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Abstract— The term SAR processing is widely used to denote
the process of producing fully focused SAR images from SAR
raw data. Due to the variety of different approximations which
can be assumed for real operating SAR instruments (e.g. low
squint angles, short synthetic aperture, etc.) but also due to
the complexity of todays SAR instruments (stripmap, ScanSAR,
spotlight mode, etc.) many SAR processing algorithms have been
proposed so far. Due to the richness of details, it appears difficult
to describe SAR processing in general.

However, in a previous work we have modeled SAR proces-
sing as transform. The forward SAR transform is inherently
performed during SAR data acquisition. Any recorded data
are defocused due to the SAR imaging technique. The task of
SAR processing is to focus recorded data which reverses the
SAR data acquisition process. By investigating SAR processing
as transform, similarities to other transforms can be found
comparing the integral transform kernels and the way a function
basis is generated. Especially, Fourier and Wavelet transform
appear in close relationship to SAR imaging and SAR Processing.
Fast Fourier Transforms (FFTs) are embedded in SAR processing
for the execution of fast convolutions. On the other hand, the
wavelet transform performs faster convolutions than FFTs but is
no general convolution tool. Furthermore, chirp signals fulfill the
formal conditions for being wavelets and might be interesting for
the design of a wavelet-like fast SAR processing algorithm. In
this paper, we study the closely related transforms for finding a
direct fast transition from SAR raw data to SAR images without
Fourier domain techniques. A sliding in-place transition from
SAR raw data to SAR images should be possible in that way.

I. INTRODUCTION

SAR processing is a challenge. It is a complicated task

depending on many variables and parameters - even on wind

and weather conditions as in the airborne case. However, SAR

processing can be modeled in general as two-dimensional

convolution with range-variant convolution kernel [3]. Af-

ter correcting the effect of Range Migration (RM), SAR

processing can be modeled even simpler: The transform is

then separable and it remains applying only one-dimensional

convolutions to SAR raw data in both, azimuth and range

direction. So, having in mind that SAR processing is mainly

performing convolutions there is a special need of fast convo-

lution algorithms. As the Fast Fourier Transform (FFT) is the

fastest known technique for performing convolutions, many

SAR processing algorithms employ FFTs and there seems to

be no alternative to using FFTs if computational efficiency is

required.

Fig. 1. SAR processing mainly requires performing convolutions. State-
of-the-art SAR processing algorithms use the Fast Fourier Transform (FFT)
for executing fast convolutions. In contrast, it should be possible to design
a Discrete Wavelet Transform (DWT) like algorithm dedicated to SAR
processing needs which operates directly towards image data.

However, the Discrete Wavelet Transform (DWT) allows

performing faster convolutions compared to the FFT but

is no general convolution tool. It is inherently adapted to

convolutions with versions of its basic wavelet. Basic wavelets

generate the entire function basis and, herewith, also the entire

signal space. In case of Synthetic Aperture Radar, the entire

SAR raw data signal space is often modeled such that it

is generated by chirp signals in both, azimuth and range

direction. Furthermore, chirp signals fulfill the admissibility

condition required for Integral Wavelet Transforms (IWTs).

They herewith qualify as wavelet in the IWT sense which

encourages hope that a DWT like algorithm might be possible

to design for fast SAR processing [4]. Such transform is

desirable for several reasons:

• SAR processing will be faster.

• It will not require external transforms (FFTs).

• It enables time-domain in-place calculations.

• It allows sliding transitions from raw to image data.

Hence, the general idea is to replace FFT convolutions by

faster time-domain sliding convolutions. Towards this goal, we

compare in this paper Fourier, Wavelet and SAR transform,

investigate their common properties and point out differences.

Especially investigated is the way Fourier and Wavelet trans-

form gain computational speed and how this can be adopted

to SAR processing.

Section II introduces the Fourier transform, Section III

models SAR processing as transform and deduces the Point
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Scatterer Response (PSR) function which generates SAR raw

data and plays the role of a basic wavelet known in wavelet

theory. The Wavelet transform is accordingly introduced in

Section IV. Section V compares Fourier, Wavelet and SAR

transform as integral transforms defined via Hilbert space

scalar products. Special attention is contributed to the integral

transform kernels and the way they generate their function

basis. Finally, we summarize the results and give an outlook

to future work.

