


# Die Fahrsimulation des DLR Funktionen und Anwendungsmöglichkeiten

Dipl.-Inform. Markus Stöbe DLR, Institut für Verkehrsführung und Fahrzeugsteuerung



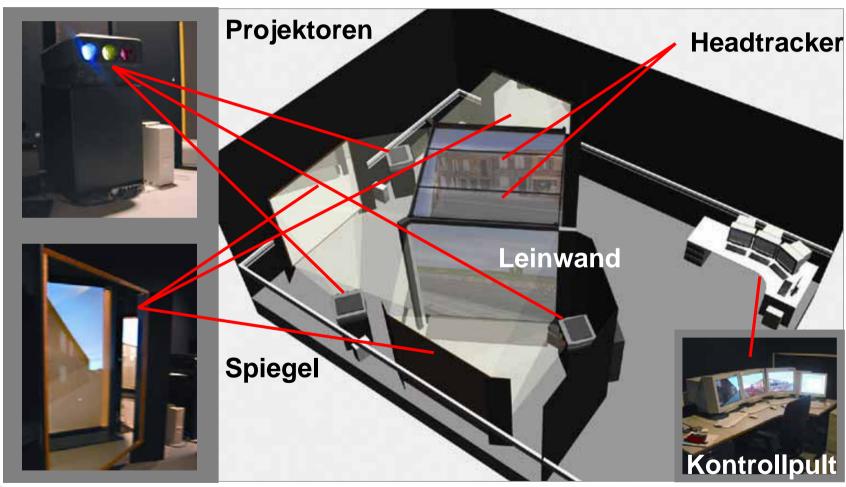
#### Viewcar - Den Fahrer verstehen



#### **FASCar**

### Bewertung neuer Fahrerassistenzfunktionen und MMI-Konzepte im realen Straßenverkehr

- → Aktive Steuereingriffe in Gas/Bremse/Lenkung
- Flexibel konfigurierbare haptische, akustische und visuelle Rückmeldungen
- Erfassung und Speicherung von Fahrzeug-, Fahrer- und Umweltparametern




# Forschungsinfrastruktur Bereich Automotive Experimentalsystem



### Forschungsinfrastruktur Bereich Automotive

Virtual Reality Labor



### Forschungsinfrastruktur Bereich Automotive

Dynamischer Fahrsimulator



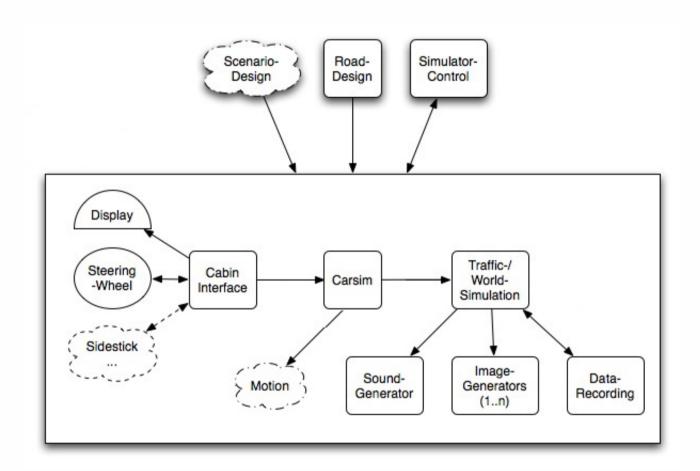
### Forschungsinfrastruktur Bereich Automotive

### Dynamischer Fahrsimulator

|          | Weg           | Geschwindigkeit | Beschleunigung       |
|----------|---------------|-----------------|----------------------|
| Längs    | ±1,5 m        | ±2 m/s          | ±10 m/s <sup>2</sup> |
| Quer     | ±1,4 m        | ±2 m/s          | ±10 m/s <sup>2</sup> |
| Vertikal | ±1,4 m        | ±2 m/s          | ±10 m/s <sup>2</sup> |
| Rollen   | -20 ° / +21 ° | ±50 °/s         | ±250 °/s2            |
| Nicken   | ±21 °         | ±50 °/s         | ±250 °/s²            |
| Gieren   | ±21 °         | ±50 °/s         | ±250 °/s²            |

