian for a variety of inputs. As each flux derivative is calculated,
a contribution is made to the explicitly stored Jacobian.

To provide an insight into the implementation, the somewhat personal process
developed by the author after much trial and error is offered here, in the hope that it
may guide initial efforts of others. It may be summarized in the following six steps:

1. Divide the code for the non-linear residual R into parts that may be differen-
tiated independently - either because R is a simple sum of e.g. inviscid and
viscous fluxes, or by means of the product and chain rules. All parts of the
code that do not influence the solution of R(W ) = 0, are superfluous.

2. Copy out the definition for e.g. a particular flux function f̂ , directly from the
code onto paper. Begin with the definition of f̂ in terms of intermediate vari-
ables at the end of the code fragment, and proceed upwards. This order will aid
the application of the chain rule in Step 4. In order that the resulting Jacobian
be the exact derivative of R it is the author’s experience that it is not sufficient
to take flux function definitions from technical reports, published articles etc.,
as the reality is often substantially different.
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Std. TAU + Jac. storage + Linear sol. storage
Memory (Bytes) 25M 165M 290M

Factor increase ×1.0 ×6.6 ×11.6
Points in 1GB 2× 106 300× 103 170× 103

Table 4.1: The memory requirements of the linearized code with explicit exact Jaco-
bian storage, compared to the standard TAU-code - measured for a two-dimensional
unstructured grid with 50×103 points. Also given are the maximum number of points
that would fit in 1GB of memory. The linear solver used is ILU(4) preconditioned
GMRES(30).

3. Decide which parts of the definition of f̂ to neglect as insignificant, too time-
consuming to differentiate, or as a means of providing a more efficient imple-
mentation. This step is optional.

4. Differentiate the simplified version of f̂ on paper, which should now be a matter
of working top to bottom on the page. Making use of the chain rule wherever
possible (i.e. for every intermediate variable) tends to simplify expressions and
helps avoid errors. Given a one page definition, a two page derivative can
typically be expected.

5. Implement the derivative calculated in Step 4. As a basis use the original
function for f̂ , as many intermediate variables will appear in undifferentiated
form in the expression for the derivative; also the inputs should be identical.
Write the original expressions and their derivatives together. Comment the
derivative with the original function’s name, with respect to which variables it
is differentiated, and any assumptions made during Step 3.

6. Numerically compare the hand-coded derivative against a finite difference ap-
proximation using the original function. It is very likely that at least one mistake
was made, very often in the transcription of the original routine from code onto
paper, or in the implementation of the derivative.

Storing the full Jacobian explicitly has the disadvantage of requiring approxi-
mately six times the memory of the standard code, see Table 4.1, reducing the ca-
pacity of a node with 1GB of memory from 2 million points to 300 thousand points.
Whereby it is important to emphasize that this result is only valid in 2d, the situation
in 3d being worse due to the greatly increased numbers of next-neighbours of a point.
Given the linear systems stored explicitly the remaining challenge is their solution.

4.3 Solution of Linear Systems Involving the Ex-

act Jacobian

Although there exist many generally applicable algorithms for the numerical solution
of sparse linear systems, see e.g. (Saad, 2003), it is worth considering whether the
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systems under consideration have any special properties which admit alternative solu-
tion methods. This is of particular interest in the case of the linearized Navier-Stokes
equations, as the linear systems can be extremely stiff and difficult to solve with the
usual preconditioned Krylov methods.

Since the linear equations are derived directly from non-linear equations, one
possibility is to apply the non-linear solution method to the linear system. This
approach is discussed in Section 4.3.1, and it is seen that it is not guaranteed to
be stable, even if the iteration for the non-linear problem converges. The reasons
for this are examined in Section 4.3.2, where the preconditioned GMRES method is
introduced.

4.3.1 Application of Existing Non-Linear Iteration

One immediate possibility is to use the same iterative method for the linear system as
for the non-linear system; in this case the LU-SGS smoothed FAS multigrid method
with local time stepping. The convergence rate of the linear system will then be
identical to the asymptotic convergence rate of the non-linear system. This can be
seen as follows: let W̃ represent the exact solution, and P a completely arbitrary
preconditioning operator (including e.g. multigrid), then without loss of generality
consider an explicit scheme for the non-linear problem

P
(
W n+1 −W n

)
= −R(W n)

= −R
(
W̃ + (W n − W̃ )

)

= −R(W̃ )− ∂R

∂W

∣∣∣∣
W̃

(W n − W̃ ) + O‖W n − W̃‖2,

using R(W̃ ) = 0 and rearranging gives

W n+1 =

(
I − P−1 ∂R

∂W

∣∣∣∣
W̃

)
(W n − W̃ ) + W̃ . (4.1)

Applying the same scheme to the linear problem arising at a Newton iteration we
have

P
(
xn+1 − xn

)
= −

(
∂R

∂W
xn − b

)
,

which becomes

xn+1 =

(
I − P−1 ∂R

∂W

)
xn + P−1b, (4.2)

after rearranging. The coefficients of the solution at time level n in (4.1) and (4.2)
are identical provided the Jacobian in the linear problem is based on a sufficiently
converged non-linear solution. Hence the convergence rates are identical, and the
extensive experience gained in developing iterative schemes for the non-linear problem
can be applied to the linear problem.

A numerical demonstration of this property is given in the left-hand plot of Fig-
ure 4.2 for the RAE2822 Case 9 with the SAE turbulence model. The convergence
history of a linear problem, corresponding to an exact Newton iteration based on
the solution of the non-linear problem found after 4000 multigrid cycles, is compared
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Figure 4.2: Convergence of one non-linear and two different linear problems for a
transonic RAE2822 with a one-equation turbulence model. The solution method is
identical for all problems, being LU-SGS smoothed FAS multigrid. The two linear
problems in the left-hand plot are those obtained from forming a Newton type it-
eration after 4000 and 500 iterations of the non-linear system respectively. In the
right-hand plot, two possible implementations of the linear solver are compared: a
low-memory version, with evaluation of the Jacobian at each iteration, and a high-
memory version, with one-time calculation of the Jacobian which is explicitly stored
thereafter. The divergent linear problem is not shown in the right-hand plot.

with the non-linear convergence history itself. Exactly the same LU-SGS smoothed
multigrid algorithm is applied to both problems. It can be seen that the non-linear
convergence achieves a constant asymptotic slope after about 2000 iterations, and the
linear convergence reproduces this slope exactly.

Whether an iterative scheme that is efficient for the non-linear equations will
also be efficient for the linear equations therefore depends most significantly on the
relative cost of the linear and non-linear residual evaluations. In our case if the
Jacobian is stored explicitly a linear residual corresponds to a matrix-vector product,
with a CPU time cost of approximately 10% of that of the non-linear residual, given
the one-time cost of forming the matrix. If the matrix is not stored the evaluation
of the linear residual is 10 to 15 times more expensive than that of the non-linear
residual. Example convergence in terms of CPU time for these two cases is given in
the right-hand plot of Figure 4.2.

Another factor to consider is that the asymptotic convergence of the non-linear
problem tends to be much slower than the initial convergence. This can be seen in
the non-linear convergence in Figure 4.2, with the phenomenon of multigrid break-
down occurring at between 500 and 1000 cycles, where the dominant error modes
become those that are poorly smoothed by multigrid. Hence for any given number
of iterations the linear residual is reduced less than the non-linear. This effect is
offset by the fact that the linear residual must only be reduced by about three orders
of magnitude for many applications. This is the case for the Newton convergence
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shown in Section 4.4, as well as for the adjoint problems in the following chapter.
One additional disadvantage associated with this approach is that if the convergence
rate of the adjoint iteration is to be guaranteed to be the same as the non-linear the
solution procedure must be additionally adjointed. For LU-SGS or Runge-Kutta with
multigrid this is however a relatively straightforward process (Giles et al., 2003).

A more serious problem with this approach is that even if the non-linear iteration
converges, there is no guarantee that the linear problem resulting from a Newton
iteration based on a partially converged non-linear solution will converge. This is
demonstrated on the left-hand side of Figure 4.2, which shows the convergence curve
of the linear system resulting from a Newton iteration after 500 non-linear iterations.
The iteration diverges after a small number of steps, and reducing the CFL number
in the iteration merely postpones the divergence.

This phenomenon has been observed for a variety of turbulent Navier-Stokes cases
but not for the Euler equations. In particular in cases where the non-linear problem
converges poorly, or where convergence stalls in a limit cycle, the effect has been
observed. An attempt at an explanation is given in the following section.

4.3.2 Application of preconditioned GMRES

The deficits inherent in the method of the previous section suggest considering Krylov
methods, some of which are guaranteed to converge for arbitrary linear systems. Pre-
vious work shows that the choice of particular Krylov method has a significantly
smaller impact on the performance of the linear solver than the choice of precondi-
tioner (Meister, 1998). As such we concentrate on the use of the popular Generalized
Minimum Residual (GMRES) algorithm (Saad & Schultz, 1988).

Preconditioned GMRES rests on forming an orthonormal basis of the Krylov space
Km given by

Km(P−1A, r0) = span
{
r0, (P−1A)r0, · · · , (P−1A)m−1r0

}
,

where span{· · · } denotes the space spanned by the vector arguments, and r0 = b −
P−1A · x0 is the initial linear residual. The Arnoldi procedure is applied iteratively to
P−1A with initial Arnoldi vector v0 = r0/‖r0‖. A standard Gram-Schmitt algorithm,
internal to the Arnoldi process, produces an orthonormal basis Vm = (v0, · · · , vm−1)
of Km, together with an (m + 1)×m upper Hessenberg matrix H̄m such that

P−1A · Vm = Vm+1 · H̄m, (4.3)

i.e. a progressive reduced factorization. On the m-th iteration, GMRES approximates
the solution of A · x = b by a linear combination of the m available vi, chosen to
minimize the 2-norm of the linear residual. This is computationally cheap as it can
be reduced to a least-squares problem involving the (m+ 1)×m Hessenberg matrix.

A bonus associated with the GMRES method (Campobasso & Giles, 2004) is that
it is possible to obtain estimates for the eigenvalues of P−1A as follows. From (4.3)
we have

P−1A · Vm = Vm ·Hm,

V T
m · P−1A · Vm = Hm, (4.4)



4.3. SOLUTION OF THE LINEAR SYSTEM 99

where Hm is the m×m matrix formed by deleting the last row of H̄m. The eigenvalues
of Hm are

Hmzi = λizi,

(V T
m · P−1A · Vm)zi = (V T

m · Vm)λizi, (4.5)

V T
m · (P−1A− λiI) · Vmzi = 0,

where the orthonormality of Vm has been used in (4.5). So the eigenvalues of Hm

are approximations to the eigenvalues of P−1A, with the error quantified by the
eigensystem residual:

reig = (P−1A− λiI) · Vmzi,
which is orthogonal to the Krylov subspace Km. It may be shown that reig depends
linearly on the residual of the linear equations. A condition for accurate eigenvalues
is therefore the convergence of the GMRES iteration. By applying LU-SGS with
multigrid as a preconditioner, it is then possible using this algorithm to approximate
the eigenspectrum of the operator.

For a complete exposition refer to (Saad, 2003) for example. In practice rather
than implementing the routines privately, the author uses the excellent publicly avail-
able Portable, Extensible Toolkit for Scientific Computation (PETSc) library (Balay
et al., 1997; Balay et al., 2004; Balay et al., 2006), which implements a variety of
Krylov solvers and preconditioners in a parallel environment using the Message Pass-
ing Interface (MPI). The availability of this library saved considerable development
time during these investigations.

First we use eigenspectrum analysis to investigate the reasons for the failure of
LU-SGS smoothed multigrid to solve the linear problem of Figure 4.2. From (4.2) it
is clear that the method will converge if and only if all eigenvalues of the operator

(
I − P−1 ∂R

∂W

)
=
(
I − P−1A

)
,

have magnitude strictly less than 1. Using the Arnoldi procedure, approximations
to the eigenvalues of P−1A are evaluated for the two linear systems of Section 4.3.1,
which resulted from Newton iterations on partially converged non-linear solutions
after 4000 and 500 multigrid cycles. The calculated eigenspectra are shown in Fig-
ures 4.3 and 4.4 respectively.

As can be seen, for the Newton iteration started at 4000 cycles, all eigenvalues lie
within the unit circle, although some are very close to the boundary, indicating modes
that are poorly damped by the scheme. On the other hand for the Newton iteration
started at 500 cycles, one complex conjugate pair of eigenvalues have absolute value
greater than one, and are amplified by the method. The modes associated with these
eigenvalues are the cause of the instability observed in Figure 4.2.