II. FOURIER TRANSFORM

The Fourier transform plays a central role in signal analysis.

It is defined as the integral

Fψs(f) :=

∫ +∞

−∞

s(t)ψ(ft) dt (1)

using ψ(t) = e−2πi t as integral transform kernel, i =
√
−1.

This kernel is closely related to chirp signals (7) present in

SAR raw data. In contrast to chirps, the Fourier kernel has

no quadratic term k t2 and also no time localization rect(t).
The Fourier transform basis functions e−2πi f t are compressed

and dilated versions of kernel ψ(t) = e−2πi t generated with

frequency parameter f ∈ IR which can be seen as time scaling

parameter. The concept of scaling time for the generation of

frequencies is also used in wavelet transforms, see parameter

a in (10).

III. SAR TRANSFORM

A detailed description of the Synthetic Aperture Radar Point

Scatterer Response function (PSR) and the corresponding SAR

raw data model can be found for example in [3]. SAR raw data

can be, moreover, modeled in three shades of simplification

[4]: Assuming that the two-dimensional PSR function is

• invariant with range and azimuth (simplified model),

• variant with range (standard model) and

• variant with range and azimuth (complete model).

The first model does not adapt to the range-varying nature of

PSRs and is therefore only a rough model. But it allows to mo-

del SAR processing simple: as two-dimensional convolution

which fully corresponds to the multiplication of polynomials

in two variables. In Figure 2, this model is used to explain

the generation of SAR raw data from radar reflectivity 1 and

its re-focusing. The simulated reflectivity is real-valued, chirp

and raw data simulation are complex but depicted in real part.

The simulation here is assumed noise free such that an Inverse

Filter can be used to find back to the original reflectivity map

without any image degradation. In real cases, the Inverse Filter

technique cannot be used because it acts as noise amplifier of

those noise outside the nominal SAR system bandwidth and

hence, a Matched Filter is used instead [4].

1The used image for radar reflectivity simulation is part of ’yosemite.jpg’
distributed with Microsoft WindowsME, courtesy of Microsoft Corporation.

SAR
−→

←−

SAR−1

Fig. 2. The SAR transform modeled as 2D convolution: Using an invariant
two-dimensional reference chirp, a simulated radar reflectivity map (left) is
convolved to simulated SAR raw data (right). This forward transform step
corresponds to SAR Imaging (defocused reflectivity), inverse convolution
corresponds to SAR Processing (focused reflectivity).

A. Simplified Raw Data Model

In the standard SAR case, the Point Scatterer Response is

a waveform that changes its ’shape’ from near to far range

due to the SAR imaging geometry. This range dependence

can be expressed by writing ψn2
instead of ψ in the raw

data model below. But for demonstrating the principle of SAR

image formation let us assume an invariant ψ for simplicity

here. The simplified SAR raw data model is a superposition

raw(t) =

N1−1∑

n1=0

N2−1∑

n2=0

σ(nT )ψ(t − nT ) (2)

of two-dimensional Point Scatterer Responses ψ(t) located

at position nT on ground and weighted with radar reflec-

tivity σ(nT ). The radar reflectivity σ(nT ) at location nT
is the entity actually to measure. For simplicity, let σ also

include here any antenna pattern weighting and signal noise.

Furthermore, let t = [t1, t2]
T ∈ IR2 be time with t1 slow

time (azimuth) and t2 fast time (range), T = [T1, T2]
T the

sampling interval, T1 = 1/PRF , PRF the Pulse Repetition

Frequency, n = [n1, n2]
T passes through all resolution cells

n1 = 0, . . . , N1 − 1 and n2 = 0, . . . , N2 − 1, N = [N1, N2]
T

is the number of raw data pixels in azimuth and range. The

product nT is declared via component wise multiplication. A

detailed derivation of (2) can be found in [4].

