
A distributed approach to efficient time-domain
SAR processing

A. Reigber1, M. Jäger1, A. Dietzsch1, R. Hänsch1, M. Weber1, H. Przybyl1 and P. Prats2

1 Berlin University of Technology (TUB), Computer Vision and Remote Sensing Group,
Franklinstraße 28/29, Sekretariat FR3-1, D-10587 Berlin, Germany.

Tel. +49-30314-23276, Fax. +49-30314-21114, E-mail: anderl@cs.tu-berlin.de
2 German Aerospace Center (DLR), Microwave and Radar Institute

P.O. Box 1116, D-82234 Wessling, Germany

Abstract— This paper presents a distributed approach for time-
domain focusing, which significantly enhances the overall effi-
ciency by distributing the computational load across a (potentially
large) number of networked computers. The system described
includes the so-called master, responsible for pre-processing, the
distribution of fragments of raw-data data and the collection of
processed image fragments. Fragments of raw-data are passed
to so-called slaves, any number of which can be connected to
the master, which are responsible for the focusing itself. Master
and slave actively communicate over the network to organise the
entire process in a scalable manner. In this way, time-domain
processing can be accelerated by a factor that is virtually linear
in the number of participating slaves.

This paper summarises the current status of software develop-
ment, realised in a platform-independent way using the IDL and
Java languages. Additionally, some preliminary evaluations of
performance, scalability and the required network infrastructure
are given. Some examples of SAR data, acquired by the airborne
sensor E-SAR of DLR, and processed with the system described
are shown.

I. INTRODUCTION

A number of advanced algorithms for focusing the raw-
data acquired by synthetic aperture radar (SAR) sensors are
described in the literature. For reasons of computational com-
plexity, most established approaches focus the data in the one-
or two-dimensional frequency domain. A popular represen-
tative of such FOURIER-domain based focusing algorithm is
the extended chirp scaling (ECS) algorithm [1], which allows
an accurate and phase preserving processing of spaceborne
SAR data without the need for interpolation in correcting the
range cell migration (RCM). However, in case of large squint
angles above 15-20o or very wide azimuth beam-widths, the
approximations made in the algorithm are no longer valid.

On the other hand, wavenumber-domain, or ω-k processing
algorithms [2], are free of approximations and commonly
accepted to be an ideal solution of the SAR focusing problem
in case of a straight sensor trajectory. This type of technique is
based around an interpolation step in the wavenumber domain,
the so-called STOLT-mapping, which allows one to focus data
to very high levels of resolution, independent of the range
and azimuth bandwidth. Nevertheless, this approach is only

applicable to space-borne SAR data, since it does not include
a high precision motion compensation step.

Since modern sensor technology is developing more and
more towards higher resolution in range and azimuth, a need
for very accurate focusing techniques of such wide-band data
is evolving. An attractive alternative are time-domain based,
exact SAR processing techniques, which can be regarded as
the optimal solution to the SAR focusing problem. Time-
domain approaches work independent of the system bandwidth
and are able to take into account the influence of sensor
motion, squint angle, terrain topography and non-equidistantly
sampled apertures precisely. However, time-domain focusing
is extremely expensive computationally and reasonable pro-
cessing times can only be achieved by re-introducing certain
approximations [3]. This circumstance is the reason why time-
domain techniques have not yet been more widely employed,
in spite of their obvious appeal regarding the high-quality
focusing of SAR data.

This paper presents an efficient non-approximative time-
domain processing approach, which distributes the computa-
tional burden over an arbitrary number of processing nodes in a
network in order to achieve a significant decrease in processing
time. The concept is similar to the one presented in [4], with
the difference that the entire system has been implemented
in IDL and Java languages. The platform-independence of
both languages makes it possible to mix node computers
with different architectures and varying raw processing power.
Using IDL for the core signal processing components ensures
easy maintainability and extensibility of the concept, while
Java possess powerful network communication capabilities.

II. THE DISTRIBUTED TIME-DOMAIN PROCESSOR

A. General architecture

The distributed time-domain (DTD) SAR processor de-
scribed in the following sections consists of a so-called master
process and a variable number of client processes, typically
running on several networked computers and communicating
with the master. Both parts are composed of an IDL compo-
nent and a Java component, i.e. there is an IDL-master and
a Java-master and equally IDL-clients and Java-clients. The



Fig. 1. Overview of the architecture of the distributed time-domain processor

IDL parts are responsible for the data handling and processing,
and instantiate a corresponding Java objects via the IDL-Java
bridge. The Java-clients are responsible for communication
between Java and IDL, as well as between master and clients.
They register with the Java-master using Java remote method
invocation (RMI) [5]. Once the Java-clients are registered,
the user can start the processing through a graphical user
interface (GUI), which connects to the Java-master from any
computer in the network. The GUI allows the user to set
processing parameters and specify the location of files needed
for processing, such as sensor parameters or the flight path.