The analysis does not suggest a remedy however, so alternative solution methods
are considered. The explicit storage of the system matrix allows the use of the
Incomplete Lower-Upper (ILU) preconditioner, which performs Gaussian elimination
on A, but drops elements which do not occur in predetermined positions P, thus
reducing memory requirements and computational effort. The most common fill-in
pattern P, is the sparsity pattern of A itself. This method is termed ILU(0). More
accurate preconditioners are denoted ILU(n), which roughly speaking allow fill-in
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procedure with 500 iterations.
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of elements that are reached within n steps of the Gaussian elimination, for details
see (Saad, 2003).

For Euler problems ILU(0) preconditioned GMRES has been seen to be sufficient.
However for the viscous RAE2822 case of the previous section ILU(0) often results in
convergence that is too slow. Convergence of several ILU(n) preconditioned GMRES
methods applied to the Newton iteration restarted after 500 non-linear multigrid
cycles, are shown in Figure 4.5. In order to reduce the amount of storage needed for
the Krylov vector, restarted GMRES (GMRES(m)) was used, which resets the Krylov
space every m iterations. Unlike pure GMRES, restarted GMRES is not guaranteed
to converge. Here a restart length of 50 is specified, whereas 10 to 30 is typical in
practical applications.

The method completely fails to converge for anything less than ILU(4), which is
undesirable due to the significantly greater amount of storage needed, detailed in the
last column of Table 4.1. The complete linearized code requires more than ten times
the memory of the standard code.

The convergence problems may be traced back to the extreme stiffness of the linear
systems, which may be characterized by their condition numbers. In particular in the
case just examined the condition numbers for the various preconditioned operators
are given in Table 4.2, compared to an unpreconditioned condition number calculated
for a simple Euler case of about 1× 105. High condition numbers may be interpreted
as evidence of the transfer of the stiffness inherent in the non-linear problem to the
linear problem.

Another deficit of the ILU preconditioner is that the convergence rate of the
method (used alone) decreases as the problem size increases (corresponding to grid-
dependent convergence), as is also the case for Jacobi and Gauss-Seidel iterations,
indicating that its effectiveness as a preconditioner will also decrease. This effect has



102 CHAPTER 4. UNFACTORED IMPLICIT SCHEMES

Preconditioner Condition Number
None 1.2× 1015

ILU(0) 7.7× 108

ILU(1) 9.3× 107

ILU(2) 6.2× 106

ILU(4) 4.1× 106

Table 4.2: Condition numbers of preconditioned Jacobians for the RAE2822 case
from a Newton iteration started after 500 multigrid cycles.

not been observed in practice in this study, but future work will investigate the use
of preconditioners with grid-independent convergence, i.e. multigrid.

4.4 Example of an Exact Newton Method

An exact Newton method was implemented and tested in Section 3.4.1, using a finite
difference approximation of the Jacobian, and was found to be less efficient than the
LU-SGS scheme in terms of CPU time, partly due to the expensive residual evaluation
necessary to approximate each Jacobian-vector product. Here the Newton method is
implemented using the explicitly formulated and stored Jacobian and, based on the
results of the previous section, an ILU(4) preconditioned GMRES solver is used for
the solution of the linear system at each time step.

In addition to evaluating the efficiency of the method, this test also serves to
validate the accuracy of the Jacobian as implemented, as if it in any way differs from
the true Jacobian, the Newton method will not give quadratic convergence in the
limit as the error tends to zero.

The test case is the same RAE2822 Case 9 as in the previous section. The Newton
iteration needs a partially converged solution to begin, as previously discussed, and
this is provided by LU-SGS smoothed multigrid cycles; the convergence is shown in
Figure 4.6. Through trial and error it was discovered that it was not possible to start
the Newton iteration before about 1200 multigrid cycles, or before a residual of about
1× 10−6 had been reached. Once started however the iteration converges to machine
accuracy in less than 15 steps, and is 6-8 times faster than the multigrid method in
terms of CPU time. Also while the convergence of the Newton method cannot be
claimed to be quadratic, it is clearly super-linear.

This case must be considered to be one of the simplest transonic high-Reynolds
number cases possible, a simple two-dimensional geometry with no regions of separa-
tion. Even so the difficulties encountered in applying a Newton method are consider-
able; from the necessity of storage of the Jacobian, to the problems associated with
solving the linear system, to the start-up issues. In particular in Figure 4.6 it can be
seen that the drag is fully converged before the Newton method can even be started.
From an engineering perspective the method as it stands is therefore useless, despite
being much faster in the zero-error limit.

While the start-up problem may be mitigated with a variety of continuation tech-
niques (Knoll & Keyes, 2004), the difficulties involved already make the prospects
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Figure 4.6: Convergence of the RAE2822 Case 9 with the SAE turbulence model,
using an exact Newton method restarted from an LU-SGS multigrid iteration.

of the method for large three-dimensional cases poor. Therefore attention is again
turned in the remainder of this chapter to approximations of the Jacobian, which
have the potential to reduce memory requirements and linear solution time.

Note that this conclusion does not necessarily apply to unsteady simulations,
where a good starting solution may be available (from the previous time step), and
where the linear system tends to be better conditioned due to the presence of the
discretized time derivative in the Jacobian, see e.g. (3.38).

4.5 Approximate Newton Methods

By approximating the Jacobian, it is relatively easy to achieve schemes with much
lower memory requirements, and well-conditioned inner linear systems; an extreme
example being the LU-SGS scheme of Chapter 3. Here we develop another scheme
in this manner, whereby we explicitly allow the scheme to have significantly greater
storage requirements than Runge-Kutta, and we attempt to achieve high convergence
rates without the use of multigrid.

The resulting scheme, which bears a resemblance to work in implicit methods on
structured grids undertaken in the Department of Aerospace Engineering at Glas-
gow University (Woodgate et al., 1997; Cantariti et al., 1997; Badcock et al., 1999;
Cantariti et al., 1999), but differs in that it is applied on unstructured grids, thereby
introducing Jacobians with unstructured sparsity patterns. Also while previous work
has considered only upwind schemes, here we investigate the extension to the JST
convective flux discretization.

For the purposes of comparison another recently developed scheme is described in
Section 4.5.2, and both schemes are tested numerically, in comparison with LU-SGS.
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4.5.1 1st-Order Jacobian Krylov Implicit Method (FOKI)

The method developed here will be referred to as the First-Order Jacobian, Krylov Im-
plicit (FOKI) method, as it uses an explicitly calculated and stored Jacobian based on
first-order convective fluxes, the resulting system being solved using a preconditioned
Krylov method (in the following GMRES). The turbulence equations are decoupled
from the mean flow equations, and solved using a separate Krylov iteration. It is
always used without multigrid.

Approximation of the Jacobian

The chief aim of this approximation is to reduce the stencil of the discretization to
immediate neighbours of a node only, leading to a corresponding reduction in the
sparse fill-in of the Jacobian. Such a simplification results in a reduction of the
memory requirements of the solver with Jacobian storage to less than three-times
those of the non-linear solver, and the system can be solved in a time equivalent
to less than 1% of that required for the non-linear system. Further the immediate
neighbour fill-in allows the storage of the off-diagonal entries of the Jacobian on the
edges of the unstructured grid (as opposed to being stored in a special sparse matrix
data structure), making a Jacobian-vector multiplication a familiar loop over all grid
edges.

This stencil reduction may be achieved by constructing the Jacobian from deriva-
tives of first-order convective fluxes, and TSL viscous and turbulence diffusion fluxes
(see Section 2.8.1). The stencil of the turbulence discretization consists only of im-
mediate neighbours anyway, and therefore is treated without approximation.

The most sensitive issue is the simplification of the convective fluxes. For an
upwind discretization the first-order generalization is natural; the use of constant
face-reconstruction rather than affine reconstruction reduces the stencil in the re-
quired manner. In order to improve the Jacobian approximation somewhat, once the
expression for the flux derivative has been obtained from the first-order upwind flux,
values reconstructed onto the cell faces are used instead of cell-centered values in the
expression.

For the JST scheme used here the situation is not as clear. For convenience the
JST flux is repeated here, from (2.28):

f̂ JST
ij (W ;nij) =

1

2

(
f c(Wi) + f c(Wj)

)
· nij

− 1

2

∣∣λcij
∣∣
{
ε̄

(2)
ij (Wj −Wi)− ε̄(4)

ij (Lj(W )− Li(W ))

}
, (4.6)

where in addition
Li(W ) =

∑

k∈N(i)

(Wk −Wi), (4.7)

in the interior of the field.
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xi−2 xi−1 xi xi+1 xi+2

2nd difference +1 −2 +1
4th difference +1 −4 +6 −4 +1
4th chopped −4 +6 −4

Table 4.3: Second and fourth difference operators in one-dimension. Also a fourth
difference that has been “chopped” in order to reduce its stencil.

There are two principal possibilities to reduce the stencil: (a) use purely second-
order dissipation, neglecting the term involving L(W ) in (4.6), so that

f̂ cij(Wi,Wj;nij) =
1

2

(
f c(Wi) + f c(Wj)

)
· nij

− 1

2

∣∣λcij
∣∣
{
χ(ε̄

(2)
ij , ε̄

(4)
ij )(Wj −Wi)

}
, (4.8)

is the flux to be differentiated, as in LU-SGS, or (b) explicitly neglect derivatives of
the dissipation with respect to next-neighbours, whereby derivatives with respect to
fourth-order dissipation terms are included for the immediate neighbours.

Given that the solution is smooth almost everywhere, the true residual will contain
a 4th difference operator almost everywhere, and neither of these simplifications is
satisfactory. Consider Table 4.3, which gives the weights of 2nd differences, 4th differ-
ences, and the “chopped” 4th differences of option (b) in 1D. The operator of option
(a) is completely at variance with the 4th difference operator, with even the signs of
the corresponding weights differing. On the other hand choosing option (b) (the last
row of Table 4.3) results in a system that is considerably more difficult to solve than
the full unapproximated system, even though it is more diagonally dominant. This
could be understood to be a result of fact that the chopped fourth-order dissipation
operator contains a large second-order anti-dissipation component. In the absence
of a really satisfactory approximation, the pure second-order dissipation operator is
used in the following.

It remains to choose the function χ, which is necessary as both ε̄(2) and ε̄(4) are
zero in particular regions of the solution, but are never zero together due to the shock
switch. Simply using χ = k(2), the constant coefficient of second-order dissipation,
is equivilent to the Jacobian of a Lax-Friedrichs scheme as for LU-SGS. Better non-
linear convergence can be obtained with the choice of (Wong & Zingg, 2005), namely

χ(ε̄(2), ε̄(4)) = ε̄(2) + σε̄(4). (4.9)

Numerical experiments suggest that a value of σ in the range 10− 20 is appropriate.
In the remainder of this thesis σ = 15 is used.

Decoupled Turbulence Treatment

As in the case of LU-SGS, the turbulence equations are decoupled from the mean-
flow equations in the FOKI method. However, in order to increase the flexibility
of the turbulence treatment the turbulence equations are also formulated and solved
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separately. This is particularly important for FOKI, as the Jacobian of the turbulence
equations is exact, therefore an exact Newton method is possible, whereas for the
mean-flow equations the Jacobian includes a sizeable approximation. The discrepancy
suggests that the turbulence equations will converge much faster than the mean-flow
equations, and therefore a balanced method should spend more effort on the mean-
flow convergence.

In order to solve the two systems separately, the evaluation of the turbulence
residual and Jacobian, without necessarily computing the mean-flow equivalents, and
vice versa, is implemented. The speed with which the turbulence equations can
be solved is demonstrated in Figure 4.7. The case is the RAE2822 Case 9 with a
Spalart-Allmaras Edwards one-equation turbulence model. The baseline convergence
is obtained with an LU-SGS multigrid method, and the residual of both the mean-flow
and turbulence equations are shown. Every 200 iterations of the baseline convergence
a turbulence equation Newton method is started, consisting of the turbulence equation
part of FOKI.

Note that all convergence histories in Figure 4.7 are shown in terms of CPU time;
it can be seen that the exact solution of the turbulence equation for a given mean
flow can be performed in a time equivalent to approximately one-four hundredth
of the time needed for the solution of the full system. This is partly due to the
very high convergence rate of the Newton method, and partly due to the very cheap
turbulence residual and Jacobian evaluation, as a result of it being a scalar equation.
For example the Jacobian in this case is 25 times smaller than the Jacobian of the
mean flow equations.