B. Image Formation

SAR processing reverses the convolution ψ ∗ · inherently

performed with SAR imaging. Let ψ−1 be the convolution

inverse of ψ, i.e. ψ−1 ∗ ψ = δ is the Dirac impulse, then the

image focuses in each pixel according to

image(t) = ψ−1(t) ∗ raw(t)

=

N1−1∑

n1=0

N2−1∑

n2=0

σ(nT ) (ψ−1 ∗ ψ)(t − nT )

=

N1−1∑

n1=0

N2−1∑

n2=0

σ(nT ) δ(t − nT ). (3)

The operation ψ−1 ∗ ψ is often called Pulse Compression.

In practice, a convolution inverse (Inverse Filter) cannot be

used for image formation due to noise but a Matched Filter
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Fig. 3. Three signal models and suitable focusing transforms. With matrix
multiplication, a computational effort of at least O(n2) is required for
each transform but fast versions exist for Fourier and Wavelet transform.
Similarly, SAR processing should lie in the order of only O(n) or O(n log n)
operations.

is used instead [4]. A third impulse compression technique is

the SPECtral ANalysis Approach (SPECAN) [5]. Here, a phase

deramping function is applied first to the superpositioned PSRs

ψ such that the signal becomes a superposition of windowed

Fourier transform basis functions

ψ(t1, t2) = rect(t1, t2) · e−2πi (f1 t1+f2 t2) . (4)

As an implication of phase deramping, the data may now be

focused using Fourier transform (spectral analysis) techniques.

Figure 3 demonstrates that for data focusing, the applied

transform should match the corresponding image model.

C. Point Scatterer Response

The PSR used in this study is derived from the standard

SAR case (see Appendix) as

ψr(t1, t2) = θt1,r{ rectr(t1, t2) ·
e−2πi (f1t1+k1(r) t2

1
+ f2t2+k2t2

2
) } . (5)

Compared to (4), the PSR is range dependent, possesses qua-

tratic phase terms in both directions and is deformed according

to range migration; θt1,r is a range migration operator that

applies deformation to ψ. The amount of range migration

depends on fly-by time t1 and minimum range distance r.

All difficulties that make SAR processing a challenge are

summarized in (5): First of all, the shape of ψ depends on

range r. The equation moreover reveals that:

• The support of ψr in range migrates towards far range

according to the sensor position in azimuth.

• The support of ψr in azimuth increases with range

according to the antenna opening angle.

• The azimuth frequency modulation of ψr decreases with

range according to less distance variations in far range.

Range Migration (RM) is the most disturbing effect in SAR

processing. It prevents the transform of being separable, i.e.

the two-dimensional problem cannot be separated into two

one-dimensional problems. But it has been shown that range

migration can be corrected efficiently by applying a chirp

scaling operation in the range-Doppler domain [6]. It equalizes

the different degrees of migration from near to far range to that

of only one reference migration, usually at mid range. After

that, range migration is totally removed by shifts in range

but varying with the Doppler frequency in azimuth frequency

direction.

The correction of range migration is usually embedded

efficiently in a number of consecutive one-dimensional Fast

Fourier Transforms. Let us assume in the following that RM

has been corrected already. If FFTs can be replaced by wavelet

techniques then also RM correction should work efficiently.

D. Processing Separability

After range migration correction, the two-dimensional PSR

function is separable according to

θ−1
t1,r {ψr(t1, t2)} = rect1(t1)r · e−2πi (f1t1+k1(r) t2

1
) ·

rect2(t2) · e−2πi (f2t2+k2t2
2
)

= ψ1(t1)r · ψ2(t2)

where subscript r is written to remind that the function or

operation still depends on r but in contrast to time variables

t1 and t2, parameter r is a fix entity. According to the

separability, SAR processing now reduces to

• one-dimensional convolutions in range using ψ2(t2) and

• one-dimensional convolutions in azimuth using ψ1(t1)r .

Convolutions in range are usually done first. They can be

done even before RM correction due to the circumstance that

range shifts (in RM correction) and convolution in range are

exchangeable operations.