After starting, the GUI sends a command to the Java-
master to begin processing with the specified parameters.
The Java-master then induces the IDL-master to begin pre-
processing the data. When finished, the Java-master extracts
the pre-processed raw-data and distributes packages consisting
of rows of pre-processed data to the Java-clients, from where
they are forwarded to the IDL counterparts. The IDL-clients
then perform the actual time-domain processing of their data
package. When a client has finished, it saves the processing
result locally and asks the master for another data package
to process. After the complete raw-data is processed, the
Java-master accumulates the partial results of all clients and
transfers them to the IDL-Master for post-processing and
the creation of the final result. An overview of the general
architecture of DTD is given in Fig. 1

B. The processing kernel

The processing kernel in the clients is a back-projection
time-domain processor, which computes the contribution to
the final result v(x, y, z) at grid positions (x, y, z), that arise
from a single range-focused range line of the raw-data supplied
by the master process.

v(x, y, z) = u(r) ∗ 4π

λ

√
(x − xs)2 + (y − ys)2 + (z − zs)2

(1)
where (xs, ys, zs) denotes the sensor position at which the
respective line of raw-data was acquired, and u(r) is the raw-
data corrected for range-cell-migration in an interpolation step.
From a single raw-data line, Eq. 1 has to be solved for all

coordinates of the output grid that fall inside the length of
the synthetic aperture around the azimuth position of raw-data
line. In IDL, this operation can be vectorized such that only a
single loop over the length of the synthetic aperture is required.
Vectorization makes the performance of the processing kernel
comparable to C/C++ code in terms of performance.

The output grid can be freely chosen and is independent
of the sampling of the raw-data itself. Therefore, images can
be focused in slant-range, as usual, or directly in ground-
range coordinates or even considering topographic information
(if available). In the latter case, clients locally accumulate
not only the image result but also the received output grid
coordinates and request only portions of the grid that are
missing from the master. This strategy reduces the amount
of network traffic and prevents the associated bottleneck.

C. Master / Client communication

As mentioned above, both master and client consist of two
parts: The processing part written in IDL and the (network)
communication part written in Java. The IDL parts never
interact directly among each other: all communication passes
through the Java components of the system. The internal com-
munication between the IDL and the Java part is accomplished
with the help of the IDL-Java bridge that is integrated in the
IDL distribution.

In doing so, three major problems must be overcome.
Firstly, the IDL-Java bridge only allows one-way communica-
tion from IDL to Java, but not vice versa. Thus, IDL must wait
and poll the Java part for events from the network. Depending
on the event received, the appropriate Java method is called
and its return value constitutes the message received. Secondly,
the IDL-Java bridge is not aware of the IDL primitive COM-
PLEX. Hence, the flow of complex data between IDL and Java
must be transformed to data understood by Java and the IDL-
Java bridge. Thirdly, the available memory that can be used for
Java applications is constrained by the Java Virtual Machine
itself. That means that the available memory in the Java part
is limited and that the transferred data must be split up to pass
the IDL-Java bridge. A detailed description of this process is
given in section II-D.



The Java parts of master and clients communicate by the
means of Java RMI [5] and TCP/IP sockets. TCP/IP sockets
are used to transfer large blocks of data between two endpoints
in an efficient manner. Java RMI is utilized by the master to
execute functions in the clients (e.g. start processing, initiate
result delivery, etc.) and by the clients to trigger control
functions in the master (e.g. initiate selection of new data
fragments, sending status/error messages, etc.).

Once the master is set up, it starts an instance of the Java
RMI registry, exports its RMI-object for the clients to bind to,
and enters its initial state. The clients then have to be set up by
configuring the address and port of the master’s RMI registry1.
When started, the clients automatically connect to the master,
enter their initial state and wait for the processing to begin or
immediately participate in an ongoing processing. Then, they
request initial parameters and the first data fragment, which
is transferred over the TCP/IP socket. After finishing one
fragment, a new one is requested by contacting the master with
a call to its Java RMI object. When all pieces are successfully
processed, or the user hits the ”preview” button in the GUI,
the master contacts the clients and the completed portions of
the processing result are collected. This the moment of most
intense network usage, since all clients are requested to send
their computed parts of the image back. To lower the impact
on the master and the network, the clients are scheduled by
the master and, thus, send back their results one after another.
If the processing was interrupted by requesting a preview,
the computation continues after the transfer, otherwise the
clients return to their initial state and the master accumulates
the final result before returning to its initial state as well.
Upon cancellation, both the clients and the master discard any
processed data and return to their initial states to wait for a
new computation to start.

D. Distribution of data

As in every distributed processing approach, the data must
be fragmented and distributed among the available client
processes. In the ideal case, all clients are equally fast and the
data can be statically split up into n pieces, where n denotes
the number of clients. In general, where clients can join and
disappear at any time, this strategy is not satisfactory, and
the data must be dynamically partitioned. In this regard, it is
important to note that the processing of one column of the raw
data results in image data with m columns, where m denotes
the length of the synthetic aperture. Thus, to avoid unnecessary
fragmentation and communication overhead, the fragments
distributed to each client should be chosen as closely located
to one another as possible.

