

Leopold Franzens Universität Innsbruck

Ontology-Based Context Modeling

Reto Krummenacher, Thomas Strang

3rd Workshop on Context Awareness for Proactive Systems

© Copyright 2006 DERI Innsbruck www.deri.at

19 June 2007

making semantics real.

Background

Digital Enterprise Research Institute

- Applying semantics to Web services to achieve (semi-) automatic discovery, composition, ...
- Non-functional and dynamic aspects of service descriptions and goals/tasks to execute
- Middleware for ,Internet of Services': semantic tuplespaces
 - Management tasks / Non-functional properties
 - Self-Representation
 - Reflection, scalability trade-offs

Overview

- 1. Ontologies: Some Basic Facts
- 2. Modeling Criteria
- 3. The Survey
- 4. Challenges & Problems

Leopold Franzens Universität Innsbruck

Ontologies Some Basic Facts

Ontologies

Ontologies are

"explicit formal specifications of the terms in a domain and the relations among them"

Modeling characteristics

- semi-structured with clear model semantics (not OO)
- modeling facilities for concepts and properties (not Logic)

Projecting real-life entities onto machine-understandable data constructs

Benefits

- Interoperability
 - high-level, explicit specification (understanding)
 - reusability, applicability (speed of implementation)
 - data and system integration (in the large)
- Validity and compatability checking, formal constraints
- Reasoning
 - validation of models and instances
 - derivation of instances & relations (implicit knowledge)
 - the system can infer more about the big picture
 - knowledge interpretation and evaluation

Ontology Languages

- Two branches of languages
 - First-Order Logic (FOL)
 - Description Logics (DL; e.g. OWL-DL) subsets of FOL
 - Logic Programming (LP)
- FOL, DL
 - open world, no unique name assumption
 - subsumption reasoning, consistency checking, classification
- LP
 - closed world, unique name assumption
 - query answering, consequence finding (rules systems)
 - ? child(?x) AND gender(?x,male).

Leopold Franzens Universität Innsbruck

Success factors for context modeling ontologies

Modeling Criteria: Context (1)

- Comparability of data values
 - heterogeneity of coding systems, units and values
- Traceability
 - provenance (trust)
 - computational source for derived context
- Logging, history
 - decisions based on the past
 - monitoring (detecting unlikely changes)

Modeling Criteria: Context (2)

- Quality
 - e.g. mean error, standard deviation
- Satisfiability (constraint modeling)
 - restrictions and constraints on acceptable values
- Inference, derivation
 - high-order context (situations, activities...)
 - inWater, moving \rightarrow swimming
 - new contextual types based on primitive values
 - show the relationship of speed with distance and time

Modeling Criteria: Ontology (3)

- Reusability
 - simple and small ontologies (DC, FOAF)
 - genericity: domain independent (upper ontologies)
- Consistency
 - no contradictions (neither implicit nor explicit)
- Completeness, redundancy
 - cover the whole domain
 - but do not redefine explicit/implicit knowledge

Modeling Criteria: Ontology (4)

- Readability
 - humans develop ontologies, humans choose ontologies
 - understandable, intuitive relations and terms
 - not important for machines, but...
 - very relevant factor for reuse, and adaptation
- Language, formalism
 - choose the right language for the problem
 - choose the right reasoning support for the problem
 - compatability of formalism
 - decidability (FOL + LP!!!)

Leopold Franzens Universität Innsbruck

The Survey

Survey: Ontologies

MobiLife	Classification-based situational reasoning for task-oriented mobile service discovery
ConOnto	Negotiation Context Information in Context-Aware Systems
SCAFOS / SCALA	A first-order logic model for context-awareness in distributed sensor-driven systems
CONON / ULCO	Ontology-Based Context Modeling and Reasoning using OWL;
Metamodel for Context	A Metamodel Approach to Context Information
CAPNET	RDF based Model for Context aware Reasoning in Rich Service Environments
CARE	Loosly Coupling Ontological Reasoning with Officient Middleware for Context-awareness
SOUPA	SOUPA: Standard Ontology for Anguitous and Pervasive Computing
MAS / mySAM	Representing Conext in an Agent Architecture for Context-Based Decision Making
CDF	Context Description Framework for the Semantic Web
CAMido Dervasi	CAMidO, A Context-Aware Middleware Based on Ontology Meta-Model
GAMA OMP 101	Apertrastructure for context-awareness based on first order logic
Decuality Model DPIVAS	A resource and context model for mobile middleware
VTT Einland	Managing Context Information in Mobile Devices
PUBBAIONT	An ontology for context-aware pervasive computing environments
CoOL / ASC	CoOL: A Context Ontology Language to enable Contextual Interoperability
DOLCE-DnS	Understanding the Semantic Web through Descriptions and Situations
CoDAMoS	Towards an extensible context ontology for Ambient Intelligence
GAS	GAS ontology: an ontology for collaboration among ubiquitous computing devices
CWI-Context	Modeling Adaptation in Web Services Execution using Context Ontologies

