
Design of LDPC Codes: A Survey and New Results
Gianluigi Liva, Shumei Song, Lan Lan, Yifei Zhang, Shu Lin, and William E. Ryan

Abstract— This survey paper provides fundamentals in the
design of LDPC codes. To provide a target for the code designer,
we first summarize the EXIT chart technique for determining
(near-)optimal degree distributions for LDPC code ensembles.
We also demonstrate the simplicity of representing codes by
protographs and how this naturally leads to quasi-cyclic LDPC
codes. The EXIT chart technique is then extended to the
special case of protograph-based LDPC codes. Next, we present
several design approaches for LDPC codes which incorporate
one or more accumulators, including quasi-cyclic accumulator-
based codes. The second half the paper then surveys several
algebraic LDPC code design techniques. First, codes based on
finite geometries are discussed and then codes whose designs
are based on Reed-Solomon codes are covered. The algebraic
designs lead to cyclic, quasi-cyclic, and structured codes. The
masking technique for converting regular quasi-cyclic LDPC
codes to irregular codes is also presented. Some of these results
and codes have not been presented elsewhere. The paper focuses
on the binary-input AWGN channel (BI-AWGNC). However,
as discussed in the paper, good BI-AWGNC codes tend to be
universally good across many channels. Alternatively, the reader
may treat this paper as a starting point for extensions to more
advanced channels. The paper concludes with a brief discussion
of open problems.

I. INTRODUCTION

The class of low-density parity-check (LDPC) codes repre-
sents the leading edge in modern channel coding. They have
held the attention of coding theorists and practitioners in the
past decade because of their near-capacity performance on a
large variety of data transmission and storage channels and
because their decoders can be implemented with manageable
complexity. They were invented by Gallager in his 1960
doctoral dissertation [1] and were scarcely considered in the
35 years that followed. One notable exception is Tanner, who
wrote an important paper in 1981 [2] which generalized LDPC
codes and introduced a graphical representation of LDPC
codes, now called Tanner graphs. Apparently independent of
Gallager’s work, LDPC codes were re-invented in the mid-
1990’s by MacKay, Luby, and others [3][4][5][6] who noticed
the advantages of linear block codes which possess sparse
(low-density) parity-check matrices.

This papers surveys the state-of-the-art in LDPC code
design for binary-input channels while including a few new
results as well. While it is tutorial in some aspects, it is not

Manuscript received July 04, 2006; revised August 25, 2006. This work
was supported by the University of Bologna, NASA-Goddard, and NSF.

Paper has been approved by F. Chiaraluce.
Gianluigi Liva is with the University of Bologna (e-mail:

gliva@deis.unibo.it).
Shumei Song, Lan Lan and Shu Lin are with the University of Cal-

ifornia at Davis (e-mail: ssmsong@ece.ucdavis.edu, squashlan@gmail.com,
shulin@ece.ucdavis.edu).

Yifei Zhang and William E. Ryan are with the University of Arizona, U.S.A.
(e-mail: {shulin, ryan}@ece.arizona.edu).

entirely a tutorial paper, and the reader is expected to be fairly
versed on the topic of LDPC codes. Tutorial coverages of
LDPC codes can be found in [7][8]. The purpose of this paper
is to give the reader a detailed overview of various LDPC code
design approaches and also to point the reader to the literature.
While our emphasis is on code design for the binary-input
AWGN channel (BI-AWGNC), the results in [9][10][11][12]
demonstrate that a LDPC code that is good on the BI-AWGNC
tends to be universally good and can be expected to be good
on most wireless, optical, and storage channels.

We favor code designs which are most appropriate for appli-
cations, by which we mean codes which have low-complexity
encoding, good waterfall regions, and low error floors. Thus,
we discuss quasi-cyclic (QC) codes because their encoders
may be implemented by shift-register circuits [13]. We also
discuss accumulator-based codes because low-complexity en-
coding is possible from their parity-check matrices, whether
they are quasi-cyclic or not. The code classes discussed tend
to be the ones (or related to the ones) used in applications
or adopted for standards. Due to time and space limitations,
we cannot provide a complete survey. The present survey is
biased toward the expertise and interests of the authors.