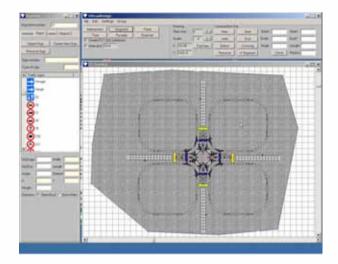





## Basisfunktionen der Simulation sind in allen Simulatoren verfügbar

- Weitreichend konfigurierbare Grafikdarstellung (FOV, Aspect Ratio, Blickrichtung, Spiegelung, PIP, HUD etc.)
- → Realer CAN-Bus
- → Verkehrssimulation mit bis zu 50 autonomen Teilnehmern
- Realistische Fahrdynamik (Carsim)
- Geräuschsimulation inkl. ortbaren Klangquellen (Autos, virt. Beifahrer,...)
- Zeitsynchrone Datenaufzeichnung
- Record-/Replay-Möglichkeit mit frei beweglicher virtueller Kamera

Ein Szenario läuft ohne Änderungen in allen Simulatoren




#### **Aufbau der Simulations-Software**



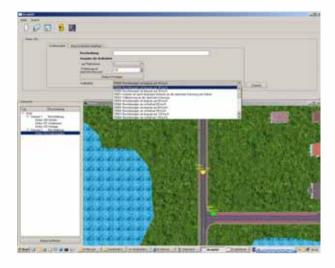
#### Streckengenerierung

- → Einfache Generierung von Strecken und Landschaften
- Mehrfache LOD-Stufen werden automatisch erzeugt
- Reale Streckenverläufe können nachgebildet werden
- → Häuser, Schilder, Randbebauung wie Büsche oder Bäume können bequem platziert werden
- ▼ Teile der Strecke können als Kachel bzw. Gruppe gespeichert und wiederverwendet werden
- Erzeugt Grafik (OpenFlight) und logische Streckenbeschreibung für Traffic-Modul








#### Verkehrssimulation

- → Bis zu 50 Fahrzeuge können per Script gesteuert werden
- Jedes Script besteht aus einer oder mehreren Aktionen mit separaten Start- und Endbedingungen
- → Mehrere Aktionen können zeitgleich ablaufen
- Trigger können unter anderem durch Position eines Fahrzeugs, Zeitpunkt in der Simulation, Abstand zu einem Objekt sein
- Aktionen können manuell angewählt werden
- Umfangreiche Datenaufzeichnung in CSV-Dateien
- Empfangen und Senden von UDP-Nachrichten möglich
- Mehrfach verwendbare Bausteine programmierbar

```
Define Function StopWatch( time, LastTime ) {
    Var { temp; }
    temp := runtime();
    If (\text{temp - LastTime}) > \text{time}
        StopWatch := 1:
    Élse { StopWatch := 0; }
Define Function RemoveOnPathDumVar1() {
    If ( Part[].PathNr = Part[].DumVar1 ) {
      If ( Part[].DisToInter < 40 ) {</pre>
        Part[].RemoveOnDistance := 10;
        Proc( RemovePerform, Part[].PartNr );
    }
Define Function RemoveOnPathDumVar1AndSlowDown() {
    If ( Part[].PathNr = Part[].DumVar1 ) {
      If ( Part[].DisToInter < 40 ) {
        Part[].RemoveOnDistance := 10;
        Proc( RemovePerform, Part[].PartNr );
   If ( Part[].MaxVelocity > 15.0 ) {
    Part[Main]
        If ( Part[].PathNr = Part[MainTarget].Path
         Part[].DisToInter < (Part[MainTarget].Dis
            Part[].PrefLane := 0;
            Part[].MaxVelocity := 50/3.6;
        If ( Part[MainTarget].PathNr = 388 and Par
            Part[].PrefLane := 0;
            Part[].MaxVelocity := 50/3.6;
Define Function ResetScenarioRoute( pathnumber, di
     Var { a; NScen; S; teller; }
     Proc(SignalHandler, CommandTerminateScenario
     Proc( ResetCabin ):
   Proc( SetRouteHandlingSSL, True );
     Part[MainTarget].PathNr := pathnumber;
     Part[MainTarget].DisToInter := distointer;
     Part[MainTarget].Lane := RightLane;
     Proc( RepositionRouteByIndex, indexofroute );
```

