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Abstract—The aim of this work is to exploit the MUSIC
algorithm performance in order to enhance target separability in
range and azimuth, i.e. achieve point targets separation inside a
resolution cell. Simulations have been done in order to plan and
check the feasibility of a super-resolution experiment that took
place in September 2006 on the test site of Oberpfaffenhofen
(Germany). The data set has been acquired with the E-SAR
system of the DLR in X-Band. The targets to be separated
were seven small corner reflectors that have been placed in
a way that their response falls in one or, at maximum, two
resolution cells of the standard Fourier SAR image. A post-
processing implementation of the MUSIC algorithm has been
proposed allowing, in the already focused SAR image, to retrieve
the targets geometry. Conditions and analysis of the results have
been carried out.

I. INTRODUCTION

The most important advantage of SAR systems is the
high azimuth resolution achieved due to the presence of the
synthetic aperture. The range resolution is defined by the
hardware characteristics of the SAR sensor. A standard ap-
proach for obtaining SAR images is the Fourier based Matched
Filtering. The most intuitive way in order to enhance the
range resolution, is to operate with a larger bandwidth either
within the same pulse, alternating the carrier chirp frequency
as it is done in the stepped frequency mode or exploiting the
interferometric wavenumber shift principle using two different
acquisitions with slightly different viewing angles. For the
azimuth resolution, a Fourier based enhancement could be
obtained by steering the antenna (Spotlight) or by repeated
acquisitions with different squint angles. In the recent years an
alternative way that makes use of modern spectral estimation
techniques like MUSIC has been approached with raw data in
spotlight acquisitions [1], [4].

The MUSIC algorithm was initially proposed to estimate the
Direction Of Arrival (DOA) of signals [5]. This can be done
with time measurements of the e.m. field emitted by several
sources with the help of an array of sensors. The application of
this method in SAR imaging processing requires some adapta-
tion and, for this reason, two main drawbacks appear. The first
is intrinsic in the SAR nature: the MUSIC algorithm exploits
the signal statistics (i.e. the data covariance matrix) in order
to build up the noise subspace and to exploit its characteristics
to retrieve the target location. To generate the statistics of
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interest, multiple acquisitions are required, therefore a single
SAR survey is not an ideal working condition for it. Anyhow,
there are methods in the literature which transform the single
acquisiction into a multiple one. The second reason is that, the
complex reflectivity information can not be easily recovered.
The MUSIC response is not proportionally related to the target
backscattering power. If a target is detected, the algorithm
response consists in a high isolated power peak corresponding
to its position, but this power is a measure of confidence rather
than of target backscattering. For these reasons a 2D SAR
image with higher quality can not be achieved by the help of
MUSIC alone.

Although it has been shown that this method is not well
suited for a complete 2D super-resolution SAR image, it
is still worth to make an investigation in a more particular
application field related to target separation. A post-processing
implementation of the MUSIC algorithm based on [2] is
proposed allowing, in the already focused SAR image, to
retrieve the targets geometry and/or the separation of different
scattering centers.

II. THE MUSIC ALGORITHM FOR RADAR IMAGING

A. MUSIC data model

In a general context of application, the MUSIC model is
seen as an estimation problem where D vector parameters
0., ...,0p (range, azimuth position coordinates) of D objects
of interest (backscatterers) have to be estimated. The data
acquisition model is:

X(t) = AF(t) + W(¢t) t=1,....K (D
where the data-vector X(t) = [X1(t)--- X (¢)]T is acquired
K times and L is the number of spatial samples. The noise-
vector is represented by W (t) = [Wy(t)---Wr(t)]T and
F(t) = [Fi(t)--- Fp(t)]T is the vector signal associated to
the D objects. The L x D matrix A is defined as A =
[a(071)---a(0p)], where a(@) is the so-called steering vector
function.

The noise is assumed to have covariance matrix
E[WW?*] = oI and the vectors W and F to be decorrelated
and with zero-mean. Three main assumptions are done:



o The vectors a(0;)...a(0p) (the mode vectors) are lin-
early independent.

o the covariance matrix P = E[FF*] of F is non-singular.

e« L>D.
Now, defining the data covariance matrix as S = E[XX*],
two complementary and orthogonal subspaces of C* can
be constructed, one of dimension D (spanned by the mode
vectors) called Signal Subspace and the other of dimension
N = L — D called Noise Subspace. Organising the base
vectors of the noise subspace in the columns of a matrix Ey,
it can be shown that the function of 6:

1
Pyu(0) = 2
]\/IU( ) a*(B)ENE}"Va(O) ( )
achieves peaks only when the argument 8 = 64,...,0p,

detects the source position. In a realistic case, the acquisition
number is finite, therefore the covariance matrix has to be
estimated by:
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S=— t_zl X (£)X*(t). 3)
In order to apply the MUSIC algorithm with the estimated
covariance matrix (3), an priori estimation of the D number
of targets D is necessary [7]. In the specific 2D radar or SAR
imaging context, it is possible in some cases to achieve the
image data as in Eq.(1) in such a way that the estimation
parameter is 0 = (w,,w,) where w, and w, are respectively
linearly related to the range and azimuth image coordinates.
The desired parameters are 61 = (wp1,wa1),...,0p =
(wrp,wap). To accomplish this, the data image model is
assumed to be in the form of a two-dimensional complex
sinusoid signal, i.e.:

Xon = 25:1 ypelrrmelWar L W m=0,...,M —1

n=0,...,N—1

“)

where, for the scatterer p the range frequency is w,, and
azimuth frequency is wq,.