Survey: Introduction

- Aims to show
 - the state of the art
 - deployed features and factors that lack support
 - examples of work done and work to be done
- Definitively not a complete list of efforts
 - new examples monthly...
- Difficult to find complete information about models
 - ontologies not publicly available
 - lack of complete descriptions

Survey: Observations (1)

- Genericity:
 - abstract vocabularies to describe context values
 - ConOnto (ContextView, ContextFeature),
 - ASC (Aspects, Scales, ContextInformation)
 - upper ontologies to model entities involved in contextaware systems: Person, Location, Environment, Application, Device...
 - SOUPA, CONON, CoDAMoS (user, service, platform,...)
- Context information is not (only) profiles
 - profiles with values (formalized) in ontologies
 - key-value approaches with (formalized) values

Survey: Observations (2)

- Comparability
 - seldom explicitly integrated (values not at the core)
 - how to compare non-countable values?
 - counter-example ASC: focus on the values
- Traceability
 - VTT Finland framework attaches attribute source
 - no further modeling of sources
 - CONON tags values with type of source
 - sensed, derived, aggregated, deduced

Survey: Observations (3)

- Logging, history
 - often done by use of timestamps
 - GAIA: integrates relational database for temporal queries (values regularly stored in RDBMS)
- Quality
 - Most clearly recognized meta-context
 - probability, confidence, meanError
 - baysien reasoning, fuzzy logic
 - quality ontologies

Survey: Observations (4)

- Satisfiability
 - logical expressions (rules)
 - external services (application and Web service bindings)
 - again: of particular interest for non-countable values
- Derivation, inference
 - integration of derivation rules, axiomatic expressions
 - activity(sleeping) <- location(inBed) AND eyes(closed)
 - inter/intra operations of ASC
 - Speed = Interoperation(Distance, Time)

- Most models rely on FOL (in fact OWL-DL)
 - subsumption reasoning, entity hierarchies, model checking
- LP is chosen for inclusion of context rules

forall X suggestion(X,drink) <-X:human[activity->running] and T:temperature[value->V, unit->Celsius] and V > 20.

- Few combined solutions for schema and value modeling (FOL) and the integration of derivation and user rules (LP)
- Interesting: CDF extension to RDF
 - trueInContext, contextProbability properties

Survey: Conclusions

- Quality and timestamps recognized as important
- Provenance needs more attention
 - yet more important in large-scale distributed settings
 - also a prerequisite for trust measures
- Interoperability crucial
 - solid ontology modeling
 - comparability, constraints modeling (satisfiability)
 - especially in open pervasive environments and the "Internet of Services"

Leopold Franzens Universität Innsbruck

Challenges & Problems

Challenges and Problems

- Top-down creation
 - the applications determine the models
 - resulting ontology on a per case basis. Reusability?
- Applications become globally reachable
 - not some tiny tool on a mobile device
 - need for standardization, or integration, mapping
- Accessibility
 - Reuse of ontologies requires that they are available
 - Lack of publicly available ontologies: a human-caused problem

Challenges and Problems

- Open topic in the Semantic Web community
 - combination of FOL and LP
 - causes undecidability, ongoing research
 - Description Logic Programs
 - SWRL (OWL + RuleML), RIF (W3C WG)
 - WSML-Full
 - scalability, performance of reasoners
 - distributed querying and reasoning
- Future: "Internet of Services"?
 - context-aware discovery, composition, negotiation
 - combination of functional and non-functional aspects

Thank you.

Reto Krummenacher Digital Enterprise Research Institute University of Innsbruck reto.krummenacher@deri.at

3rd Workshop on Context Awareness for Proactive Systems

19 June 2007

making semantics real.

www.ubicomp2007.org

9th Int'l Conference on Ubiquitous Computing (UbiComp 2007) 16.-19. Sept 2007 in Innsbruck, Austria