E. Simplified Processing Model

It has been pointed out so far that SAR processing reduces

to one-dimensional convolutions if Range Migration is already

corrected or can be neglected for some reason. In the followi-

ng, we use the term ’SAR processing’ or ’SAR transform’ in

the sense that an one-dimensional convolution

Cψs (b) := (s ∗ ψ)(b) =

∫ +∞

−∞

s(t)ψ(t − b) dt (6)

is to perform using the reference chirp

ψ(t) = rect(t) · e−2πi (f t+k t2) (7)

as convolution kernel.

F. Matrix Interpretation and Non-Orthogonality

Convolution is often written in matrix form

y = Mψ x (8)

where Mψ ∈ IRN is a band matrix and x, y ∈ IRN are

discrete one-dimensional signals representing image and raw

data, respectively. The columns of Mψ form the raw data

function basis. The first column is the discrete chirp signal

(7). It generates all other columns via translation. Matrix

Mψ includes all translated chips ψ such that raw data y
are superpositions of chirp translations weighted by radar

reflectivity x.
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As matrix Mψ is generated by ψ, its inverse M−1
ψ = Mφ is

generated by the convolution inverse φ = F −1{1/F{ψ(t)}}
of ψ determined via the Fourier transform F . Then, the

operation

x = M−1
ψ y (9)

corresponds to image formation. It reverses raw data formation

(8). Obviously, Mψ is invertible and M−1
ψ Mψ = I is the

identity matrix. For orthogonal transforms, it is required that

M T

ψMψ = I . This applies to the Fourier transform for

example. But for convolutions in general it does not apply

as the supports of two basis functions may overlap and,

hence, their scalar product can hardly be zero. SAR processing

as transform is non-orthogonal because the scalar product

between two basis functions < ψ(t), ψ(t− ·) > is non-zero if

their supports overlap.

IV. WAVELET TRANSFORM

In this section, we compare the convolution (6) with wavelet

transforms (10). Wavelet transforms allow to analyse raw

signals with translated and scaled versions of only one wavelet

called the basic wavelet.

A. Admissibility Condition

The wavelet transform of signal s ∈ L2(IR) with respect to

some wavelet ψ is a function

Wψs(a, b) := |a|− 1

2

∫ +∞

−∞

s(t)ψ(
t − b

a
) dt (10)

of scaling parameters a ∈ IR \ {0} and translation parameters

b ∈ IR. Here, any square-integrable function ψ ∈ L2(IR)
fulfilling the admissibility condition

0 < cψ :=

∫

IR

|ψ̂(ω)|2
|ω| dω < ∞ (11)

where ψ̂ is the Fourier transform of ψ, is called a wavelet and

every wavelet defines a wavelet transform.

Let us now rewrite this formula in terms of convolution

Wψs(a, b) := (s ∗ ψa)(b) (12)

where ψa = |a|− 1

2 ψ(·/a) is a scaled version of ψ. Then it can

be seen that the Wavelet transform performs a convolution on

each scale a and this can be employed for SAR processing. It

only requires the calculation of one scale, say a = 1. At this

point, the question arises how Discrete Wavelet Transforms

can be faster than FFTs despite their additional parameter b
compared to (1) which only depends on a.

The answer is that the calculation of all parameters a ∈
IR \ {0} is highly redundant and does not lead to an efficient

algorithm. Rather, parameter a is restricted to a discrete subset

and also (s ∗ ψa)(b) is not calculated directly. The transform

rather ’updates’ the already calculated convolution from the

lower scale. Starting at the trivial case (e.g. focused) it iterates

through increasing scales a and finally reaches the finest scale

(e.g. defocused) after log2(m) steps if m is the convolution

filter length. Inverse convolution (image formation) is achieved

using the inverse convolution kernel (Inverse Filter) or the

complex conjugate kernel (Matched Filter) instead.