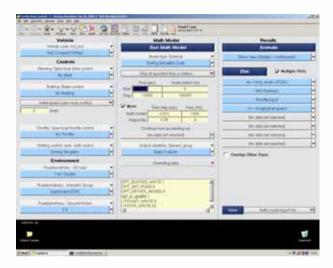
#### **iScript**

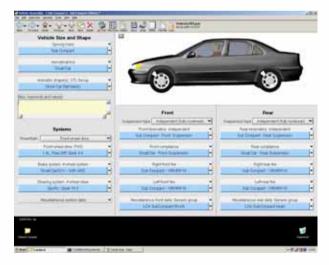
- Programmierhilfe für Szenarien
- Liest Streckendaten ein
- Ermöglicht visuelle bzw. GUIbasierte Erstellung von Scripten
- → Häufig benutzte Blöcke sind per Mausclick verfügbar
  - Zufälliger Verkehr mit definierter Stärke
  - "Hauptakteure" mit definierte Fahrtroute
  - Drängler von hinten
  - Sprachausgaben
  - Datenaufzeichnung starten/stoppen







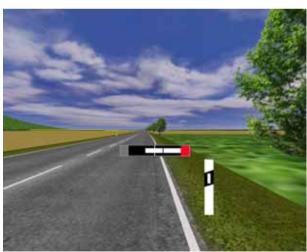

#### Geräuschsimulation, 3D-Sound und Sprachausgabe


- Realistische Motorgeräusche durch Tonmatrix-System von Vrtainment
- Darstellbar sind
  - Motorlast
  - Drehzahl
  - Rollgeräusche
  - → Wind
  - → Fahrbahnuntergrund (auf oder neben der Straße)
- 3D-Sound für umgebende Fahrzeuge inkl. Dopplereffekt
- → Auch für
  - → Warntöne (Nagelbandrattern) und
  - Sprachausgaben (virt. Beifahrer, Kinder auf Rücksitz) geeignet



#### **Fahrdynamik Carsim**

- Realistische Fahrdynamik
- Weitreichend konfigurierbare Fahrzeugparameter
- Parameter können von außen zur Laufzeit verändert werden, z.B. für
  - Windböen
  - Platzende Reifen
  - Fahrbahnbeschaffenheit
- Kundenspezifische Fahrdynamikmodelle können eingelesen werden
- Einfaches Umschalten zwischen Modellen
- Steuerung des Fahrzeugs auch automatisierbar






### Bildgenerator optional mit Stereoprojektion

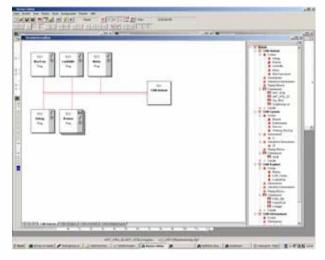
- Umfangreich konfigurierbar
- → Stereosicht und Headtracking möglich
- Frei bewegliche Kamera
- → Special-Effects
  - → Nebel
  - → Head-Up-Display
  - → Bild im Bild
  - → Partikeleffekte (in Arbeit)
- ▼ Video-Texturen z.B. für virtuelle Instrumente (in Arbeit)

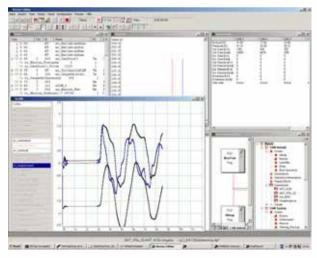




#### iObjects und virtuelles Cockpit

- Script-gesteuerte Generierung virtueller Multifunktionsanzeigen
- ▼ Einfachere Gestaltung der Cockpits mittels CoEdit möglich (in Arbeit)
- → Ein- und Ausgaben von/zur Simulation möglich, dadurch können bedienbare Cockpits gestaltet werden
- ▼ Einbindung in Simulation über
   Displays im Simulator oder als
   Videotextur im VR-Labor (in Arbeit)
- → Virtuelles Cockpit im VR-Labor kann während der Fahrt geändert werden