The optimal combination of mean-flow and turbulence iterations is investigated
numerically in Section 4.5.3.
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Std. TAU + Jac. storage + Linear sol. storage
Memory (Bytes) 25M 82M 122M

Factor increase ×1.0 ×3.3 ×4.9
Points in 1GB 2.0× 106 0.61× 106 0.41× 106

Table 4.4: The memory requirements of the FOKI method with a one-equation turbu-
lence model and explicit and separate storage of mean-flow and turbulence Jacobians,
as compared to the standard TAU-code - measured for a two-dimensional unstruc-
tured grid with 50 × 103 points. Also given are the maximum number of points
that would fit in 1GB of memory. The linear solver used is ILU(0) preconditioned
GMRES(20).

Linear Solution Method

The resulting linear equation is solved with ILU(0) preconditioned GMRES, which
was sufficient in all cases tested. The method is easy to parallelize: as the Jacobian
construction is first-order it can be performed in a loop over all grid faces, exactly
as for the non-linear residual. ILU is performed per domain (analogously to the
GS iteration in LU-SGS), and parallelization of GMRES consists merely in provid-
ing a parallel version of the Jacobian-vector product. Parallelization of the Krylov
solver and preconditioner is provided by PETSc (Balay et al., 2006), although only
sequential results are given here.

Given a ILU(0) preconditioned GMRES(20) linear solver, and separate explicit
storage of the first-order mean-flow and turbulence Jacobians, the memory require-
ments of the FOKI method for typical two-dimensional turbulent cases are given in
Table 4.4 (as compared with Table 4.1 for the full linearized code). Apart from the
significant reduction in memory requirements attributed to the reduction in size of
the Jacobian (through separation of the turbulence equations, as well as the reduc-
tion to first order), the ILU(0) algorithm requires little additional memory, the partial
factorization being stored in the entries of the original matrix.

4.5.2 Alternative 1st-Order Implicit Method (FOGSI)

For the purposes of comparison a method similar to FOKI is implemented, denoted
as the First-Order Jacobian, Gauss-Seidel Implicit (FOGSI) method, which has been
recently proposed by Rossow for high-Reynolds number problems (Rossow, 2005;
Roberts & Swanson, 2005). The method also uses an approximate Jacobian, which
is based only on the first-order Roe scheme, but in contrast to FOKI the Jacobian is
not stored, rather the Jacobian-vector product is recalculated each time it is required,
the resulting system being solved with SGS iterations. FOGSI(n) then denotes the
method with n SGS iterations on the linear system per step, and it is used as an FAS
multigrid smoother. In the original paper it is also used within an explicit Runge-
Kutta method, but this was found to be less efficient than using it directly in this
case.

The coefficient of the dissipation in the Roe flux is taken to be constant when
obtaining the Jacobian, so that the convective terms of the Jacobian take the form
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A ± |A| (where A = ∂f c/∂W ), which is evaluated using flow variables on the grid
faces with either constant or affine reconstruction.

The core idea of the method is to make the product (A ± |A|) · ∆W , for some
flow state update ∆W , very computationally efficient, thereby making the entire
method efficient. This is achieved by firstly working entirely in primitive variables,
and secondly rewriting the above product in terms of the Mach number as follows (in
two-dimensions):

A± |A| =




V ± ρnxM
± ρnyM

± ± 1
a
M̂

0 V ± ± n2
xaM̂ ±nxnyaM̂ nx

ρ
M±

0 nxnyaM̂ V ± ± n2
yaM̂

ny
ρ
M±

0 nxρa
2M± nyρa

2M± V ± ± aM̂


 , (4.10)

where V = U · n, V ± = V ± |V |, M± = (1±M0), M̂ = 1− |M0|, and

M0 =





1 M > 1

M −1 ≤M ≤ 1

−1 M < −1

.

This is not an approximation to the expression A± |A|, purely a rewrite, in a similar
vein to the efficient calculation of |A| due to Turkel in conservative variables (Turkel,
1988). The values V ±, M± and M̂ are calculated once at the beginning of a non-
linear step and stored on the faces of the grid, further reducing the computational
cost.

In the implementation described here the viscous Jacobians are based on TSL
fluxes assuming constant viscosity, and the convective Jacobians are based on flow
values reconstructed on the grid faces. Also a one-equation turbulence model is used,
and differentiated exactly, in contrast to (Rossow, 2005) where an algebraic model is
used. Another difference to previous results involves the boundary conditions, which
are also treated exactly in the Jacobian in this case. The inverse of the block diagonal
of the Jacobian is calculated explicitly using Gaussian elimination once, and stored
until the Jacobian is recalculated. This was found by the present author to be faster
than the method proposed by the originator, of performing a few GS iterations on
the block diagonal at each linear iteration. It has the disadvantage of increasing the
memory requirements of the scheme.

In summary the distinguishing differences from FOKI are the absence of any
storage of the Jacobian, the avoidance of Krylov methods in favour of simpler GS
iterations, the use as an FAS multigrid smoother, and the lack of explicit separation
of mean-flow and turbulence equations (although this latter is of course possible
in FOGSI too). Being based on a Roe flux, FOGSI performs well with upwind and
central with matrix-dissipation schemes on the RHS, but poorly (in fact it is unstable
in most cases) with the scalar dissipation scheme as currently used in TAU.

4.5.3 Numerical Comparison of LU-SGS, FOKI and FOGSI

In order to initially separate convergence behaviour due to the turbulence equations
from that involving only the mean flow equations, we consider a laminar test case,
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Figure 4.8: Convergence histories for the NACA0012 laminar case with Re = 5000,
and a variety of time stepping methods, all started after 500 iterations of a single-grid
method. The convective flux discretization is Roe. Mg=Sg/3v refers to the multigrid
cycle type; Sg stands for single-grid, i.e. no multigrid. All calculations used CFL=100,
except for FOKI which used an infinite CFL number.

a NACA0012 at a chord Reynolds number of 5000, a Mach number of 0.73, and an
angle-of-attack of 0◦. The grid, shown in Figure 3.13, is a structured single-block grid
with about 20,000 points, and the first layer above the wall is chosen to achieve a
first-cell Reynolds number, y+, of the order of 1. The Reynolds number is just below
the value at which the flow becomes turbulent, and the field is entirely subsonic, as
well of course remaining attached to the aerofoil over its entire surface. In order to
accommodate the FOGSI method, which is only formulated for Roe convective fluxes,
Roe is used in the spatial discretization. Viscous fluxes are TSL and are therefore
their implicit treatment is exact in both FOGSI and FOKI. In order to avoid start-up
problems calculations are started from a partially converged solution, obtained after
500 iterations of an alternative method, in this case LU-SGS without multigrid.

First the appropriate choice of the number of SGS iterations in FOGSI is investi-
gated. Figure 4.8 compares the convergence of several possible methods, in particular
FOGSI(8) and FOGSI(16) both with and without multigrid. Also investigated is the
same method, but with a Jacobi rather than a SGS linear system iteration (FOJI).
A Jacobi iteration is significantly computationally cheaper than an SGS iteration,
however, as seen in the figure, about 128 Jacobi iterations per step are needed to
reach the same convergence rate as 16 SGS iterations, at which point FOJI is sig-
nificantly slower. This is consistent with well known performance results, as well as
the investigations of Section 3.4.2. The best performing FOGSI method used 8 SGS
iterations per step and a 3V multigrid cycle, and results in a improvement on the
efficiency of LU-SGS of a factor of ≈ 2.5 in terms of CPU time. In all of the above
calculations the CFL number was fixed at 100.

The FOKI method with a Jacobian based on the Roe flux is also applied to this
case. ILU(0) preconditioned GMRES(10) was used, and the linear iteration was
stopped after a factor of 100 reduction in the preconditioned residual, or after 10
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Figure 4.9: Convergence for RAE2822 Case 9, with Roe fluxes and Spalart-Allmaras
turbulence. The values chosen for CFL and multigrid cycle were close to optimal
values for each of the schemes considered.

iterations. In practice, after a short initial convergence phase, the method achieved
the required factor of 10 reduction within 2−5 GMRES steps. As a result of the small
number of iterations the dominant cost of the calculation lay with the formulation
the Jacobian and the ILU(0) preconditioner. To mitigate this effect the Jacobian was
henceforth only calculated every 10 non-linear iterations, a modification that is very
simple to implement given its explicit storage. The resulting convergence is shown in
Figure 4.8 whereby the CFL number is taken to be infinite.

For this case the Jacobians of FOKI and FOGSI are substantially identical, the
principal difference between the methods being the choice of CFL number, and the
accuracy of linear system solution. For CFL numbers higher than 100 FOGSI was
not stable for the number of SGS iterations used in this case. However given exact
inner system solutions, FOKI and FOGSI showed identical convergence, verifying the
implementation. With the modifications proposed here the FOKI scheme is approx-
imately a factor of 4 faster in terms of CPU time, than LU-SGS with multigrid in
terms of CPU time.

The next case considered is the RAE2822 Case 9 with the Spalart-Allmaras Ed-
wards (SAE) turbulence model, again using Roe fluxes to cater to the FOGSI scheme.
The grid is mixed-element with about 28,000 points. Convergence for LU-SGS and
FOGSI is shown in Figure 4.9. None of the methods used converged beyond a resid-
ual of about 10−5. Further FOKI could not be brought to converge at all. This is a
common effect observed when applying upwind schemes with Green-Gauss gradient
reconstruction on heavily anisotropic grids, and is due to oscillation of the gradient
limiter. The limiter is designed to be active only in regions of large gradients, and
can get caught in a limit cycle where it repeatedly swings between neighbouring cells
on subsequent iterations. This can be diagnosed by examining the flow field at each
iteration, but is difficult to resolve.

In order to calculate the RAE Case 9 using FOGSI, the central scheme with matrix
dissipation is chosen for the spatial discretization. The coefficient of dissipation in
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Figure 4.10: Convergence for RAE2822 Case 9, with the central scheme with matrix
dissipation and Spalart-Allmaras turbulence. Settings of all methods were chosen
to optimize their convergence speed. Mean:Turb refers to the number of turbulence
equation iterations per mean equation iteration. In the left-hand plot one iteration
refers to a complete cycle of (possibly multiple) mean flow iterations and a turbulence
iteration.

the scheme is |∂f/∂W |, i.e. identical to that of the Roe scheme, and therefore the
FOGSI Jacobian should be appropriate. However FOGSI is now at a disadvantage to
FOKI, as FOKI uses a Jacobian based on the matrix dissipation fluxes in this case,
taking into account the pressure switch over χ. The convergence plots are shown in
Figure 4.10, compared again against LU-SGS with multigrid.

Immediately obvious is the poor behaviour of LU-SGS for this case, with early
multigrid breakdown and very poor convergence thereafter (in particular as compared
with Figure 4.11). FOGSI and FOKI both have very high convergence rates, and
FOGSI shows no multigrid breakdown. The cost of FOKI and FOGSI iterations
turns out to be approximately equal in this case, which gives the advantage to the
method with the better convergence rate, FOKI. This difference may be attributed
to the higher linear system convergence.

Finally we consider a discretization using the central scheme with scalar dissipa-
tion - the ultimate target scheme - in Figure 4.11. FOGSI is not stable with this
discretization, a result of the mismatch between the Jacobian and the RHS. This
statement can again be verified by using FOKI with a Roe Jacobian for this case,
which also diverges. As discussed LU-SGS performs well, with almost no convergence
breakdown, in contrast to its use with matrix dissipation in Figure 4.10. These results
suggest that multigrid breakdown can be entirely avoided (at least for simple cases)
by using an implicit treatment with an accurate Jacobian.

The performance of FOKI is compared against the case where the Jacobian is
exact with respect to the RHS, i.e. where the RHS contains only first-order dissipa-
tion fluxes. Given an exact linear system solution at each step the method should
then show quadratic convergence, and this has been verified. Given a factor of 100
reduction in the linear residual per step, the convergence is as shown in Figure 4.11.
Also compared is the method with only one turbulence iteration for each two mean
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Figure 4.11: Convergence for RAE2822 Case 9, with the central scheme with scalar
dissipation and Spalart-Allmaras turbulence. The FOKI scheme uses ILU(0) pre-
conditioned GMRES(10) with a maximum of 10 iterations per linear system. In the
left-hand plot one iteration refers to a complete cycle of (possibly multiple) mean
flow iterations and a turbulence iteration.

flow iterations.
The choice of mean:turbulence iteration ratio has little effect on the first-order

accurate problem, the 2:1 ratio being very slightly more efficient. This might be
expected as in this case the Jacobian for all parts of the discretization are exact,
and hence the convergence of the mean flow equations should be as good as that of
the turbulence equations. Additionally, the extra turbulence iteration is very cheap
compared to a mean flow iteration. The effect is somewhat larger for the second-order
discretization, but is still not significant. Further study is necessary to determine the
optimal use of the mean-turbulence splitting.