TABLE I

INTEGRAL TRANSFORM KERNEL FUNCTIONS

Fourier Transform Wavelet Transform SAR Transform

e−2πift rect(t) e−2πift rect(t) e−2πi(ft+kt2)

ψ( t
a
) ψ( t−b

a
) ψ(t − b)

dilations dilations & translations translations

orthogonal orthogonal or non-orth. non-orthogonal

B. Chirp As Basic Wavelet

A chirp signal ψ(t) = w(t) e−2πi (f0+f(t))t is described

using some window function w(t) for restricting time t ∈ IR,

some constant frequency component f0 and a time varying

frequency component f(t) = k t with modulation rate k.

It is easy to see that chirps are well located in both, time

and frequency domain but, moreover, every square-integrable

zero-mean function ψ on compact support (let window w(t)
be zero outside some time interval) fulfills the admissibility

condition [2] and is therefore a wavelet. It means that each

chirp defines an Integral Wavelet Transforms (IWT).

However, the design of a dedicated Discrete Wavelet Trans-

form (DWT) for SAR processing requires much more than

a suitable wavelet because calculating all parameters a ∈
IR \ {0}, b ∈ IR is not possible. A minimum subset of the

discrete parameters a and b must be found such that signal

s(t) is reconstructible from the calculated wavelet coefficients

in (12).

V. TRANSFORM COMPARISON

In this section, we compare Fourier (1), Wavelet (10) and

SAR transform (6) with each other.

A. Basis Change

In a Hilbert space, some signal s(t) can be decomposed into

components of basis functions ψk

s(t) =
∑

k

< s, ψ̃k > ψk(t) (13)

by calculating all scalar products

< s, ψ̃k >=

∫ +∞

−∞

s(t) ψ̃k(t) dt (14)

where ψk is the complex conjugate of ψk and ψ̃ is the dual of

ψ, i.e. < ψ̃l, ψk >= δk,l. The function basis is orthonormal

if ψ̃ ≡ ψ. The calculation of scalar products corresponds to

changing the underlying function basis for a function s(t).
Signal s(t) can be reconstructed using the scalar products with

(13). Fourier, Wavelet and SAR transform definitions follow

formula (14) but use

• different kernels ψ(t) and

• different basis generation methods (dilation, translation).

Moreover, (14) is convolution in case of Wavelet and SAR

transform. Table I lists the two integral transform kernels for
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Fourier and SAR transform and an example kernel for the

Wavelet transform in the first row. They are also schematically

depicted in Figure 4. The second row explains the way a

function basis is generated from the kernel. Note that the

Fourier transform only uses dilation a, the Wavelet transform

uses both, dilation a and translation b, and the SAR transform

only uses translation b. The Fourier transform does not fulfill

the admissibility condition (11). Hence, its kernel function

is strictly no wavelet but follows the general concept of

generating a basis from only one function.

Furthermore, note that (2) is the two-dimensional version

of (13) and that calculating radar reflectivity σ(nT ) in (2)

corresponds to calculating scalar products

σ(nT ) =< raw(t), ψ−1(t − nT ) > = ψ−1(t) ∗ raw(t)

and this corresponds to inverse convolution performed in SAR

processing.

B. Fast Transforms

We have seen that Fourier, Wavelet and SAR transform are

closely related and for Fourier and Wavelet transforms fast

algorithms are known. The idea is now to copy the technique

used in FFTs and in DWTs to find a direct sliding transition

from SAR raw to image data and in that way to speed-up SAR

processing.

Fast algorithms base on the Divide and Conquer concept.

It splits data into two data sets, even and odd samples mostly,

and applies the transform to both, separately. This leads to

algorithms in the order of O(n log n). In the DWT algorithm,

the descent is only in the left-most data branch which is

even faster and results in approximately 2 O(n) operations.

However, for SAR processing it will not be sufficient to

descent into one branch. A fast convolution algorithm will lie

in the order of O(n log n) operations if full resolution images

are required.