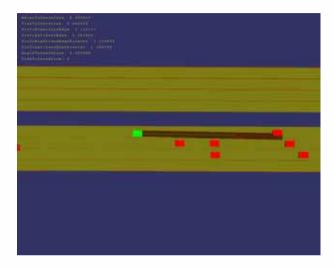


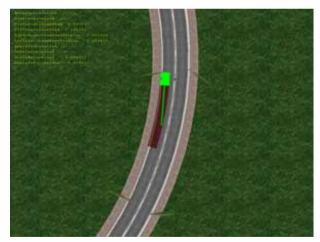




Anbindung realer oder simulierter FAS

über CAN-Bus oder Ethernet

- → CAN-Bus-Simulation über CANoE
- → Anbindung von FAS möglich als
  - Matlab/Simulink-Modell
  - → XPC-Target-Box
  - **→** Autobox
  - → Seriengerät
- Anbindung sowohl über CAN als auch über Ethernet (TCP oder UDP) möglich
- Zukünftige Bussysteme wie Flexray können leicht integriert werden






#### Umweltanalyse

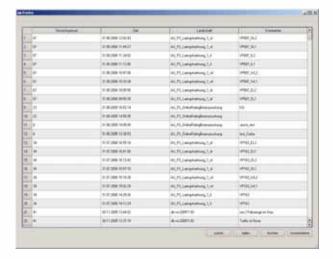
- Logische Darstellung der simulierten Welt
- → Informationen über Umwelt vorhanden, z.B.
  - **→** Spurbreite, -begrenzungen
  - Kurvenradien
  - Andere Verkehrsteilnehmer
  - Position von Schildern
- Zentraler Ort um Sensoren zu simulieren und zu visualisieren
- Situationsanalyse möglich





#### **Record-Replay**

- Aufzeichnung einer Probandenfahrt inkl. aller autonomer Verkehrsteilnehmer
- → Abspielen mit frei wählbarer Kameraposition
- → Vorwärts, rückwärts, schneller oder langsamer abspielbar
- → Verwaltung aller Fahrten in einer Datenbank
- Nutzeranonymisierung
- → Video-Export möglich




Zur Anzeige wird der QuickTime<sup>1</sup> Dekompressor "YUV420 codec" benötigt.



#### Datenaufzeichnung, Facelab und Physio

- Aufzeichnung erfolgt als CSV-Datei
- Daten aus
  - **→** Fahrdynamik
  - Verkehrssimulation
  - **→** CAN-Bus
  - → Virtueller Sensoren
  - → Facelab (momentan nur HMI-Lab)
  - → Physiologie-Messsystem
  - ... können zeitsynchron aufgezeichnet werden
- Timestamp wird auch in Videoaufzeichnung erfasst



## Beispiele für bisher prototypisch untersuchte Fahrerassistenzsysteme

- Längsführung
  - → Headup-Display zur Darstellung der Time-To-Collision
  - → Akustische Warnung bei zu dichtem Auffahren
  - → Haptische Warnung durch Bremsruck
  - Aktiver Bremseingriff bei zu dichtem Auffahren
  - → ACC
- Querführung
  - → Headup-Display zur Darstellung der Lateralposition
  - → Akustische Warnung beim Verlassen der Fahrspur
  - → Aktiver Lenkeingriff



#### Beispiele für Versuche

- **→** Intern
  - → Verhalten an Kreuzungen (Viewcar & VR-Labor)
  - Verhalten bei Kurvenfahrten
- **→** Extern
  - Längsführung mit und ohne Assistenz
  - Querführung mit und ohne Assistenz
  - → Abwehrhandlungen
    - → Phase I: Wie regiert der Mensch bei einem Unfall
    - → Phase II: Hilft ein Assistent, Unfälle zu vermeiden?
    - → Phase III: Adaptiert der Mensch sein Verhalten durch einen Assistenten?
  - Auswirkungen verschiedener Verkehrszustände auf den Fahrer



