Introduction and Background

As a result of weathering and aeolian processes a fine-grained dark

material can be found on both Martian hemispheres. It is characterised
by a much lower albedo (< 0.15) than the surrounding terrain and
accumulates in patches and dune fields. Regional scale controls
such as wind regime, sand supply and climate cause different
morphologies and particle sizes of the material [1]. Analysis of near
infrared spectra from the OMEGA spectrometer [2] yields a higher
content of mafic unoxidised minerals such as high and low Ca-
pyroxenes and olivine (Fig. 1). On impact crater floors, the material
Is frequently accumulated into barchan or transverse dune fields.
HRSC data show that the material is blown into and out of craters,
indicating that such depressions can act as traps or as sources.

Some craters have layered deposits in the crater walls which have
the same albedo and the same false colour as the material inside
(Fig. 2a, 2b). These dark layers could have been cut by the impact.

Fig. 1: Absorption band depths of
olivine and pyroxene in a crater at 61°S,
62°E taken from MarsExpress OMEGA
data.

Olivine (Forsterite) Pyroxene (2,15 micron)

Dark streaks running downslope (Fig. 2b) indicate that the material
could be mobilised by erosion and transported onto the crater floor.

Fig. 2a: Dark layered deposits in the crater wall of a crater at 3°S, 308°E.

Fig. 2b: Dark layered deposits with dark streaks running downslope in the crater wall of
a crater at 50°S, 247°E.
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Results and Discussion

Theory

Wind direction analysis: Many dunes show dark streaks
extending downwind from the dune on to its surrounding terrain
indicating an unconsolidated characteristic of the material and
erosion by aeolian scour. However, not every dune suggests a
grain release. This poses the question if some dune surfaces are
recently not influenced by the wind. We made a comparison of
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modeled wind fields from the Mars Climate Database (MCD) [3,
4] (Fig. 3) and the Mars Global Reference Atmospheric Model
(MarsGRAM) [5] (Fig. 4) with a morphology deduced wind
direction. We only took the maximum yearly amplitudes of the
modeled data. The morphology deduced wind direction was
easily derived from the dune shape and wind streaks.
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Fig. 3: Data table for the MCD data (example).

For more detailed information concerning the surface properties,
we analysed the night-time brightness temperatures and the thermal
inertia of the dune surfaces.

Brightness Temperatures (BTR): The night-time BTR from THEMIS
data can provide significant information about the physical property
of a dune surface in terms of a possible bonding of particles. Loose
(unconsolidated) fine-grained material cools more rapidly at night
than coarse-grained sediments and solid rock [6]. If the dune surfaces
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Fig. 4: Example for the MarsGRAM data for a single crater.

have warmer BTR’s at night with respect to the surrounding, it can
be supposed that the surface is consolidated.

Thermal Inertia (TI): The Tl is a measure of a material’s thermal
response to the diurnal heating cycle. It is closely related to the
thermal conductivity of the top few centimeters of the surface and
thus directly correlated to the particle size [6, 7, 8]. We have obtained
these values from TES data for all the studied craters.

Figure 5a and 6a show examples for dune
fields where the dune orientation is
consistent with the recent wind directions.
Obviously these dark dunes are currently
influenced by wind. The night-time bright-
ness temperatures (Fig. 5b, 6b) show
relative low values in comparison to the
surrounding crater floor indicating that the
material cools rapidly at night. The thermal
Inertia values of these dark dunes range
between 295 - 339 Jm1s12K1 (Fig. 5c,
6¢). Such low values correspond to me-
dium to coarse sand sized material [6,
10].The results show that some dune
surfaces consist of unconsolidated sandy
material that is recently eroded. These
dunes are supposed to be active.

Legend:
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MCD wind direction
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The dune orientation and the modeled
wind direction are inconsistent in Figure 7a
and 8a indicating that there is no obvious
interaction with the current blowing winds.
The higher night-time brightness tempe-
ratures (Fig. 7b, 8b) show that the material
retains the heat at night. This suggests that
the dune surface does not consist of loose
grains. The thermal inertia values (Fig. 7c,
8c) for these dune fields range from
402 - 475 IJm1sV2K-1 Such high values
corresponds normally to resistive outcrops
and duricrusts [9, 10].

We assume that dunes with high thermal
inertia values, high night-time brightness
temperatures and the absence of interaction
with the actual blowing wind have conso-
lidated surfaces consisting of bounded
particles.

Fig. 5a: Consistent wind directions in a crater
at 10° N,150°E (HRSC image, ESA/DLR/FUB).

Fig. 5b: THEMIS BTR of the crater in Fig. 5a.

Fig. 6b: THEMIS BTR of the crater in Fig.6a.

Fig. 5¢: TES Tl of the crater in Fig. 5a. The values for the dune
field range from 318 - 339 (TES overlain onto HRSC).
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Fig. 6¢: TES Tl of the crater in Fig. 6a. The values for the dune
field range from 295 - 305 (TES overlain onto HRSC).

Fig. 6a: Consistent wind directions in a crater
at 14°S, 96°E (HRSC image, ESA/DLR/FUB).

The result of the analysis is shown in Figure 9. There seems to be a slightly correlation between
unconsolidated dunes and the southern highlands and consolidated dunes and lower elevations,
respectively. Furthermore there seems to be a certain concentration of consolidated dunes in the
area of Meridiani Planum and Chryse Planitia.
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Fig. 9: Global ditribution of probably consolidated and unconsolidated dune surfaces

Conclusions
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Fig. 7a: Inconsistent wind directions in a crater
at 42° N, 63°E (HRSC image, ESA/DLR/FUB).

Fig. 7c: TES TI of the crater in Fig. 7a. The values for the
dune field range from 402- 442 (TES overlain onto HRSC).
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The dark materials have a mafic composition and are chemically unaltered. Thus, the material is
probably the result of mechanical erosion only. Therefore it has either a relative young age or it was
buried during times when liquid water occurred on the Martian surface.

The studied dune fields show significant differences in night-time brightness temperatures and
thermal inertia due to variations in the physical structure and the grain size of the surface material.
The results point to unconsolidated and consolidated dark deposits. This leads to the assumption
that there must have been taken place a consolidation process which is unknown yet.
The physical weathering of the dark layers exposed at the crater walls could be an additional source
for the dark material inside of the crater.
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Fig. 8c: TES TI of the crater in Fig. 8a. The values for the dune
field range from 411 - 475 (TES overlain onto HRSC).

Fig. 8a: Inconsistent wind directions in a crater at
17° N, 6°E (HRSC image, ESA/DLR/FUB).

Fig. 8b: THEMIS BTR of the crater in Fig. 8a.
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