Before a code can be designed, the code designer needs
to know the design target. For this reason, Section II first
briefly reviews the belief propagation decoder for LDPC
codes and then presents the so-called extrinsic information
transfer (EXIT) chart technique for this decoder. The EXIT
chart technique allows one to obtain near-optimal parameters
for LDPC code ensembles which guide the code designer.
The EXIT technique is extended in Section III to the case
of codes based on protographs. Section IV considers LDPC
codes based on accumulators. The code types treated in that
section are: repeat-accumulate, irregular repeat-accumulate,
irregular repeat-accumulate-accumulate, generalized irregular
repeat-accumulate, and accumulate-repeat-accumulate. That
section also gives examples of quasi-cyclic code design using
protograph (or base matrix) representations. Section V surveys
the literature on cyclic and quasi-cyclic LDPC code design
based on finite geometries. Section VI presents several LDPC
code design techniques based on Reed-Solomon codes. Section
VII presents the masking technique for converting regular QC
codes to irregular QC codes to conform to prescribed code
parameters. Section VIII contains some concluding remarks
and some open problems.

II. DESIGN VIA EXIT CHARTS

We start with an m × n low-density parity-check matrix
H, which corresponds to a code with design rate (n−m)/n,
which could be less than the actual rate, R = k/n, where k
is the number of information bits per codeword. H gives rise

Fig. 1. Tanner graph representation of LDPC codes.

to a Tanner graph which has m check nodes, one for each
row of H, and n variable nodes, one for each column of H.
Considering the general case in which H has non-uniform row
and column weight, the Tanner graph can be characterized
by degree assignments {dv(i)}n

i=1 and {dc(j)}m
j=1, where

dv(i) is the degree of the i-th variable node and dc(j) is the
degree of the j-th check node. Such a graph, depicted in Fig.
1, is representative of the iterative decoder, with each node
representing a soft-in/soft-out processor (or node decoder).

We shall assume the BI-AWGNC in our description of the
LDPC iterative decoder. In this model, a received channel
sample y is given by y = x + w, where x = (−1)c ∈ {±1}
is the bipolar representation of the transmitted code bit c ∈
{0, 1} and w is a white Gaussian noise sample distributed
as η

(
0, σ2

w

)
, where σ2

w = N0/2, following convention. The
channel bit log-likelihood ratios (LLRs) are computed as

Lch = log
(

p (x = +1 | y)
p (x = −1 | y)

)
=

2y

σ2
w

. (1)

In one iteration of the conventional, flooding-schedule iter-
ative decoder, the variable node decoders (VNDs) first process
their input LLRs and send the computed outputs (messages) to
each of their neighboring check node decoders (CNDs); then
the CNDs process their input LLRs and send the computed
outputs (messages) to each of their neighboring VNDs. More
specifically, the message from the i-th VND to the j-th CND
is

Li→j = Lch,i +
∑

j′ 6=j

Lj′→i (2)

where Lj′→i is the incoming message from CND j′ to VND
i and where the summation is over the dv(i)− 1 check node
neighbors of variable node i, excluding check node j. The
message from CND j to VND i is given by

Lj→i = 2 tanh−1

(
∏

i′ 6=i

tanh (Li′→j)

)
(3)

where Li′→j is the incoming message from VND i′ to CND
j and where the product is over the dc(j) − 1 variable node
neighbors of check node j, excluding variable node i . This
decoding algorithm is called the sum-product algorithm (SPA).

We now discuss the EXIT chart technique [14][15][11] for
this decoder and channel model. The idea is that the VNDs
and the CNDs work cooperatively and iteratively to make
bit decisions, with the metric of interest generally improving
with each half-iteration. A transfer curve which plots the
input metric versus the output metric can be obtained for
both the VNDs and the CNDs, where the transfer curve for
the VNDs depends on the channel SNR. Further, since the
output metric for one processor is the input metric for its
companion processor, one can plot both transfer curves on
the same axes, but with the abscissa and ordinate reversed
for one processor. Such a chart aids in the prediction of the
decoding threshold of the ensemble of codes characterized by
given VN and CN degree distributions: the decoding threshold
is the SNR at which the two transfer curves just touch,
precluding convergence of the two processors. EXIT chart
computations are thus integral to the optimization of Tanner
graph node degree distributions for LDPC codes and are the
main computation in the optimization process. We emphasize
that decoding threshold prediction techniques such as EXIT
charts or density evolution [16] assume a graph with no
cycles, an infinite codeword length, and an infinite number
of decoding iterations.