The reduction in convergence rate when switching to second-order is significant,
as expected, and as seen earlier in Section 3.4.1. However in terms of CPU time per
iteration, the difference is very small, even though the second-order residual is much
more expensive than the first. This is a consequence of the fact that in FOKI the
residual is only a small part of the total calculation cost (the Jacobian being more
expensive for example), whereas for LU-SGS and Runge-Kutta the cost of residual
evaluation dominates. Thus for more expensive residuals, methods like FOKI become
increasingly attractive.

As compared with LU-SGS - which performed very well in this case - the best
FOKI method is about 4.4 times faster in terms of CPU time. This is a significant
difference, and since the memory requirements of FOKI are reasonable, it may be
considered to be a promising scheme for large practical 3D cases in the future.
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4.6 Summary

Two methods have been developed about a Jacobian based on first-order convective
fluxes, including boundary conditions, viscous fluxes, and in particular an exact Ja-
cobian of the turbulence model. One of the methods uses Gauss-Seidel to solve the
linear system at each non-linear step (FOGSI), and the other uses a preconditioned
GMRES algorithm, whereby the linear mean flow and turbulence equations are for-
mulated and solved separately, and the method makes no use of multigrid (FOKI).

These schemes were tested on a simple two-dimensional single-element transonic
aerofoil configuration, using a hybrid grid consisting of triangles and quadrilaterals,
with a high Reynolds number resembling that encountered in practical applications.
The FOKI method was seen to consistently out-perform both LU-SGS and FOGSI
with multigrid, and resulted in an improvement in CPU time of a factor of 4-5 over
the LU-SGS scheme, which in turn showed a performance improvement of a factor of
two over Runge-Kutta.

The code with the FOKI scheme has memory requirements that are about five
times those of the standard code, but has the advantage that it is not dependent on
multigrid, and is therefore independent of the unreliable coarse grid agglomeration
algorithm.

It remains to examine the performance, and in particular the robustness of the
method for large three-dimensional test cases, such as those that have been considered
in the context of LU-SGS. The best use of the separation of turbulence and mean-
flow must be examined, as well as the start-up procedure. The development of FOKI
into a practically usable scheme represents considerable work, but the method has
been shown to be promising.



Chapter 5

The Discrete Adjoint Equations1

5.1 Introduction

We consider gradient-based optimization, characterized by the steepest descent meth-
od. A critical component is the evaluation of the gradient of the quantity of interest
(the cost function) with respect to the parameterization of the problem (the design
variables). Aerodynamic optimization problems often involve the very detailed pa-
rameterization of shapes, and as such a large number of design variables are required.
The derivative of a cost function with respect to many design variables can be com-
puted in a time only weakly dependent on the number of design variables using the
adjoint method. An overview of the situation has been given in Section 1.2.

An ambitious goal of aerodynamic design is the gradient-based optimization of
three-dimensional high-lift transport aircraft configurations using an unstructured
RANS code. This is an extremely ambitious objective requiring the resolution of a
number of very significant problems before it becomes practicable (Kroll et al., 2004).
Some of the difficulties involved are:

(a) The extensive grids necessary in order to accurately resolve the wakes of the
individual elements of the wing (which control the onset of separation on the
upper surfaces) and the associated high computational costs (Rudnik et al.,
2004). This critical and difficult problem has been tackled in Chapters 3 and 4.

(b) Grid deformation which can robustly handle adjacent bodies with large relative
motion in large grids.

(c) Calculating gradients of the maximum lift Cmax
L (Kim et al., 2002), especially

considering that determining the value of Cmax
L itself is problematic.

(d) Taking unsteady flow in the non-linear solver and in the design process into
account.

(e) The many design variables needed for parameterization of complex 3d shapes
(Wild, 2003), which makes an adjoint method for the gradients essential for

1The author is very grateful for the support of Joël Brezillon, who performed all optimiza-
tions shown in this chapter in the context of (Dwight & Brezillon, 2006). The author performed
the remainder of the work, in particular the conception and development of the discrete adjoint
discretization and solution method.

114
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efficiency. However adjoint techniques have difficulty handling turbulence mod-
elling, in the case of the continuous formulation (Nadarajah & Jameson, 2000),
or are too memory hungry to be applied to large 3d grids, in the case of the
discrete formulation (Brezillon & Dwight, 2005).

This chapter tackles solely the last problem for the discrete adjoint in the context
of two-dimensional high-lift optimization. There are two principal difficulties asso-
ciated with the use of the discrete adjoint: firstly formulating the adjoint requires
differentiating the corresponding flow solver per hand, including discrete boundary
conditions, gradient calculations, turbulence models, etc., which as has been seen in
Chapter 4, is a laborious process, and which must be repeated each time the spatial
discretization changes. Secondly, depending on the manner of constructing the ad-
joint residual, storage of the full discrete flux-Jacobian may be required, which limits
3d applications due to memory requirements.

Alternatives to hand-differentiation are being developed, for example complex
variable finite differences (Nielsen & Kleb, 2005; Burdyshaw & Anderson, 2005), and
algorithmic differentiation (Griewank, 2000), but the solution many authors have
used is to perform only an approximate differentiation of a flow solver. For exam-
ple by treating the coefficient of artificial viscosity in the Jameson-Schmidt-Turkel
scheme (Jameson et al., 1981) as constant it is possible to reduce the construction
of the adjoint residual to two sweeps over the faces of the grid (Mavriplis, 2004;
Mavriplis, 2005). Another example is the practice of assuming that the eddy-viscosity
is constant, thereby obviating the differentiation of the turbulence model (Kim et al.,
2003).

There have, however, been few studies examining the effect these approximations
have on the resulting gradients and optimizations; and this is consequently a matter
of pressing interest to the community. It is the purpose of this chapter to determine
which of these simplifications are acceptable in the context of aerodynamic opti-
mization, in the sense of how the convergence of the optimization and its result are
affected. In particular the approximations considered are:

• Adjoint solution based on a 1st-order accurate discretization (FOA),

• Adjoint solution with Thin Shear-Layer viscous fluxes (TSL),

• Assumption of constant coefficients in the JST scheme (CCA),

• Assumption of constant eddy-viscosity (CEV),

• Adjoint solution with alternative turbulence model (ATM).

Each of these approximations is either based on the assumption that the derivatives
of the particular terms are negligible, or that they may be replaced with the deriva-
tives of similar related terms. Two optimization test cases are examined numerically
for each approximation: (i) drag reduction of a transonic aerofoil, where the design
problem essentially consists of the removal of the shock, and (ii) drag reduction of a
high-lift configuration in which a wide variety of flow phenomena are represented, and
for which both compressible and viscous effects, as well as the choice of turbulence
model are critical. By considering such a wide range of flow phenomena, it is antici-
pated that the results obtained will be valid for general two-dimensional aerodynamic
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optimizations, and it is hoped that they will also be representative of the situation
in three-dimensions.

With this goal the exact discrete adjoint to the unstructured finite volume RANS
solver, the DLR TAU-code, is constructed based on the formulation of the Jacobian
described in Chapter 4. The gradients obtained from the exact adjoint are verified
against those obtained using finite differences on the original non-linear routines.
Where the approximate adjoint formulations are the result of using a related dis-
cretization, as for the adjoint based on 1st-order fluxes, finite differences have again
been used to verify the implementation. Gradient evaluations and thereafter full op-
timizations are then performed with each of the various adjoint approximations, and
variations in gradients, convergence rates and solutions attained are compared.

The solution of the linear adjoint problem is performed using a Krylov subspace
method with ILU preconditioning, allowing the solution of the adjoint problem in a
CPU time equivalent to about 5% of the time required for the main problem. In ad-
dition the adjoint fields for multiple cost-functions may be computed simultaneously,
further reducing the CPU-time cost of the gradient evaluation.

5.1.1 Overview

Section 5.2 provides a short formal description of the design problem and introduces
the necessary notation. Section 5.3 introduces the adjoint method, and in particular
it is shown how it is possible to evaluate the adjoint solution with an effort equivalent
to 5% of that needed to evaluate the flow solution itself (Brezillon & Dwight, 2005),
making optimization methods that require large numbers of gradient evaluations, such
as the Quasi-Newton Trust Region (QNTR) approach, attractive in an aerodynamic
design context for the first time.

The simplifying approximations for the Jacobian are described in detail in Sec-
tion 5.4. In order to determine whether or not the gradients remain accurate enough
for use in optimization, and therefore which Jacobian approximations are admissible,
each approximation is numerically tested within the conjugate gradient method for
the drag reduction of a transonic single element aerofoil and a multi-element high-lift
configuration, Section 5.5. It is seen that the Jacobian may be simplified consider-
ably without seriously damaging the accuracy of the gradients, and that resulting
optimizations are barely affected (Dwight & Brezillon, 2006).

5.2 Aerodynamic Design Problem

The optimization problem may be stated as follows: minimize I(W,X,D) a cost-
function with respect to some set of design variables D, subject to the constraints
R(W,X,D) = 0 and G(X,D) = 0; whereby W and X are functions of D, and R and
G are general non-linear operators.

Here I is typically an aerodynamic force integrated over the geometry such as
lift, drag or pitching moment, W represents the flow variables, X the computational
mesh, R the residual resulting from the discretization of the fluid flow equations, and
G a mesh deformation operator. In particular R is here the finite volume discretiza-
tion on an unstructured mesh of the Navier-Stokes equations. Finally D is some
parameterization of the geometry and onflow conditions.
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For problems with a large number of design variables, the most efficient algorithms
are gradient-based, and require the evaluation of dI/dD for each design variable.
These gradients may in turn be efficiently evaluated using the adjoint approach.
Additional constraints on the problem are also common, such as the specification of
constant lift and constant pitching moment.

5.2.1 Details of the Discretization

The spatial dicretization is exactly the finite volume discretization of the Navier-
Stokes equations described in Chapter 2. The central numerical flux with mixed
second- and fourth-order scalar dissipation operators is applied (Jameson et al., 1981),
see Section 2.6. Viscous and turbulence diffusion fluxes use Green-Gauss gradients av-
eraged onto the cell faces, as per (2.75), and thereby have a stencil of next-neighbours.
Turbulence convective fluxes are 1st-order upwind, sources use gradients from Green-
Gauss.

5.3 Gradients via Discrete Adjoint

The adjoint approach allows the rapid evaluation of dI/dD for a large number of
design variables |D|. It can be readily understood by contrasting it with the direct
or primal approach.

5.3.1 Primal Approach

The most direct approach to evaluation of the gradient is to apply the chain rule to
dI/dD, to give

dI

dD
=

∂I

∂W

dW

dD
+

∂I

∂X

dX

dD
+
∂I

∂D
,

which is an expression for dI/dD in terms of dW/dD and dX/dD (the remaining
quantities being readily calculable). By noting that dR/dD = 0 - as the condition
R = 0 should hold for all D - we have

dR

dD
=

∂R

∂W

dW

dD
+
∂R

∂X

dX

dD
+
∂R

∂D
= 0, (5.1)

a linear system for dW/dD, based on the linearization of the discretized flow equa-
tions. Hence to find the sensitivity of I to |D| design variables it is necessary to
solve (5.1) |D| times, and in practice this effort dominates the total cost of the cal-
culation.

5.3.2 Adjoint Approach

Instead of applying the chain rule to I, apply it to the Lagrangian:

L(W,X,D,Λ) = I(W,X,D) + ΛTR(W,X,D),

where Λ are known as the adjoint variables. Since R = 0 for all D, L = I for all Λ
and all D. Hence

dL

dD
=

dI

dD
, ∀ Λ, D.
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Applying the chain rule to L

dL
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,(5.2)

after rearranging. The unknown quantity dW/dD may then be eliminated by choos-
ing Λ such that (

∂R

∂W

)T
Λ = −

(
∂I

∂W

)T
, (5.3)

whereby the first bracketed term of (5.2) is zero. This is the adjoint equation, and
must be solved only once to evaluate the gradient of a single I with respect to any
number of design variables. Given Λ, the gradient is

dL

dD
=

{
∂I

∂X
+ ΛT ∂R

∂X

}
dX

dD
+

{
∂I

∂D
+ ΛT ∂R

∂D

}
,

whereby ∂I/∂D and ∂R/∂D are zero for shape-based design variables, and the re-
maining unknown term, dX/dD, may be reliably evaluated by finite differences,

∂I

∂X

dX

dD
∆Di ≈

I(W,X(D + ε∆Di), D)− I(W,X,D)

ε
,

∂R

∂X

dX

dD
∆Di ≈

R(W,X(D + ε∆Di), D)−R(W,X,D)

ε
,

as the result is relatively insensitive to choice of ε, in contrast to direct approximation
of dI/dD by finite differences.