The Lifting Scheme is a fully time-domain wavelet technique

that allows fast convolutions without any Fourier theory. It

splits the data set into two, e.g. even and odd pixels, then

predicts the odd pixels from the even pixels and calculates

the differences. If the predict method matches the signal

model then the difference is zero and the data set has been

compressed to only half its spatial extent. Now we save the

even pixels and the differences (which are expected zero). Note

that this is a fully invertible operation. The procedure can be

repeated until only one even pixel is left. If the prediction was

right, then the data have been compressed to only one pixel and

zeros else. This not only realizes an excellent data compression

technique because many zeros have been generated, it is also

an excellent Impulse Compression technique which can be

used for SAR image formation. Figure 4 shows that the Fourier

transform bases on the same idea but on a circle.

VI. CONCLUSION

In this paper, we modeled SAR raw and image data and

described SAR processing as linear non-orthogonal transform.

Fig. 4. Lifting Scheme. Visualization of one upscale/downscale step. The
difference between odd values and predicted odd values is expected zero.
If this is true then odd values are redundant and hence the waveform is
compressed to only half its previous spatial extent. Iterating several times
results in pulse compression on the one hand and waveform generation on
the other hand.

SAR Imaging corresponds to forward transforming radar re-

flectivity to SAR raw data and SAR Processing refocuses

the imaged radar reflectivity. SAR Processing as transform

has been compared to both Fourier and Wavelet transform

due to common properties. All three transforms calculate

scalar products which corresponds to changing the underlying

function basis in a signal. We derived the Point Scatterer

Response function for SAR processing and compared it to the

other transform kernels. All three transforms use the concepts

of scaling and/or translation for generating basis functions

from the transform kernel.

Finally, we studied the Lifting Scheme known in wavelet

theory. It has the potential of allowing fast sliding transitions

from SAR raw data to SAR images without using Fourier

techniques. This is subject to further investigations towards a

fast time-domain convolution algorithm for SAR processing.

VII. APPENDIX

In azimuth, we approximate the varying distance R between

SAR sensor and a scatterer on ground located at time t1 = 0
at a range of r by

R(t1, r) =
√

r2 + (vt1)2 ≈ r +
(vt1)

2

2r

such that the echo time delay is 2R(t1, r)/c. Subtracting the

constant part 2r/c of the delay variation, the scatterer migrates

by the amount of (vt1)
2/(c r) seconds in the recorded range

position, i.e. a shift in range direction of

θt1,r { ψ(·, ·) } = ψ( ·, · − (vt1)
2

c r
)

must be corrected in SAR processing when focusing the

Point Scatterer Response ψ located at coordinates t1 and r.

Therewith, the point scatterer response is written as

ψr(t1, t2) = θt1,r{ rectr(t1, t2) ·
e−2πi (f1t1+k1(r) t2

1
+ f2t2+k2t2

2
) } .

with azimuth frequency modulation (depending on r)

f1(t1, r) = f1 + k1(r) t1

and range frequency modulation

f2(t2) = f2 + k2 t2.
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The azimuth modulation rate k1(r) = 2v2/λr is a function of

r but it also depends on wavelength λ and platform velocity

v, f1 is the Doppler centroid frequency. In range we assume

a down chirp with modulation rate k2 = −(1/2) · (∆f/∆t)
where ∆f is the chirp bandwidth and ∆t the chirp duration.

Factor 1/2 is an integration constant arising when integrating

frequency f(t) = k t to phase Φ(t) = k t2/2. The chirp center

frequency f2, usually zero, is given here for symmetry reasons.

The rectangular function

rectr(t) =






1 if −Ta(r)/2 ≤ t1 ≤ Ta(r)/2 and

−Tc/2 ≤ t2 ≤ Tc/2

0 sonst

describes the visibility of an individual scatterer on ground as

it is actually ’seen’ by the SAR sensor. Originally rectangular

shaped, it is itself subject to range migration and, hence,

follows the deformation line of a range migration trajectory at

range r. Let

Ta(r) =
r

v
(tan(

θ

2
− Ψ) + tan(

θ

2
+ Ψ))

be the scatterer azimuth illumination time as a function of

r, also depending on the sensor velocity v, antenna opening

angle θ and squint angle Ψ, Tc is the chirp duration. An-

tenna weighting in azimuth and pulse weighting in range are

approximated in rect being constant one.
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