The algorithm divides the columns of the range-compressed
raw data into chunks. Each chunk contains the same (config-
urable) amount of columns, except for the last one. They are
used to make use of efficient transfers of several columns at
once, reduce the aforementioned fragmentation and prevent
inefficient single column transfers. For each client, the chunk

1One might need to configure firewalls, if present, as well

TABLE I

LIST OF ACHIEVED PROCESSING TIMES WITH DIFFERENT NUMBER OF

CLIENTS.

No. of clients processing time
1 290 min
2 155 min
4 80 min
8 41 min

12 27 min
16 20 min

Fig. 2. Screenshot of the Java-GUI that controls the DTD processor, which
is, in this case, processing with 11 client nodes.

surrounded by the largest amount of un-processed data is
chosen as the client’s starting point. The master then provides
the client with chunks in the spatial neighborhood of the
starting point. The results of processing a chunk of raw-
data are accumulated locally by the clients until the end of
the processing in order to avoid unnecessary communication
overhead. If there is no chunk left on either side of the already
processed chunks, a new starting point is selected using the
criteria outlined above. This is repeated until all chunks (and
thus all columns) are processed and the final image can be
synthesized by the master.

III. EXPERIMENTAL RESULTS

Since the proposed processor is still in development, the
assessment of processing quality is restricted to basic visual
inspection. Fig. 3 depicts the range-compressed raw-data of the
test-site, acquired by the airborne E-SAR sensor at L-band, as
well as the focused SAR image after time-domain processing.
The image appears well focused and no obvious processing
artefacts are visible. It should be noted that for such data,
with only 100MHz of range bandwidth and about 10◦ azimuth
beamwidth, FOURIER-domain processors can also be expected
to perform well.

Tab. I shows a comparison of processing times with different
numbers of clients. The raw-data has a size of 2048x8192
pixels, the length of the processed synthetic aperture is about



Fig. 3. Top: Raw-data after range compression. Bottom: Processed image
result.

1500 pixels, corresponding to an azimuth resolution of 1.0m
in this case. All computers are connected by standard 100MBit
Ethernet. Unfortunately, not all computers involved have the
same processing power, and were not completely idle apart
from DTD processing. A heterogenous workstation cluster,
containing Linux, Windows-XP and Windows-Vista clients
was used, with CPU clock speeds ranging from 1.5 to 3.0GHz.
Due to the diversity of the systems, the results in Tab. I give
only a rough indication of the speed improvement achieved.
The results seem to indicate that processing performance
scales almost linearly with the number of clients.

IV. SUMMARY & CONCLUSIONS

An innovative approach to time-domain SAR processing has
been proposed, based on the distribution of the computational
load over an arbitrary number of networked computers. In this
way, it becomes possible to process SAR data in the time
domain acceptably quickly, if a sufficiently large number of
computation clients is available.

The proposed concept has several advantages. In contrast
to conventional FOURIER-domain processing approaches, no
approximations are necessary and high-precision results can be
achieved even in case of non-linear sensor trajectories, uneven
sampling, strong ground topography, very wide azimuth beam-
width or large squint angles. The proposed processor can be
used in heterogeneous network clusters, i.e. it runs in all
environments that support IDL and Java SE ≥ version 1.5
(testing was carried out under Mac OS X, Linux, Windows XP
and Vista). Additionally, by using IDL and Java, the system
is very easy to maintain and to extend. It has been shown that
an almost linear scaling of the overall processing speed with
the number of clients can be achieved. However, there are also
some drawbacks in integrating IDL and Java, namely the high
memory requirements of Java and the burden of the additional
data conversion across the IDL-Java Bridge.

Future developments will focus on the operationalisation
and generalisation of the proposed concept. In particular,
the automatic discovery of master/client nodes, the optimal
adaption to client speeds and a generalisation of the pre- and
post-processing steps are among the improvements planned in
the near future.

REFERENCES

[1] A. Moreira, J. Mittermayer and R. Scheiber: ”Extended Chirp Scaling
Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and
ScanSAR Imaging Modes”, IEEE Transactions on Geoscience and Remote
Sensing, Vol. 34, No. 5, pp. 1123-1136, 1996.

[2] C. Cafforio, C. Prati and F. Rocca: ”SAR Data Focusing Using Seismic
Migration Techniques”, IEEE Transactions on Aerospace and Electronic
Systems, Vol. 27, No. 2, pp. 194-207, 1991.

[3] L. M. H. Ulander, H. Hellsten and G. Stenstrom: ”Synthetic-aperture
radar processing using fast factorized back-projection”, IEEE Transactions
on Aerospace and Electronic Systems, Vol. 39, No. 3, pp. 760-776, 2003.

[4] A. R. Brenner: ”Distributed SAR processing in the time domain” Pro-
ceedings of EUSAR 2002, Cologne, Germany, pp. 573-576, 2002.

[5] http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
(04/24/07)