5.3.3 Adjoint of the Grid Deformation

In order to eliminate the use of finite differences for dX/dD, it is possible to use an
adjoint approach, thereby removing the expense of deforming the grid in response
to each shape-modifying design variable, which is the dominant cost in the gradient
calculation (Nielsen & Park, 2005). Apply the chain rule to a modified Lagrangian

L(W,X,D,ΛR,ΛG) = I(W,X,D) + ΛT
RR(W,X,D) + ΛT

GG(X,D),

where two sets of adjoint variables are used, one for each of the two constraints, to
give

dL
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+
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∂X
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}
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.
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Then as before dW/dD may be eliminated by choosing ΛR to satisfy

(
∂R

∂W

)T
ΛR = −

(
∂I

∂W

)T
, (5.4)

but further dX/dD may be eliminated by choosing ΛG such that

(
∂G

∂X

)T
ΛT = −

(
∂I

∂X

)T
−
(
∂R

∂X

)T
ΛR. (5.5)

Thus only (5.4) and (5.5), must be solved for any number of design variables, after
which dI/dD may be written

dI

dD
=

∂I

∂D
+ ΛT

R

∂R

∂D
+ ΛT

G

∂G

∂D
. (5.6)

The biggest effort involved is the linearization of the grid deformation operator G,
and the evaluation of ∂R/∂X and ∂I/∂X. If however a linear deformation operator
is choosen, its linearization is trivial. This approach is not used in this thesis, but is
to be the subject of future work.

5.3.4 Implementation of the Method

Implementation of the above procedure requires the ability to evaluate the quantities
(∂R/∂W )TΛ - the adjoint residual - and ∂I/∂W . The Jacobian is the same as the
exact Jacobian discussed in Chapter 4, i.e. evaluated by hand and stored explicitly.
As it is stored explicitly it is easy to transpose.

The fact that the Jacobian was formulated by differentiating with respect to prim-
itive variables poses no problem as long as the cost functions are also differentiated
with respect to primitive variables. The equations remain in conservative form, and
therefore this choice has no effect on the final solution. Given the explicitly stored
Jacobian - which must only be constructed once per gradient evaluation, even for
multiple cost-functions - assessment of the adjoint residual reduces to a matrix-vector
product. Further the availability of the matrix allows the application of ILU precon-
ditioned Krylov methods, which have been shown to be very effective if the ILU fill-in
level is chosen high enough, in Section 4.3. Again this preconditioner must only be
constructed once per calculation.

As the eigenspectrum of the Jacobian and transpose Jacobian are identical, the
convergence rates achieved with Krylov subspace methods for the two resulting linear
systems are guaranteed to be identical, and so the experience gained applying these
methods in implicit schemes in Chapter 4 may be directly carried over. The result is
that the calculation of the adjoint solution requires only approximately 5% of the time
required for a non-linear flow calculation - and so forms an insignificant component
of the total time for the optimization. Given that the gradient is much cheaper
than the line search, optimization strategies that rely on many gradient evaluations,
such as Quasi-Newton Trust Region (QNTR) (Geiger & Kanzow, 1999), become more
attractive. However, the ILU preconditioner and GMRES method have an associated
memory cost that further reduces the size of grid that may be calculated in a given
memory, in this case the requirements for ILU with 4 levels of fill-in and GMRES(30)
were given in Chapter 4 in Table 4.1.
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Note that a finite difference evaluation of the matrix-vector product, as was done
in the Newton method of Section 3.4.1 to avoid calculating the Jacobian explicitly, is
much more difficult to use for the adjoint residual, as the product with the transposed
Jacobian is needed. It is necessary to split the field into several sets of grid nodes,
such that no two nodes within a set are connected to each other by the stencil of the
scheme (Nielsen & Kleb, 2005). Then the product of the Jacobian with the vector
consisting of ones at the node positions of a given set, and zeros elsewhere, returns a
vector containing the non-zero entries of the Jacobian in the columns where the nodes
were positioned. This vector is approximated by finite differences. However, because
of the block structure of the matrix the finite difference must be performed (number
of equations) times for each point set. The method therefore requires 20-30 residual
evaluations per adjoint residual, and is thereby more expensive than constructing the
Jacobian explicitly.

5.4 Approximations of the Discrete Adjoint

In an attempt to reduce the memory requirements of the scheme, the manual effort
required to adjoint new spatial discretizations, and the computational effort required
to solve the resulting system, approximations to the adjoint equations are made.
The cost is inaccuracies in the resulting gradients. Each approximation is described
here and its advantages noted, while its accuracy will be numerically assessed in
Section 5.5. Throughout no approximation of the boundary conditions is undertaken,
as all are treated numerically with a stencil of a single (boundary) point, and therefore
appear only on the diagonal of the Jacobian.

5.4.1 1st-Order Approximation (FOA)

As already noted in reference to simplified Jacobians of the central scheme in the
context of implicit methods, see Section 4.5.1, by forming the Jacobian of first-order
convective fluxes rather than second-order, the stencil of the Jacobian is reduced to
immediate neighbours of a point only, and the resulting linear system is much better
conditioned.

Here only simplifications of the JST flux are considered, and the same arguments
as in Section 4.5.1 apply. In particular purely second-order dissipation is used:

f̂ cij(Wi,Wj;nij) =
1

2

(
f c(Wi) + f c(Wj)

)
· nij

− 1

2

∣∣λcij
∣∣
{
k(2)(Wj −Wi)

}
, (5.7)

but rather than specifying the dissipation coefficient as a blend of second- and fourth-
order coefficients as in (4.9), a constant dissipation factor k̄(2) is used, which is in this
case taken to be equal to k(2) in (2.39), i.e. k̄(2) = 0.5.

5.4.2 Thin Shear-Layer (TSL) Assumption

The formulation of the viscous fluxes given in Section 5.2.1 has a stencil including
next-neighbours as a result of the use of gradients based on Green-Gauss. As in the
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implicit schemes, this stencil may be reduced to immediate neighbours if the TSL
flux is used. However here the approximation has an effect on the converged result of
the calculation. That the two viscous flux discretizations agree well for complex flows
does not necessarily imply that their gradients will agree well. This will be examined.

5.4.3 Constant JST Coefficients Approximation (CCA)

By making the assumption that the ε, θ and |A| in (4.6) are constant, the following
simplification of the adjoint residual is possible (Mavriplis, 2004). Let L(W ) be
as defined in (4.7), and treated in the expression for the convective fluxes as an
independent variable, so that the derivative and adjoint of (4.6) may be written
respectively

df̂ c

dW
=

∂f̂ c

∂W
+
∂f̂ c

∂L
· ∂L
∂W

, (5.8)
(

df̂ c

dW

)T

=

(
∂f̂ c

∂W

)T

+

(
∂L

∂W

)T
·
(
∂f̂ c

∂L

)T

, (5.9)

whereby all matrices on the right-hand sides above have immediate neighbour fill-in
only, ∂f̂ c/∂L is symmetric and ∂L/∂W is trivial.

Memory requirements are then approximately 1.6 times those of the FOA scheme
if advantage is taken of the symmetry of ∂f̂ c/∂L, and ∂L/∂W is calculated on-the-
fly. Also the matrices may be stored on the edges and nodes of the grid, given which
the adjoint residual may be evaluated in two loops over all edges by introducing an
intermediate variable Λ∗ as follows:

Λ∗ =

(
∂f̂ c

∂L

)T

· Λ,
(

df̂ c

dW

)T

· Λ =

(
∂f̂ c

∂W

)T

· Λ +

(
∂L

∂W

)T
· Λ∗.

TSL viscous and turbulence diffusion fluxes are used to similarly reduce the memory
requirements of the viscous flux Jacobian, while the discrete turbulence Jacobians are
formed exactly.

The CCA approximation may be justified by noting that the terms in the deriva-
tive that are neglected due to the approximation are of higher order in the grid spacing
than the remaining terms. Therefore in the limit of zero cell size the influence of the
approximation tends to zero, see Section 2.6.2.

Compared to FOA, this approach seems very favourable; for only sightly more
memory the convective fluxes are sensibly approximated. However the resulting sys-
tem is almost as poorly conditioned as the exact system and therefore similarly pow-
erful linear solvers are required.

5.4.4 Constant Eddy-Viscosity (CEV) Assumption

One of the most demanding parts of the spatial discretization to differentiate by hand
is the turbulence model, partly due to the wide variety of blending functions, limiters,
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vortex corrections etc., partly because of the many coupling points to the mean-
flow equations, and partly because of the enormous selection of models available.
More seriously it is very difficult to treat turbulence models in a continuous adjoint
framework without resorting to continuous-discrete hybrids (Nadarajah & Jameson,
2000), hence some simplifying assumption must be made.

By assuming that derivatives of all turbulence quantities with respect to all flow
variables are negligible, all turbulence terms are eliminated. For Spalart-Allmaras
the derivatives of the eddy-viscosity are taken to be zero, for k− ω and k− ε models
derivatives of k and eddy-viscosity are taken to be zero.

One place where this assumption might be invalid is in the adverse pressure gra-
dient region following the shock on a transonic airfoil, where the large eddy-viscosity
increases the surface shear-stress, directly affecting the aerodynamic forces.

5.4.5 Use of an Alternative Turbulence Model (ATM)

The only significant benefit that the CEV assumption confers is the avoidance of hand
differentiating the turbulence model. The similarity in the formulation and results of,
for instance, the original Spalart-Allmaras model (SA) (Spalart & Allmaras, 1992),
and the modified Spalart-Allmaras-Edwards (SAE) (Edwards & Chandra, 1996), sug-
gest that it may be reasonable to use the Jacobian of one as an approximation to the
Jacobian of the other, and that this may be a better approximation than ignoring
turbulence derivatives altogether. If so only one or two models of each type must be
differentiated in a large code.

SA and SAE differ only in the formulation of the turbulence production term:
for SA it is based on a measure of the flow vorticity, see Section 2.11.4, SAE uses a
measure of the shear stress, see Section 2.11.5. Within the boundary-layer the source
terms are dominated in both models by terms involving the wall-distance, hence the
models are expected to differ most significantly in detached shear-layers and vortices.

Another candidate pair might be Wilcox’s k − ω (Wilcox, 1998), and Mentor’s
k − ω SST (Menter, 1993), whereby only SA gradients as an approximation to SAE
gradients are numerical evaluated in the following.

5.5 Results and Discussion

We wish to determine which, if any, of the previously described approximate Jaco-
bians results in an adjoint gradient evaluation method that is sufficiently accurate for
use in aerodynamic optimization. This is a question that is difficult to answer theoret-
ically due to the complexity of the complete optimization process, and the somewhat
arbitrary nature of the Jacobian approximations. Instead we investigate concrete op-
timization problems numerically and examine how each approximate adjoint solver
performs in each case. In an attempt to obtain results that have a relatively general
validity, two significantly different 2d optimization problems are considered repre-
senting a variety of industrially relevant flow physics, and - just as importantly - two
different optimization algorithms are applied.

The first case is drag reduction of a transonic RAE2822 single element aerofoil
at a Reynolds number of 6.5 × 106, and a Mach number of 0.730, whereby the lift
must be held constant at a lift coefficient of 0.8. The computational grid is shown
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in Fig. 3.13. The geometry is parameterized using 20 design variables which modify
the camberline of the aerofoil with Hicks-Henne bump functions (Hicks & Henne,
1978). The thickness of the aerofoil is not permitted to change, and as a result no
additional geometrical constraints are necessary. The baseline geometry has a strong
shock on the upper surface which is the main source of pressure drag; the optimization
problem therefore substantially consists of the removal of the shock. Two gradient-
based algorithms, the Conjugate Gradient (CG) method and the Quasi-Newton Trust
Region (QNTR) method are applied to the problem.

The lift constraint is enforced explicitly by varying the angle of attack during
the evaluation of the drag in the non-linear RANS solver, the so-called target-lift
mode. Because we wish to minimize the drag at the target lift C∗L, rather than at
the preexisting lift CL, the objective function must be modified to consider the lift
constraint consistently (Reuther et al., 1999),

I = CD −
(∂CD/∂α)

(∂CL/∂α)
(CL − C∗L) , (5.10)

a consequence of which is that the accuracy of the gradients of lift are also important
for the optimization.