In order to use the model Eq.(1) it has to be noticed that in
the SAR the data are two-dimensional and, more important,
only one acquisition is done (one pass), therefore k£ = 1. These
drawbacks can be overcame using the spatial smoothing [1],
[3], [4] method (depicted in Fig.1). It consists in defining a
window of dimensions m; < M and mo < N smaller than the
image and scan it in all possible positions. For each scanning
position, the submatrix defined is treated as an acquisition and
its elements are raster scanned in a defined order (in our case
each line is allocated after the other) into the one-dimensional
vector X (¢). Due to the linearity of the exponential, the image
model in Eq.(4), can be transformed as in Eq.(1) with K =
(M — my + 1)(N — mq + 1) acquisitions and with a one
dimensional steering vector:

a(wpr,wge) =
[1 elwa .. gilma—l)wa
ejwr ejwrejwa ejwrej(mﬂ_l)wa
ej(mlfl)w,. ej(mlfl)w,.ejwa ej(mlfl)wrej(mgfl)wa]T

X[1,1]  X[1,2] X[1,ma] X[1,N] T
X[2,1 [ X[2,2] X[2,ms] X[2,N]
Kmy, 1] | X[my,2] X[my,ms] X([my, N|
| X[M,1] X[M.,2] - -oo oo X[M,N]]
Fig. 1. Spatial smoothing over a two dimensional data array.

B. MUSIC Pre-processing

In [1], [4] the application of MUSIC for SAR image
processing purpose has been carried out for the retangular
formatted spotlight raw data acquisition where, after interpo-
lation the expression of Eq.(4) can be assumed. In this work a
processing scheme in order to achieve the model of Eq.(4) in
an already focused 2D SAR image is described. The purpose is
to avoid raw data complication features (range migration and
motion compensation) which are already build into a standard
SAR processor. The application of the MUSIC algorithm have
been limited to a small region of the image, where a limited
number of strong targets are located.

For the sake of simplicity the time continuous case will now
be considered. Each point target p located at the image data
coordinates (7,,%,), related to range and azimuth respectively,
is focused in the SAR image as a two-dimensional sinc-
function:

D
y(r,t) = Z vpsine [Bs, (T — 7p)] sinc [Bso (t — tp)],  (5)
p=1

where the amplitude +, is the target reflectivity, B, is the
bandwidth of the range-sinc and By, is the bandwidth of the
azimuth-sinc. After selectioning the part of the image where
the targets are located, the target area is windowed. To achieve
the exponential form of Eq.(4) a convolution of the focused
image with a predefined two-dimensional chirp such as

e(r,t) = eI vect [AsT] eIt rect [Acqt]

(6)

is carried out. In (6) o, and A, are respectively the range-
chirp rate and length and «, and A, are respectively the
azimuth-chirp rate and length. The result of the convolution
is the sum of D chirps with length, rate and bandwidth of (6)
but centered at each target image coordinates:

D
s(r,t) = Z%ejar(ffrpfejaa(tftp)z_
p=1

(N

In the case of the chirp, this also is achieved if its bandwidth
is higher than the target one due to its frequency vs. time
proportionality (at the cost of a lower pulse duration). This
procedure is known as data expansion. It has to be observed
that due to the limited pulse duration of the chirp, after the



convolution, the chirps centered at the position of the targets
have a region of intersection which it is not reported in (7).
Anyhow, these inaccuracy can be neglected because, for the
application of interest, the targets are supposed close enough.

Through (7), the model (4) can be achieved if the quadratic
exponential phase of the chirp is transformed into a linear
exponential phase (sinosoid). This can be done trought the well
known deramping process which simply multiplies the signal
by its delayed and conjugated version (deramping signal), in
our case:

der(r, t) = 3o (7=7res)? g0 (t=tres)? @®)

where 7,y and t,.y are the defined delays. The deramping
signal in (8) must cover all the time duration of the signal (7).
The deramped signal can be written as:

D
X(7,t) = der(r,t)s*(7,t) = Z GpeltrrTed Vet (9)
p=1

with vy, = 20, (Tp — Trey) and Vop = 204 (tp — tref).
Defining now F, the sampling rate in range and PRF
the one in azimuth, we have that t,, = 1/Fy and t,, =
1/PRF are the correspondent sampling periods. The dis-
crete version of the model (see ((4))) will be computed as
Wrp = 20 (Myp — Myep)t2, and wop = 204(ny — Npes)t2,
where, m, = 7,/ts; and n, = t,/ts, are respectively the
sampled range and azimuth data coordinates of the target p and
Myef = Tref/tsr a0d Nypep = tref/tsq. The domain of search
is {20 (0—mef)t2,, ..., 20 (M — 1) —mycr)t2,} for range
frequency and {20, (0—npef)t2,, . o, 20 (N —=1)—nype )82, }
for the azimuth one, correspoding to the selected sub-image.