An EXIT chart example is depicted in Fig. 2 for the
ensemble of regular LDPC codes on the BI-AWGNC with
dv(i) = dv = 3 for i = 1, ..., n, and dc(j) = dc = 6 for
j = 1, ..., m. In the figure, the metric used for the transfer
curves is extrinsic mutual information, giving rise to the name
extrinsic information transfer (EXIT) chart. (The notation
used in the figure is explained below.) Also shown in the
figure is the decoding trajectory corresponding to these EXIT
curves. As the SNR increases, the top curve shifts upwards,
increasing the ”tunnel” between the two curves and thus the
decoder convergence rate. The SNR for this figure is just
above the decoding threshold for codes with (dv, dc) = (3, 6),
(Eb/N0)thres = 1.1 dB. Other metrics, such as SNR and mean
[17][18] and error probability [19] are possible, but mutual
information generally gives the most accurate prediction of the
decoding threshold [14][20] and is a universally good metric
across many channels [9][10][11][12].

To facilitate EXIT chart computations, the following
Gaussian assumption is made. First, we note that the LLR
Lch in (1) corresponding to the BI-AWGNC is Gaussian with
mean µch = 2x/σ2

w and variance σ2
ch = 4/σ2

w. From this
and the usual assumption that the all-zeros codeword was
transmitted (thus, xi = +1 for i = 1, ..., n), σ2

ch = 2µch.
This is equivalent to the symmetric condition of [16] which
states that the conditional pdf of an LLR value L must satisfy
pL (l | x) = pL (−l | x) exl. Now, it has been observed that
under normal operating conditions and after a few iterations,
the LLRs Li→j and Lj→i are approximately Gaussian and,
further, if they are assumed to be symmetric-Gaussian, as
is the case for Lch, the decoding threshold predictions are
very accurate (e.g., when compared to the more accurate,
but more computationally intensive density evolution results
[16]). Moreover, the symmetric-Gaussian assumption vastly

Fig. 2. EXIT chart example for (dv, dc) = (3, 6) regular LDPC code.

simplifies EXIT chart analyses.
We now consider the computation of EXIT transfer curves

for both VNDs and the CNDs, first for regular LDPC codes
and then for irregular codes. Following [14][15], excluding the
inputs from the channel, we consider VND and CND inputs to
be a priori information, designated by ‘A’, and their outputs to
be extrinsic information, designated by ‘E’. Thus, an extrinsic
information transfer curve for the VNDs plots the extrinsic
information IE as a function of its input a priori information,
IA, and similarly for the CNDs.

The VND EXIT curve, IE,V versus IA,V , under the
symmetric-Gaussian assumption for VND inputs, Lch,i and
{Lj′→i}, and outputs, Li→j , can be obtained as follows.
From (2) and an independent-message assumption, Li→j is
Gaussian with variance σ2 = σ2

ch +(dv − 1)σ2
A (hence, mean

σ2/2). The mutual information between the random variable
X (corresponding to the realization xi) and the extrinsic LLR
Li→j is therefore (for simplicity, we write L for Li→j , x for
xi, and pL (l | ±) for pL (l | x = ±1))

IE,V = H(X)−H(X | L)
= 1− E

[
log2

(
1/pX |L (x | l))]

= 1−
∑

x=±1

1
2

∫ ∞

−∞
pL (l | x)

· log2

(
pL (l | +) + pL (l | −)

pL (l | x)

)
dl

= 1−
∫ ∞

−∞
pL (l | +) log

(
1 +

pL (l | −)
pL (l | +)

)
dl

= 1−
∫ ∞

−∞
pL (l | +) log

(
1 + e−l

)
dl

where the last line follows from the symmetry condition and
because pL (l | x = −1) = pL (−l | x = +1) for Gaussian
densities.

Since Li→j ∼ η
(
σ2/2, σ2

)
(when conditioned on xi =

+1), we have

IE,V = 1−
∫ ∞

−∞

1√
2πσ

e−(l−σ2/2)2
/2σ2

log
(
1 + e−l

)
dl .