The second optimization test-case is also drag reduction at constant lift, but of
the three-element high-lift geometry in take-off configuration. The baseline geometry
and flow conditions are derived from a test-case defined in the European project
EUROLIFT II (Wild et al., 2005), and operate at a Reynolds number of 14.70× 106

and a Mach number of 0.17146. Constant lift is ensured in the same manner as
for the RAE case. The computational grid is shown in Fig. 3.13 and is structured,
whereby the structured topology is not employed by the solvers, all algorithms being
implemented for general unstructured grids. Only the flap of the configuration is
parameterized, and in such a manner that no modification to the composite clean
wing is possible (Brezillon & Wild, 2005). The position and angle of attack of the
flap relative to the main element may be changed (the so-called setting parameters),
as may the sharpness of the flap’s nose and the shape of the portion of the flap hidden
by the main element (shape parameters). Only the conjugate gradient algorithm is
examined for this case.

5.5.1 Transonic RAE2822 Aerofoil

Firstly exact adjoint gradients are compared with direct finite difference approxi-
mations to dI/dD; the gradients of total and viscous drag are plotted in Fig. 5.1.
Note that the curves in this figure are “smooth” becuase of the indexing of the design
variables, which parameterize bumps running around the surface of the aerofoil in
order. Both finite differences and the discrete adjoint approximate the gradient of
the discretized cost-function, and should therefore correspond with each other exactly
on any given grid. It may be seen that the agreement is very good, the discrepancies
apparent in the viscous drag gradients may be attributed to the rounding error in
finite differences as a result of the very small absolute values of the gradients. This
discrepancy as a percentage of the total drag gradient is less than 0.5%. The discrete
adjoint using the exact Jacobian is thereby taken to be verified for this case.

Next the gradients using the adjoint method with various Jacobian approxima-
tions are compared with those of the exact adjoint in Fig. 5.2. TSL and CCA gradients
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Figure 5.1: Gradients of total and viscous drag obtained using finite differences and
the discrete adjoint formulation with an exact Jacobian for the RAE aerofoil. The
20 design variables parameterize the aerofoil camberline from the leading edge to the
trailing edge. The trailing edge itself remains fixed.

agree with the exact gradients to within a relative error of 1%, whereby TSL is slightly
more accurate than CCA, an expected effect as TSL is a subset of the CCA approxi-
mation. The considerable inaccuracy of the FOA gradients might be attributed to the
presence of the shock, which would be heavily smeared if first-order fluxes were used
in the non-linear calculation. The error in the CEV gradients might be attributed
to the importance of turbulence, an effect which is apparently well captured by the
ATM model. More detailed explanations might be constructed by comparing the
adjoint fields for each approximation, but physically interpreting the adjoint field is a
delicate and difficult matter, and rather we move directly to numerical investigations.

Conjugate Gradient Optimization

The conjugate gradient (CG) algorithm, an improvement on the method of steep-
est descent, uses conjugate gradients rather than the local gradient to determine a
direction in which to search for the minimum. Given this search direction, a line-
search using repeated evaluations of the cost-function is performed on the resulting
one-dimensional subspace. Once the minimum on the line is found, a new search
direction is calculated.

If no cost-function improvement is obtained in the CG direction the algorithm
is restarted, and the search continues in the gradient direction. This is performed
to prevent stalling of the algorithm in the case that the cost-function is not a pure
quadratic form, but has the effect of also preventing the accumulation of errors from
inaccurate gradients on each iteration. As a result the algorithm is particularly robust,
and will only fail if no reduction in the cost function can be found in either the CG
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Figure 5.2: Gradients of total drag and total lift for the camberline parameterization
of the RAE2822 aerofoil, obtained using the discrete adjoint with the exact Jacobian,
as well as with all five Jacobian approximations.

direction or the gradient direction, which could only be the result of a very poor
gradient, or a design point close to a local minimum.

This robustness can be seen in the convergence of the RAE case, Figs. 5.3 and 5.4,
whereby the force coefficients are plotted against the number of evaluations of the
cost-function (i.e. non-linear RANS computations) performed, and therefore approx-
imately represent the cost of the calculation, given that gradient evaluations are
relatively cheap and seldom. Gradient evaluations are denoted on the convergence
curves by symbols. In convergence plots of α and Cv

D in Fig. 5.4 it is clear that none
of the CG methods are fully converged, as the values of α and Cv

D are still changing
after 30 iterations, however after this point the change in the cost-function is very
small - less than one-tenth of a drag count. As a result full convergence is rarely
considered necessary in practical applications, and the partial convergence used here
better reflects engineering practice.

The most striking feature of the convergence, seen in the left-hand graph of
Fig. 5.3, is that all approximate gradient optimizations converge to approximately
the same value of CD with approximately the same effort. All optimal solutions
are within 2.5 drag counts of each other - if FOA is disregarded, 0.5 drag counts
- and obtained within 30-40 cost-function evaluations. Apparently large deviations
in gradients have little effect on CG for this relatively simple case, although it is
the case that the approximations that showed more accurate gradients have better
results, TSL and CCA in particular being indistinguishable from the exact gradient
optimization.

FOA was the worst performer, at iteration 34 it was unable to find a better solution
in the CG direction, and at iteration 35 also in the gradient direction and therefore
stopped, at a point far from the optimum found by the other methods, as seen in
Fig. 5.4. In order to establish whether this design point was an alternative local
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Figure 5.3: Convergence of the conjugate gradient algorithm for drag minimization
of the RAE2822 at constant lift, for all discrete adjoint approximations. The con-
vergence is plotted against the number of cost-function evaluations (i.e. non-linear
RANS computations) performed, and therefore approximately represents the CPU-
time cost of the optimization. Most cost-function evaluations are needed for line
searches, whereby symbols denote gradient evaluations. The plot on the right shows
details of the plot on the left near the optimum solution.
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Figure 5.4: Convergence of the viscous drag and angle of attack for the RAE2822 drag
reduction optimization of Fig. 5.3. Convergence is shown for each discrete adjoint
approximation.
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Figure 5.5: Convergence of the optimizations with exact and FOA adjoint gradients
for the drag reduction optimization of Fig. 5.3. After the FOA optimization has
converged, a restart with the exact adjoint gradients is performed.

minimum, or stalling due to an inaccurate gradient, an optimization was restarted
using exact gradients from the iteration at which FOA stalled, the convergence is
shown in Fig. 5.5 plotted against number of gradient evaluations. The restarted
optimization rapidly finds a better solution, indicating that poor FOA gradients were
responsible for the 2.5 drag count deficit.

For completeness the force coefficients of the best design found by each approx-
imate optimization process are given in Table 5.1. Some optimal geometries and
pressure distributions are shown in Fig. 5.6, whereby the results of TSL and CCA are
indistinguishable from the exact optimization. All approximations removed the shock,
as might have been deduced from the drag convergence behaviour, but the resulting
pressure distribution for the exact gradient optimization is significantly smoother
than that of the poorer approximations.

As described above the constant lift coefficient was enforced explicitly; an alterna-
tive method that is not considered here involves restricting the search direction to be
in the hyper-plane normal to the gradient of the lift. For sufficiently small updates,
the lift then varies in proportion to the square of the magnitude of the update step
(if the lift has “wandered too far” after several iterations then an optimization itera-
tion purely for the correction of the lift is performed). This process is of course very
sensitive to the accuracy of the gradient, poor gradients implying the need for more
correction steps. However the results directly reflect the disparities in the gradients
themselves, and the performance of the scheme may be roughly judged by considering
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Cost-fn. Gradient CD Cv
D CL CM α

evals evals (counts) (counts) (counts)
Baseline - - 162.51 49.83 79.99 -0.29327 2.7620
Exact 31 5 105.28 52.20 79.99 -0.29921 2.5899
FOA 35 4 107.48 52.50 79.99 -0.31165 2.4040
TSL 32 5 105.30 52.21 79.99 -0.29956 2.5840
CCA 31 5 105.26 52.19 79.99 -0.29903 2.5929
CEV 38 5 105.70 52.28 80.00 -0.30269 2.5550
ATM 31 5 105.36 52.22 79.99 -0.29995 2.5759

Table 5.1: Results of drag reduction (at constant lift) optimizations of the RAE-
2822 aerofoil using the conjugate gradient method. Given are flow coefficients for
the best geometry obtained using each gradient approximation, and the number of
cost-function and gradient evaluations necessary to achieve that geometry. One drag
count corresponds to one-ten thousandth of a drag coefficient unit, and one lift count
to one-hundredth of a lift coefficient unit.
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Figure 5.6: Baseline and optimized geometries and pressure distributions for opti-
mizations performed with a variety of approximate discrete adjoint gradients. The
results for TSL and CCA optimizations are not shown as they are indistinguishable
from the exact optimization result.
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Figure 5.7: Convergence of the Quasi-Newton Trust Region method for drag mini-
mization of the RAE2822 at constant lift. The optimization problem statement is
identical to that of Fig. 5.3. Convergence is plotted for the method with various
adjoint gradient approximations. As before the plot on the right shows details of the
plot on the left near the optimum solution.

the error in the gradient.

Quasi-Newton Trust Region (QNTR) Optimization

The Quasi-Newton Trust Region method attempts to improve on the convergence of
the CG method by approximating the cost-function on the design space by a quadratic
form (Geiger & Kanzow, 1999). The gradient of the cost-function is computed at
every iteration, and based on a BFGS update, an approximation to the Hessian of
the cost-function is built. The next design point is chosen as the minimum of this
approximation, whereby the minimum must lie within the trust-region, effectively
a limit on the size of the design step. The size of the trust-region is increased or
decreased based upon the accuracy with which the approximation matches the real
function, judged using the discrepancy between the previous cost-function evaluation
and its corresponding estimate.

In practice this method is less robust than CG, and strongly dependent on the ac-
curacy of the Hessian, which in turn depends upon the gradients at all previous steps.
One poor gradient could damage the Hessian approximation, and hence the conver-
gence of the method, significantly. QNTR represents therefore a more demanding
test of gradient accuracy than CG.

This method is applied to the same RAE drag reduction case as before and similar
optima are achieved; the convergence is shown in Fig. 5.7. With this algorithm the
convergence of the exact, TSL and CCA approximations are no longer identical,
testifying to the increased sensitivity of the method to the gradient, while being
similar enough to have confidence in the use of these gradients in QNTR. The fact
that CCA converges slightly faster than the exact method is not significant, but rather
noise as a result of the complexity of the system.

The complete lack of convergence of CEV in this case cannot be attributed to the
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Cost-fn. Gradient CD Cv
D CL CM α

evals evals (counts) (counts) (counts)
Baseline - - 162.51 49.83 79.99 -0.29327 2.7620
Exact 32 32 104.86 51.92 79.99 -0.29142 2.7070
FOA 12 12 109.58 52.51 80.00 -0.31582 2.3499
TSL 32 32 104.84 51.93 79.99 -0.29145 2.7109
CCA 37 37 104.87 51.88 79.99 -0.29038 2.7349
CEV 6 6 162.51 49.83 79.99 -0.29327 2.7620
ATM 36 36 105.28 52.21 79.99 -0.29945 2.5780

Table 5.2: Results of drag reduction (at constant lift) optimizations of the RAE-
2822 aerofoil using the Quasi-Newton Trust Region method. Values given are as for
Table 5.1. Note that the QNTR algorithm performs a gradient evaluation for every
cost-function evaluation.

poor initial drag gradient, which is not substantially worse than that of FOA. But
upon examining the gradient of the corrected cost function of (5.10) it is seen that
while the shape of the gradient is correct, the scaling is completely wrong. This is of
no consequence for CG, which uses only directional information from the gradient, but
is fatal for QNTR, whose cost-function approximation becomes increasing inaccurate,
leading to a reduction in the size of the trust-region on every iteration. Examining
the gradient of CEV at each step of the CG method of the previous section, it is
apparent that the gradient improves substantially after the first iteration, after which
the strength of the shock has been reduced considerably.

The results for the optimal designs using the QNTR method are given in Table 5.2.
The best drag coefficients for TSL and CCA show a slight improvement over those of
the CG optimization due to the more highly converged state of the system.

Comparison of CG and QNTR

It is interesting to compare the relative performance of CG and QNTR for this adjoint
code, which - due to the extremely rapid adjoint solution - makes gradient evaluation
considerably cheaper than cost-function evaluation. The CPU time required for full
evaluation of the gradient, including (exact) adjoint calculations for CD and CL, and
deformation of the mesh for each design variable, is approximately 17.5% of the time
required for a single non-linear flow solution. Hence the QNTR overhead of a gradient
evaluation at every iteration is minimal.