#### Gefühlte Realität

#### Was macht eine Simulation realistisch?

- Gute Grafik
  - → Hoher Immersionsgrad, großes Field-of-View
  - → Effekte wie Blendung, Nebel, Regen
  - Höhenprofil der Landschaft
  - Guter Geschwindigkeitseindruck
- Realistische Tonsimulation
  - Motorengeräusche
  - Umgebungsgeräusche
- Passende Haptik / Kinästhetik
  - Geschwindigkeitsabhängige Lenkkraftsimulation mit Simulation von Fahrbahnunebenheiten
  - Motion Cueing mit geringen Verzögerungen
  - → Vibrationen des Fahrzeugs
  - Realistische Fahrdynamik



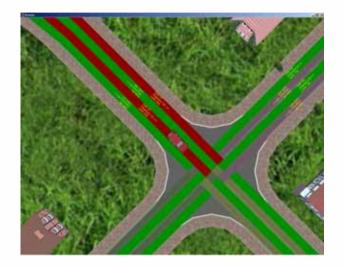
#### Gefühlte Realität

#### **Aktueller Stand**

- Gute Grafik
  - → Hoher Immersionsgrad, großes Field-of-View
  - → Effekte wie Blendung, Nebel, Regen
  - Höhenprofil der Landschaft
  - → Guter Geschwindigkeitseindruck
- Realistische Tonsimulation
  - Motorengeräusche
  - Umgebungsgeräusche
- Passende Haptik / Kinästhetik
  - Geschwindigkeitsabhängige Lenkkraftsimulation mit Simulation von Fahrbahnunebenheiten
  - → Motion Cueing mit geringen Verzögerungen
  - → Vibrationen des Fahrzeugs
  - Realistische Fahrdynamik



### Gefühlte Realität Ausblick


- → Effekte wie Blendung, Nebel, Regen
  - Nebel vorhanden
  - → Beleuchtungseffekte in Arbeit
- Höhenprofil der Landschaft
  - Neue Traffic-Simulation notwendig
  - → Suche nach Alternativen läuft
- → Motion Cueing mit geringen Verzögerungen
  - Standard Motion Cueing Filter implementiert
  - Getunte Einstellungen für Autobahn, Stadt, Landstraße
  - → Eigener Filter in Arbeit
  - Ziel: Dynamischer Wechsel zwischen Einstellungen
- Realistische Fahrdynamik
  - Momentan noch Defizite bei langsamen Kurvenfahrten
  - Überarbeitung der Parametrisierung in Arbeit



## **Gefühlte Realität Geplante Erweiterungen**

#### SimWorld

- ▼ Erweiterung der Simulation um Umweltsimulation um z.B.
  - → Thermische Eigenschaften
  - Reflexionseigenschaften (Licht, Radar, ...)
  - → Reibwerte der Straße
- Automatisierte Erzeugung von 3D-Landschaften und Umwelt-Datenbasen aus GIS-Daten und Flugaufnahmen
- Aktive Aktuatorik
  - Aktives Bremspedal ist vorhanden
  - Aktives Gaspedal geplant



#### Zusammenfassung: Der Simulator ist bereit für Versuche

- Im momentanen Stand sind Versuche sinnvoll durchführbar
- Hauptaugenmerk liegt auf der Untersuchung des Fahrerverhaltens mit und ohne Fahrerassistenzsystemen
- → Versuche zur Auslegung von FAS sind mit Einschränkungen möglich
  - Dynamische Komponenten eines FAS wie die Stärke eines Bremsrucks oder Komfortbetrachtungen werden durch die darstellbaren Beschleunigungen der Motion-Plattform limitiert
- Ausbau und Weiterentwicklung laufen kontinuierlich weiter, auch während des Versuchsbetriebs