(4)
For convenience we write this as

IE,V = J (σ) = J

(√
(dv − 1) σ2

A + σ2
ch

)
, (5)

following [15]. To plot IE,V versus IA,V , where IA,V is the
mutual information between the VND inputs Lj→i and the
channel bits xi, we apply the symmetric-Gaussian assumption
to these inputs so that

IA,V = J (σA) (6)

and

IE,V = J (σ) = J

(√
(dv − 1) [J−1 (IA,V)]2 + σ2

ch

)
. (7)

The inverse function J−1 (·) exists since J (σA) is monotonic
in σA. Lastly, IE,V can be parameterized by Eb/N0 for
a given code rate R since σ2

ch = 4/σ2
w = 8R (Eb/N0) .

Approximations of the functions J (·) and J−1 (·) are given
in [15].

To obtain the CND EXIT curve, IE,C versus IA,C , we can
proceed as we did in the VND case, e.g., begin with the
symmetric-Gaussian assumption. However, this assumption is
not sufficient because determining the mean and variance for
a CND output Lj→i is not straightforward, as is evident from
the computation for CNDs in (3). Closed-form expressions
have been derived for the check node EXIT curves [21][22].
Computer-based numerical techniques can also be used to
obtain these curves. However, the simplest technique exploits
the following duality relationship (proven to be exact for the
binary erasure channel [11]): the EXIT curve for a degree-dc

check node (i.e., rate-(dc − 1)/dc single-parity check (SPC)
code) and that of a degree-dc variable node (i.e., rate-1/dc

repetition code) are related as

IE,SPC (dc, IA) = 1− IE,REP (dc, 1− IA) .

This relationship was shown to be very accurate for the BI-
AWGNC in [21][22]. Thus,

IE,C = 1− IE,V (σch = 0, dv ← dc, IA,V ← 1− IA,C)

= 1− J

(√
(dc − 1) [J−1 (1− IA,C)]2

)
. (8)

For irregular LDPC codes, IE,V and IE,C are computed as
weighted averages. The weighting is given by the coefficients
of the ”edge perspective” degree distribution polynomials
λ(z) =

∑dv

d=1 λdz
d−1 and ρ(z) =

∑dc

d=1 ρdz
d−1, where λd is

the fraction of edges in the Tanner graph connected to degree-d
variable nodes, ρd is the fraction of edges connected to degree-
d check nodes, and λ(1) = ρ(1) = 1. Then, for irregular
LDPC codes,

IE,V =
dv∑

d=1

λdIE,V (d, IA,V) (9)

Fig. 3. EXIT chart for rate-1/2 irregular LDPC code. (Ack: S. AbuSurra)

where IE,V (d) is given by (7) with dv replaced by d, and

IE,C =
dc∑

d=1

ρdIE,C(d, IA,C) (10)

where IE,C(d) is given by (8) with dc replaced by d.
It has been shown [11] that to optimize the decoding

threshold on the binary erasure channel, the shapes of the VND
and CND transfer curves must be well matched in the sense
that the CND curve fits inside the VND curve (an example
will follow). This situation has also been observed on the BI-
AWGNC [15]. Further, to achieve a good match, the number
of different VN degrees need only be about 3 or 4 and the
number of different CN degrees need only be 1 or 2.

Example 1: We consider the design of a rate-1/2 irreg-
ular LDPC code with four possible VN degrees and two
possible CN degrees. Given than λ(1) = ρ(1) = 1 and
R = 1 − ∫ 1

0
ρ(z)dz/

∫ 1

0
λ(z)dz [16],[4], only two of the

four coefficients for λ(z) need be specified and only one of
the two for ρ(z) need be specified. A non-exhaustive search
yielded λ(z) = 0.267z + 0.176z2 + 0.127z3 + 0.430z9 and
ρ(z) = 0.113z4 + 0.887z7 with a decoding threshold of
(Eb/N0)thres = 0.414 dB. The EXIT chart for Eb/N0 = 0.55
dB is presented in Fig. 3. The figure also gives the ”node
perspective” degree distribution information. ¤

The references contain additional information on EXIT
charts, including the so-called area property, EXIT charts for
the Rayleigh channel, for higher-order modulation, and for
multi-input/multi-output channels [14][15][11][23].