III. TWO SIMULATION RESULTS

Two simulation results, with additive noise, separated by
sub-resolution distances are presented. In Fig.2 the azimuth
separation is in the order of 0.35 of the Fourier azimuth
resolution. In Fig.3 a second result is presented for a range
separation of 0.35 of the Fourier range resolution. In each
case, it is shown also the percentual relation between the
image size at the processing stage of Eq.(4) and the size of
the submatrix chosen in the spatial smoothing method. The
notation ‘range x azimuth’ will always be used. The profiles in
the left correspond to range and in the right to azimuth. From
up to bottom, the profiles correspond respectively to the first
target, the second target, the sum of the two and, finally, the
profile given at the output of the proposed processing. In both
cases the method is able to separate with resonable accuracy
the two targets.

IV. REAL DATA

Seven small corner reflectors were placed in a test field
in Oberpfaffenhofen (Germany) in the geometry shown in
Fig.4(b). The radar data was acquired on September 2006
by the E-SAR system of DLR at X-band in the HH polar-
ization. The nominal resolutions are 0.6m in azimuth and
2.12m in range. A selection of an area of 21 x 21 pixels in
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Fig. 2. Profile of simulated targets in azimuth separation. Subarray size:
10% x 30%
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Fig. 3. Profile of simulated targets in range separation. Subarray size: 30% X
10%.

the surrounding region of the corners image was done. The
subarray size was around 25% x 20%. Fig.4(c) shows the SAR
processor result, based on the Matched Filter. The amplitude
grows from blue to red. The Fourier based approach was not
able to separate the seven corner reflectors, anyhow it could
separate two targets in azimuth which agrees to the fact that
the azimuth resolution is higher than range resolution. Fig.4(d)
shows the output of the proposed post-processing chain based
on MUSIC when the selected data of Fig.4(c) is given as input.
In this case all the seven corners reflector could be separated.
As a validation of a correct separation a comparison between
the detected geometry and the ground measurements has been
carried out. More precisely, the average estimated slant range
separation is £1.2m, the measured slant range separation is
+1.0m (the ground range measurement was projected into
the slant range using the geometry of the acquisition), the
average estimated azimuth separation is £0.86m and the
measured azimuth separation is £0.80m. The comparison
results indicate that the estimation was reasonably successfull.
As expected, the amplitude of the response of the corners can
not be used as an estimation of the backscattered energy.

V. CONCLUSION

A post-processing approach for 2D SAR images based on
the MUSIC estimator has been developed in order to separate
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Fig. 4. Real data experiment.

targets within the Fourier resolution. Simulation showed good
performance for separations lower than half the Fourier resolu-
tion. Concerning experimental results, it has been shown that
all the targets have been detected with the correct geometry.
In this frame, further investigation on test sites where strong
backscatterers are present, such as urban areas, are suggested.

The limitation on the number of acquisitions (K < oo) have
implication in other practical conditions necessary for MUSIC
to work. With the ideal infinite acquisition, the true covariance
matrix will have exactly N = L — D lower eigenvalues equal
to the noise variance, independently of the SNR specified. In
this way the number of targets D is known and the matrix
Exn can be constructed. With the finite acquisition, the L — D
lower eigenvalues will differ from each other in a way that

an external estimation of the number of targets is necessary.
The SNR will make an important difference, since it will be
related to the distance between the D higher eigenvalues to the
L— D lower ones. In [7] is given a detail statistical analysis of
the MUSIC estimator in terms of the Cramer-Rao Bound. It is
shown that the variance of MUSIC gets closer to the Cramer-
Rao bound when K — oo and L — oo, so even with an
ideal acquisition, the spacial sampling L of the data must be
large enough, when compared with the number of targets. In
this sense, the spatial smoothing method presents a trade-off
point since, in this case, K = (M —my + 1)(N —ma + 1)
and L = mimo so K and L are unfortunatly inversely
related. This means that for a given number of targets, the
submatrix size must be large enough to achieve high value
of L (and consequently a low variance which is a measure
of resolution) but small enough to generate large K values (a
good estimation of the covariance matrix). In the simulation
and real data results the size of the subarray was chosen
to agree with these conditions. Concerning the SNR, one
important constraint observed regards the bandwidth of the
chosen chirp in comparison with the image data. Another
important constraint in the processing is the observation of
the definition of the deramping signal, in order to cover all
the image in a way that, its bandwidth does not reach the half
of the sampling rate (aliasing).

In this work, an a priori knowledge of the number of sources
has been exploited. Anyhow, external estimation methods [7]
can be considered in order to avoid this a priori information
knowledge. Estimation of the true reflectivity and other forms
of estimation of the covariance matrix rather than (3) that gives
more acquisitions such as the Forward-Backward method [1],
[3], [6] are subject of further work.
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