Remote sensing cloud sides of deep convective clouds
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Convection microphysics Current measurements First results of our feasibility study

Insights into the microphysics of clouds, the
formation of droplets, and their vertical profile
are needed to understand the onset of

Ground-based measurements of radiances reflected from cloud sides in the VIS, NIR,
and TIR provide additional information on the microphysics of deep convection.

precipitation and aerosol effects.

* in-situis limited in temporal and spatial
extent and mainly shallow types of clouds

«  satellite passive remote sensing
concentrates on cloud top

. active remote sensing, either

A combination of VIS and NIR gives a signature of droplet and ice crystal r4 and
_(re¢)- Additional NIR and thermal IR channels provide particle phase and height.

3D radiative transfer simulates observations based on realistic 3D distributions of cloud
microphysics of deep convection from the Goddard CRM.
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Cloud data

Goddard Cumulus Ensemble Model

Simulation of remote sensing
MYSTIC Monte Carlo RT

Measurements from aircraft

3D fields of cloud liquid
and ice water content
from GCE model

microphysics:

water content >
(cloud ice + liquid water)
as simulated by the

Monte Carlo RT simulation for a 120°
viewing zenith angle (60° elevation
angle). Input:
- standard atmosphere including all
main absorbers, o
- water content and r for ice and
liquid cloud water,
- phase functions:
Mie calculations for water

These images (Martins et al., 2007)
show comparable observed data from
an airborne platform.

Height information is retrieved from
the thermal IR information (top-left).

The cloud phase is characterized by
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