III. DESIGN OF PROTOGRAPH-BASED CODES

A. Definition and Problem Statement

A protograph [24][25][26][27] is a relatively small bipartite
graph from which a larger graph can be obtained by a copy-
and-permute procedure: the protograph is copied Q times,

Fig. 4. Illustration of the protograph copy and permute procedure with q = 4
copies.

and then the edges of the individual replicas are permuted
among the replicas (under restrictions described below) to
obtain a single, large graph. An example is presented in Fig.
4. The permuted edge connections are specified by the parity-
check matrix H. Note that the edge permutations cannot be
arbitrary. In particular, the nodes of the protograph are labeled
so that if variable node V is connected to check node C in
the protograph, then variable node V in a replica can only
connect to one of the Q replicated C check nodes. Doing so
preserves the decoding threshold properties of the protograph.
A protograph can possess parallel edges, i.e., two nodes can
be connected by more than one edge. For LDPC codes,
the copy-and-permute procedure must eliminate such parallel
connections in order to obtain a derived graph appropriate for
a parity-check matrix.

It is convenient to choose the parity-check matrix H as an
M × N array of Q × Q (weight-one) circulant permutation
matrices (some of which may be the Q × Q zero matrix).
When H is an array of circulants, the LDPC code will be
quasi-cyclic. Such a structure has a favorable impact on both
the encoder and the decoder. The encoder for QC codes can
be implemented with shift-register circuits with complexity
linearly proportional to m for serial encoding and to n for
parallel encoding [13]. By contrast, encoders for unstructured
LDPC codes require much more work. The decoder for QC
LDPC codes can be implemented in a modular fashion by
exploiting the circulant-array structure of H [42][43].

Below we present an extension of the EXIT approach
to codes defined by protographs. This extension is a multi-
dimensional numerical technique and as such does not have
a two-dimensional EXIT chart representation of the itera-
tive decoding procedure. Still, the technique yields decoding
thresholds for LDPC code ensembles specified by protographs.
This multi-dimensional technique is facilitated by the rela-
tively small size of protographs and permits the analysis of
protograph code ensembles characterized by the presence of
critical node types, i.e., node types which can lead to failed

EXIT-based convergence of code ensembles. Examples of
critical node types are degree-1 variable nodes and punctured
variable nodes.

A code ensemble specified by a protograph is a refinement
(sub-ensemble) of a code ensemble specified simply by the
protograph’s (hence, LDPC code’s) degree distributions. To
demonstrate this, we introduce the adjacency matrix B = [bji]
for a protograph, also called a base matrix [25], where bji is
the number of edges between CN j and VN i. As an example,
for the protograph at the top of Fig. 4,

B =
(

2 1 1
1 1 1

)
.

Consider also an alternative protograph and base matrix spec-
ified by

B′ =
(

2 0 2
1 2 0

)
.

The degree distributions of both of these protographs are
identical and are easily seen to be

λ(z) =
4
7
z +

3
7
z2

ρ(z) =
3
7
z2 +

4
7
z3.

However, the ensemble corresponding to B has a threshold
of Eb/N0 = 0.78 dB and that corresponding to B′ has a
threshold at 0.83 dB. (For reference, density evolution [16]
applied to the above degree distributions gives 0.817 dB.)

As another example, let

B =

1 2 1 1 0
2 1 1 1 0
1 2 0 0 1

and

B′ =

1 3 1 0 0
2 1 1 1 0
1 1 0 1 1

 ,

noting that they have identical degree distributions. We also
puncture the bits corresponding to the second column in
each base matrix. Using the multidimensional EXIT algorithm
described below, the thresholds for B and B′ in this case were
computed to be 0.48 dB and +∞, respectively.

Thus, standard EXIT analysis based on degree distributions
is inadequate for protograph-based LDPC code design. In fact,
the presence of degree-1 variable nodes as in our second
example implies that there is a term in the summation in (9)
of the form

λ1IE,V (1, IA,V) = J (σch) .