The convergence of CG and QNTR using exact adjoint gradients are shown in
Fig. 5.8. Convergence of the drag to within a tenth of a drag count of the optimum
occurs for CG and QNTR within 50 and 25 cost function evaluations respectively.
However it is apparent from the development of the pitching moment CM , on the
right-hand side of Fig. 5.8, that while the QNTR solution is completely stationary
after 30 iterations, CG is still modifying the geometry after 60 iterations. This prop-
erty of QNTR, while very attractive, is not of immediate practical relevance, as the
minimization of drag is the single objective of the optimization. Hence we can say
that for this case QNTR delivers the optimal solution in a CPU time equivalent to
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Figure 5.8: Convergence of the drag and pitching moment for the RAE2822 opti-
mization with the CG and QNTR algorithms using gradients from the exact adjoint.

about 50% of that of CG, while being less robust to poor gradients.

5.5.2 Three-Element High-Lift Configuration

Again gradients obtained by the adjoint method are compared with finite difference
gradients in Fig. 5.9, whereby the latter are difficult to determine accurately in this
case, and convergence of the difference could not be achieved for all design variables.
Instead the finite difference gradients are plotted for three distinct step sizes. The
agreement with the adjoint is very good, even for Cv

D, and the adjoint is thereby
taken to be verified for this case.

As before the adjoint approximations are compared in Fig. 5.10. TSL and CCA
are again almost indistinguishable from the exact gradients, CEV agrees well, cor-
roborating the evidence that for subsonic cases its accuracy is good, while FOA and
in particular ATM make extremely large systematic errors. The poor performance of
ATM here is surprising given its good performance for the RAE aerofoil, but might
be explained by the strong influence of detached shear-layers in this case, in which
regions the SA and SAE models are most likely to differ - as previously discussed. It
seems that neither CEV nor ATM can be considered really reliable adjoint approxi-
mations as regards the gradient.

Figure 5.11 shows a typical non-linear solver convergence plot for this case. The
time stepping algorithm, an LU-SGS smoothed multigrid iteration (Dwight, 2004),
requires about 5000 cycles to achieve a reduction in the residual of the discretization
of 6 orders of magnitude, at which point the drag is converged to an accuracy well
under a drag count, although changes in the drag are still visible in the right-hand plot
of Fig. 5.11. Further convergence of the non-linear solution is desirable, as partially
converged solutions are a major source of noise in the optimization process, however
CPU time constraints do not permit this.

An optimization using CG is performed for each adjoint gradient approximation,
and the convergence histories are plotted in Fig. 5.12. Again convergence is obtained
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Figure 5.9: Gradients of total and viscous drag obtained using finite differences and
the discrete adjoint formulation with an exact Jacobian for the high-lift configuration.
The design variables parameterize the geometry of the flap. The first four determine
the horizontal and vertical position, the angle, and the nose sharpness respectively.
The remaining six modify the shape of the forward-upper surface of the flap. Finite
difference gradients are shown for a variety of step-sizes.
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ration, calculated with the exact adjoint as well as the various adjoint approximations.
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Figure 5.11: Convergence of residual and drag for the non-linear RANS solver for the
high-lift configuration.

in all cases, testifying to the robustness of CG. Convergence and optimal solution are
very similar for the three approximations that showed accurate gradients: TSL, CCA
and CEV. On the other hand FOA and even ATM achieve optima within one drag
count of the best solution found; the total drag reduction over the baseline geometry
amounts to 66 counts. Whether this discrepancy is significant depends upon the
significance of one drag count to the engineering problem, bearing in mind also the
limited accuracy of the CFD model.

The details of each of the optimal solutions are given in Table 5.3. The optimal
geometry and pressure distribution achieved with the exact gradients are shown in
Fig. 5.13. The means by which the drag may be reduced are not as clear as for the
RAE case, however an important aspect is certainly the prevention of separation and
maintenance of high speed flow over the upper side of the main element near the
trailing edge. This may be achieved by, for example, moving the flap downstream
until the suction peak at the flap stagnation point is at, or downstream of, the main
element trailing-edge. In Fig. 5.13 it can be seen that exactly this effect has been
obtained. If on the other hand a constraint is placed on the amount by which the flap
may be shifted, then it is sometimes the case that the optimization finds an optimal
geometry with a bump on the upper surface, producing a second suction peak in the
pressure distribution behind the main element trailing edge. This is undesirable as
such a profile would be expected to have a poor maximum lift, maximum lift being
vital for a feasible high-lift system.

The optimal geometries and pressure distributions obtained with exact gradients,
FOA and ATM are shown in Fig. 5.14, the remaining approximate results being
identical to the exact gradient result. The CG method was ultimately able to perform
effective optimizations with all the gradient approximations tested here.
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Figure 5.12: Convergence of the conjugate gradient algorithm for drag reduction
at constant lift for the high-lift configuration, shown for optimizations based on all
adjoint gradient approximations. As before convergence is plotted against non-liner
RANS solver calls, thereby representing the approximate cost of the optimization.
Symbols represent gradient evaluations, and the drag is normalized against the drag
of the baseline geometry.

Cost-fn. Gradient ∆CD ∆Cv
D ∆CM ∆α

evals evals (counts) (counts)
Baseline - - - - - -
Exact 28 6 -66.68 -5.80 -0.0432 -0.587
FOA 31 7 -65.76 -6.16 -0.0445 -0.518
TSL 38 9 -66.68 -5.85 -0.0433 -0.582
CCA 34 8 -66.69 -5.80 -0.0432 -0.587
CEV 23 6 -66.66 -5.80 -0.0434 -0.584
ATM 44 9 -65.59 -5.94 -0.0452 -0.509

Table 5.3: Results of drag reduction (at constant lift) optimizations of the high-lift
configuration using the conjugate gradient method and a variety of adjoint gradient
approximations. Values given are changes in the coefficients, the coefficients them-
selves are as in Table 5.1.
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Figure 5.13: Baseline and optimized geometries and pressure distributions for drag
minimization of the high-lift configuration with constant lift. The baseline angle of
attack is 9.61◦, whereas the optimized value is 9.02◦.

5.6 Conclusions

A method for construction and solution of the exact adjoint problem has been de-
scribed which permits convergence within 5% of the CPU time for the non-linear
problem, and therefore typical full gradient calculations (including two adjoint so-
lutions) within 20% of the time for a single non-linear problem solution. Memory
requirements are however 6-7 times higher than the standard non-linear solver due
to the storage of the Jacobian, effectively limiting the method to 2d cases.

In an effort to reduce the memory requirements while maintaining the efficiency
of the method, several approximations to the discrete adjoint have been proposed and
studied with respect to optimizations on two 2d cases. Two of the approximations
studied, TSL and CCA, showed consistently minimal variance from the exact gradi-
ents, and as such may be used with confidence as substitutes for the exact adjoint
method. On the other hand it has been seen that approximating the adjoint of the
turbulence model, either with constant eddy-viscosity (CEV) or the adjoint of a very
similar model (ATM), leads to gradients that are good in some cases, but exception-
ally poor in other cases. In particular CEV produced poor gradients for the RAE
baseline case with a strong shock but excellent gradients in the high-lift case; for
ATM the situation was reversed. These results suggest that construction of reliable
adjoint method requires exact consideration of the particular turbulence model used.

Optimizations were performed with the conjugate gradient (CG) algorithm, which
converged reasonably well for all cases and with all gradients, no matter how poor.
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Figure 5.14: Baseline and optimized geometries and pressure distributions for the flap
of the high-lift configuration, from optimizations performed with a variety of approx-
imate discrete adjoint gradients. The results for TSL, CCA and CEV optimizations
are not shown as they are indistinguishable from the exact optimization result.
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Optimal results obtained with variously inaccurate gradients resulted in optimal so-
lutions differing by no more than 2.5 drag counts for the RAE case and 1 drag count
for the high-lift case. A consequence is that an extremely poor (and correspondingly
cheap) adjoint approximation, such as FOA, could be useful in situations where high
accuracy is not required.

It has also been shown that the possibility for rapid gradient evaluation allows
efficient use of the Quasi-Newton Trust-Region method, which can reduce the overall
optimization time by 50% in comparison to CG, whereby the method is much more
sensitive to poor gradients.

Based on the results of this study an adjoint solver using the CCA approximation
will be further developed, and a reduction in memory requirements to about three
times those of the non-linear solver are expected.



Chapter 6

Conclusions

A complete unstructured grid finite volume method for the RANS equations was pre-
sented in Chapter 2, including all details of the JST convective flux discretization,
boundary conditions and turbulence models, as implemented in the flow solver the
DLR-TAU-Code. In addition the exact and some approximations of the Jacobian of
the complete spatial discretization were derived and implemented, of which selected
parts were described. In particular the full Jacobian of the JST convective flux was
derived, and an approximation is proposed (namely the regarding of the coefficient of
dissipation as constant) which simplifies the expression for the Jacobian significantly.
It was shown that the terms in the derivative neglected through this approxima-
tion were of higher order in the grid-spacing ∆x than the remaining terms, thereby
providing an original justification for this approximation. Further, a method for the
treatment in the Jacobian of strongly implemented boundary conditions was detailed.

The implicit solution of the discretized equations was considered next in Chap-
ter 3. It was shown, based on the practical example of a novel formulation of the
LU-SGS scheme with FAS multigrid, that it is possible to construct an efficient, ap-
proximately factored, implicit method that has identical memory requirements to the
standard explicit Runge-Kutta scheme. The method is also cheaper in terms of CPU
time per iteration than said scheme. Even so it is able to operate with CFL numbers
of the order of 1000 for Euler flow problems, and of the order of 10 for complex 3d
high-Reynolds number Navier-Stokes problems, for which it converges in 50%–90%
of the iteration count of RK. Finally the scheme is at least as stable in a wide range
of situations as RK, and can therefore be used as a true slot-in replacement for that
scheme in all situations. The method has been implemented in the TAU-Code and
at time of writing is widely used within the European aerospace industry.

While the final assessment of the performance of LU-SGS was based on the nu-
merical investigation of the method applied to practical engineering test-cases, the
properties of the scheme were also examined in the context of diagonal dominance of
the implicit matrix, and Fourier analysis. It has been shown by numerical comparison
with related schemes designed to be diagonally dominant, that diagonal dominance
is not desirable in terms of non-linear convergence. Fourier analysis of the scheme
was unsuccessful in that results fundamentally disagreed with numerical observa-
tions, the cause of which was traced back to the oversimplified model of the implicit
method necessitated by the linear nature of the model equation under consideration.
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Nonetheless these investigations were instrumental in formulating and understand-
ing the LU-SGS scheme. Last, but not least, the time-accuracy of the scheme was
examined.

By relaxing the constraint that the memory requirements of the scheme should not
be significantly greater than those of Runge-Kutta, explicit storage of the Jacobian,
and the subsequent solution via Krylov methods became possible, investigated in
Chapter 4. An exact Newton method based on the explicitly stored Jacobian of a
second-order central discretization was examined. Solution of the linear system at
each step using the existing non-linear time stepping method was investigated. It was
shown both theoretically, and on the basis of a turbulent test case, that the resulting
linear system convergence is identical to the asymptotic convergence of the non-linear
iteration using the same method. However this approach was ultimately found to be
inappropriate as part of a Newton method due to its instability for Jacobians based
on partially-converged non-linear solutions.

Attention was therefore turned to Krylov methods, which provided convergence
in all cases given sufficient preconditioning. However, it was found that the level
of preconditioning needed was often excessive. For a simple 2d turbulent test case
an ILU(4) preconditioner and a GMRES(50) method was required. The resulting
algorithm required about 15 times more memory than the standard solver, which was
considered an unacceptable overhead.

Attention was therefore turned to Jacobians based on first-order fluxes, and two
methods were proposed, one using a Gauss-Seidel inner iteration (FOGSI), and one
using an ILU preconditioned Krylov method (FOKI). In FOKI the turbulence equa-
tion iteration was completely separated from the mean flow iteration, and this was
seen to save memory, as well as improve the convergence of the method. FOKI was
shown to be 4-5 times faster than LU-SGS for the cases considered, while the result-
ing code required about 5 times more memory. The method was seen to be a very
promising candidate for further development, in particular in terms of extension to
complex three-dimensional configurations.

These investigations, covering a wide range of Jacobian approximations and linear
solvers, provided insights into the relationship between the two critical elements of
an implicit scheme. In particular the importance of proper consideration of boundary
conditions, even in poor Jacobians, and aspects of the trade-off between linear and
non-linear stiffness were demonstrated.

The effort required to evaluate the Jacobian for the exact Newton method of the
previous chapter, which amounts to a linearization of the entire discrete flow solver,
suggested looking for alternative applications. The adjoint method, in Chapter 5, was
seen to be such an application which allows the rapid evaluation of the derivatives of a
flow quantity, such as drag, with respect to some design variables which parameterize
the aerodynamic shape. These derivatives are then used for gradient-based shape
optimization.

The adjoint method suffered under similar problems to the exact Newton method
however: considerable storage was required and the resulting linear system was dif-
ficult to solve. Using a simplified Jacobian affected the accuracy of the resulting
gradients, unlike in the Newton method where it only affected the transient conver-
gence behaviour. The sensitivity of the gradients to approximations of the Jacobian
was therefore examined on the basis of two optimization test cases. It was seen
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that considerable simplifications were possible, without significant modifications to
the optimum, and these differences were quantified. Thereby greater understanding
of the sensitivity of the optimization to inaccurate gradients, and in particular to
approximations of the adjoint equations was won.

6.1 Further Work

This thesis does not represent the last word on the methods discussed; rather it is
part of a continuing investigation, especially in the case of the adjoint method, and
it is hoped that the results herein will inform and guide future work.

While the LU-SGS method is more-or-less complete, the FOKI approach has so
far only been shown for two-dimensional test cases. If it to be applied routinely to
practical cases it must be made at least as robust as LU-SGS and Runge-Kutta for
complex geometries, poor grids, and flows with separation. Additionally the area of
start-up methods should be investigated, including consideration of when it is possible
to start the full method and expect convergence. For these questions more experience
with the approach is needed in practice.

The principal defect of the discrete adjoint algorithm as described here is its large
memory requirements in relation to the non-linear solver, which are a consequence of
the explicit storage of the Jacobian and the use of ILU preconditioned GMRES. It is
expected that in the near future an accompanying adjoint solver will be demanded of
any industrially applied computational aerodynamics code, not only for the purposes
of optimization, but also for error estimation and goal-based mesh adaptation. In this
case the memory performance of the adjoint solver must be improved significantly if
it is to enjoy routine use.

The path to this goal is highlighted by the investigations of Chapter 5, which
show that given some approximations which have little effect on the adjoint solution,
the construction of the adjoint residual can be simplified and accelerated consid-
erably, while the associated memory requirements are also reduced, see especially
Section 5.4.3. Future work will concern the implementation of this formulation of the
residual in an efficient manner.

Apart from its high memory requirements, the ILU preconditioner may not longer
be used, as the Jacobian is not available explicitly. Instead solution using existing
time stepping methods for the non-linear equation will be applied, as was done for the
linear problem in Section 4.3.1. This approach had two nice properties: guaranteed
convergence of the linear system given convergence of the non-linear system, as well
as identical asymptotic convergence rate. If these are to be preserved for the adjoint
equation, the time stepping scheme must also be “adjointed” (Giles, 2001). This will
be done, and it is expected that the resulting system will have similar stability and
convergence properties and similar memory requirements to the non-linear solver.

Given the adjoint approach, the operation that now dominates the cost of an
gradient evaluation is the deformation of the grid for each design variable, in order
to find the mesh sensitivities. It was shown how this cost may be eliminated in
Section 5.3.3, and work is progressing to implement this approach, whereby the most
effort needs to be expended in the linearization of the mesh deformation algorithm,
and the evaluation of the terms ∂R/∂X and ∂I/∂X by hand.

With these tools complete the gradient-based optimization of a three-dimensional
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wing-body configuration with a mesh of several million points and a parameterization
of 100− 1000 design variables should be possible in well under one day’s computing
time on a small PC cluster, and this specific calculation is the immediate goal.



Appendix A

Change of Variables

A variety of variables are useful for studying the Euler- and Navier-Stokes equations;
this Appendix is intended as a reference to the flux-Jacobians in some of the more
common cases. Consider first the conservative variables

Wc = (ρ, ρu, ρv, ρw, ρE)T , (A.1)

so called because they are quantities conserved by the governing equations. The
convective flux across a face n in conservative variables is

f cc · n =




ρV
ρuV + pnx
ρvV + pny
ρwV + pnz
ρV H



, (A.2)

the subscript of f c denoting here the variable set used. The derivatives of these fluxes
with respect to the convervative variable vector Wc are

∂f cc · n
∂Wc

=




0 nx ny nz 0

nxφ− uV V − a3nxu nyu− a2nxv nzu− a2nxw a2nx

nyφ− vV nxv − a2nyu V − a3nyv nzv − a2nyw a2ny

nzφ− wV nxw − a2nzu nyw − a2nzv V − a3nzw a2nz

V (φ− a1) nxa1 − a2uV nya1 − a2vV nza1 − a2wV γV



,

where
a1 = γE − φ, a2 = γ − 1, a3 = γ − 2,

V = (u, v, w) · n, φ =
1

2
(γ − 1)(u2 + v2 + w2).

A.1 Primitive Variables

After the conservative variables the next most commonly used set are some form of
primitive variables, which for the purposes of this thesis have been chosen as

Wp = (p, u, v, w, T )T , (A.3)
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purely to provide a convenient set of variables in which to perform algebraic manip-
ulations. The Jacobian of the exact convective fluxes in primitive-primitive variables
(that is the primitive fluxes differentiated with respect to the primitive variables) is

∂f cp · n
∂Wp

=




V ρa2nx ρa2ny ρa2nz 0

nx
ρ

V 0 0 0

ny
ρ

0 V 0 0

nz
ρ

0 0 V 0

0 γ−1
γ
nxa

2 γ−1
γ
nya

2 γ−1
γ
nza

2 V




. (A.4)

The change of basis matrices between conservative and primitive variables are

∂Wc

∂Wp

=




ρ
p

0 0 0 − ρ
T

ρu
p

ρ 0 0 −ρu
T

ρv
p

0 ρ 0 −ρv
T

ρw
p

0 0 ρ −ρw
T

ρE
p

ρu ρv ρw −ρq2

2T




,

∂Wp

∂Wc
=




φ −(γ − 1)u −(γ − 1)v −(γ − 1)w (γ − 1)

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

(γ−1)(q2−E)
ρ

− (γ−1)u
ρ

− (γ−1)v
ρ

− (γ−1)w
ρ

(γ−1)
ρ




.

where all flow quantities are as in Chapter 2.
There now follows descriptions of several more useful vectors of variables. For

each set the convective Jacobians are given, along with change of basis matrices to
and from the conservative and primitive variables.

A.2 Alternative Primitive Variables

What are here called the alternative primitive variables, which are also often used as
convenient variables for hand calculations, are

Wp′ = (ρ, u, v, w, p) , (A.5)

so that in alternative primitive-alternative primitive variables the convective flux
Jacobian is

∂f cp′ · n
∂Wp′

=




V nxρ nyρ nzρ 0

0 V 0 0 nx
ρ

0 0 V 0 ny
ρ

0 0 0 V nz
ρ

0 nxρa
2 nyρa

2 nzρa
2 V




. (A.6)
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The change of basis matrices to and from conservative variables are

∂Wc

∂Wp′
=




1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

1
2
q2 ρu ρv ρw 1

γ−1



, (A.7)

∂Wp′

∂Wc
=




1 0 0 0 0

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

φ −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1




, (A.8)

and the corresponding matrices for primitive variables are particularly simple, being

∂Wp

∂Wp′
=




0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−T
ρ

0 0 0 1
ρ



, (A.9)

∂Wp′

∂Wp
=




1
T

0 0 0 − ρ
T

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0



. (A.10)

A.3 Entropy Variables

Particularly useful in considerations of low-speed preconditioning for the Euler equa-
tions (Turkel et al., 1994) are the entropy variables:

We = (p, u, v, w, S)T , (A.11)

where S is the entropy, so that dS = dp−a2dρ in differential notation. The convective
flux Jacobian in entropy-entropy variables is particularly sparse

∂f ce · n
∂We

=




V ρa2nx ρa2ny ρa2nz 0

nx
ρ

V 0 0 0

ny
ρ

0 V 0 0

nz
ρ

0 0 V 0

0 0 0 0 V




, (A.12)
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as are the change of basis matrices to and from primitive variables. The change of
basis matrices between entropy variables and conservative variables are

∂Wc

∂We
=




1
a2 0 0 0 − 1

a2

u
a2 ρ 0 0 − u

a2

v
a2 0 ρ 0 − v

a2

w
a2 0 0 ρ − w

a2

1
2
M2 + 1

γ
ρu ρv ρw − 1

2
M2



,

∂We

∂Wc

=




1
2
γq2 −γu −γv −γw γ

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

1
2
q2γ − a2 −γu −γv −γw γ




,

and those to and from primitive variables are

∂Wp

∂We

=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

γ−1
γρ

0 0 0 1
γρ



,

∂We

∂Wp

=




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1− γ 0 0 0 γρ



,

where

q2 = u2 + v2 + w2, φ = 1
2
(γ − 1) q2, M2 =

q2

a2
.

A.4 Symmetrizing Variables

Symmetrizing variables, in the context of the equations of gas-dynamics, are variables
for which the convective flux-Jacobian is symmetric. They are by no means unique,
but a commonly used set, in differential form, is

Ws =

(
dp

ρa
, du, dv, dw, dS

)T
, (A.13)
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where again S is the entropy and dS = dp− a2dρ. The flux-Jacobian is then

∂f cs · n
∂Ws

=




V anx any anz 0

anx V 0 0 0

any 0 V 0 0

anz 0 0 V 0

0 0 0 0 V



, (A.14)

which form exposes the wave structure in solutions of the gas-dynamic equations. The
change of basis matrices of symmetrizing variables to and from conservative variables
are

∂Wc

∂Ws
=




ρ
a

0 0 0 − 1
a2

ρu
a

ρ 0 0 − u
a2

ρv
a

0 ρ 0 − v
a2

ρw
a

0 0 ρ − w
a2

ρH
a

ρu ρv ρw − q2

2a2



, (A.15)

∂Ws

∂Wc

=




(γ − 1) q2

2ρa
−(γ − 1) u

ρa
−(γ − 1) v

ρa
−(γ − 1) w

ρa
γ−1
ρa

−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

φ− a2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1




. (A.16)

The change of basis matrices to and from primitive variables are

∂Wp

∂Ws
=




1
ρa

0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−(γ − 1) 0 0 0 γρ



, (A.17)

∂Ws

∂Wp

=




1
ρa

0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−(γ − 1) 0 0 0 γρ



. (A.18)

A.5 Parabolic Symmetrizing Variables

Parabolic symmetrizing variables in the context of gas-dynamics are variables which
simultaneously symmetrize the convective and viscous flux Jacobians. The set given



A.5. PARABOLIC SYMMETRIZING VARIABLES 147

here is from (Abarbanel & Gottlieb, 1981):

Ws′ =

(
adρ√
γρ
, du, dv, dw,

adT√
γ(γ − 1)T

)T

. (A.19)

The convective Jacobian in these variables is then

∂f cs′ · n
∂Ws′

=




V a√
γ
nx

a√
γ
ny

a√
γ
nz 0

a√
γ
nx V 0 0

√
γ−1
γ
anx

a√
γ
ny 0 V 0

√
γ−1
γ
any

a√
γ
nz 0 0 V

√
γ−1
γ
anz

0
√

γ−1
γ
anx

√
γ−1
γ
any

√
γ−1
γ
anz V




. (A.20)

The transformation between the conservative and parabolic symmetrizing variables
is accomplished with the matrices

∂Wc

∂Ws′
=




√
γρ

a
0 0 0 0

√
γρu

a
ρ 0 0 0

√
γρv

a
0 ρ 0 0

√
γρw

a
0 0 ρ 0

√
γρE

a
ρu ρv ρw

√
γ

(γ−1)
p
a




, (A.21)

∂Ws′

∂Wc

=




a√
γρ

0 0 0 0

−u
ρ

ρ−1 0 0 0

−v
ρ

0 ρ−1 0 0

−w
ρ

0 0 ρ−1 0

(q2 − E) a− 1

p
√

γ
(γ−1)

− ua

p
√

γ
(γ−1)

− va

p
√

γ
(γ−1)

− wa

p
√

γ
(γ−1)

a

p
√

γ
(γ−1)




,

(A.22)
and the corresponding matrices for primitive variables are

∂Wp

∂Ws′
=




√
γp

a
0 0 0

√
γ(γ−1)p2

ρTa

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0

√
γ(γ−1)p

ρa




, (A.23)
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∂Ws′

∂Wp
=




a√
γp

0 0 0 − a√
γT

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ρa√
γ(γ−1)p




. (A.24)
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