Since J (σch) is always less than one for 0 < σch < ∞
and since

∑dv

d=1 λd = 1, the summation in (9), that is, IE,V ,
will be strictly less than one. Again, standard EXIT analysis
implies failed convergence for codes with the same degree
distributions as B and B′. This is in contrast with the fact
that codes in the B ensemble do converge when the SNR
exceeds the threshold of 0.48 dB.

In the following, a multidimensional EXIT technique
[28][29] will be presented which overcomes this issue and
allows the determination of the decoding threshold for codes
based on protographs (possibly with punctured nodes).

B. Multidimensional EXIT Analysis

The algorithm presented in [28][29] eliminates the average
in (9) and considers the propagation of the messages on a
decoding tree which is specified by the protograph of the
ensemble. Let B = [bji] be the M × N base matrix for the
protograph under analysis. Let Ii→j

E,V be the extrinsic mutual
information between code bits associated with “type i” VNs
and the LLRs Li→j sent from these VNs to “type j” CNs.
Similarly, let Ij→i

E,C be the extrinsic mutual information between
code bits associated with “type i” VNs and the LLRs Lj→i

sent from “type j” CNs to these VNs. Then, because Ij→i
E,C

acts as a priori mutual information in the calculation of Ii→j
E,V ,

following (7) we have (given an edge exists between CN j
and VN i, i.e., given bji 6= 0)

Ii→j
E,V = J

√√√√
M∑

c=1

(bci − δcj)
(
J−1(Ic→i

E,C)
)2

+ σ2
ch,i

 ,

(11)
where δcj = 1 when c = j and δcj = 0 when c 6= j. σ2

ch,i is
set to zero if code bit i is punctured. Similarly, because Ii→j

E,V

acts as a priori mutual information in the calculation of Ij→i
E,C ,

following (8) we have (when bji 6= 0)

Ij→i
E,C = 1− J

√√√√
N∑

v=1

(bjv − δci)
(
J−1(1− Iv→j

E,V)
)2

 .

(12)
The multidimensional EXIT algorithm can now be presented

as follows.
1) Initialization. Select Eb/N0. Initialize a vector σch =

(σch,0, . . . , σch,N−1) such that

σch,i = 8R

(
Eb

N0

)

i

where (Eb/N0)i equals zero when xi is punctured and
equals the selected Eb/N0 otherwise.

2) VN to CN. For i = 0, . . . , N − 1 and j = 0, . . . ,M − 1,
compute (11).

3) CN to VN. For i = 0, . . . , N − 1 and j = 0, . . . ,M − 1,
compute (12).

4) Cumulative mutual information. For i = 0, . . . , N − 1,
compute

Ii
CMI = J

√√√√
M∑

c=1

(
J−1(Ic→i

E,C)
)2

+ σ2
ch,i

 .

5) If Ii
CMI = 1 (up to desired precision) for all i, then

stop; otherwise, go to step 2.
This algorithm converges only when the selected Eb/N0

is above the threshold. Thus, the threshold is the lowest

value of Eb/N0 for which all Ii
CMI converge to 1. As

shown in [28][29], the thresholds computed by this algorithm
are typically within 0.05 dB of those computed by density
evolution. Recalling that many classes of multi-edge type
(MET) [26] LDPC codes rely on simple protographs, the
above algorithm provides an accurate threshold estimation for
MET ensembles, with a remarkable reduction in computational
complexity relative to the density evolution analysis proposed
in [26].

IV. ACCUMULATOR-BASED CODE DESIGNS

A. Repeat-Accumulate Codes

This section provides an overview of the design of LDPC
codes that can be considered to be a concatenation of a set
of repetition codes with one or more accumulators, through
an interleaver. The first example of accumulator-based codes
were the so-called repeat-accumulate (RA) codes [30]. Despite
their simple structure, they were shown to provide good
performance and, more importantly, they paved a path toward
the design of efficiently encodable LDPC codes. RA codes
and other accumulator-based codes are LDPC codes that can
be decoded as serial turbo codes or as LDPC codes.

An RA code consists of a serial concatenation of a single
rate-1/q repetition code through an interleaver with an accu-
mulator having transfer function 1/(1 ⊕ D). RA codes can
be either non-systematic or systematic. In the first case, the
accumulator output, p, is the codeword and the code rate is
1/q. For systematic RA codes, the information word, u, is
combined with p to yield the codeword c = [u p] and so
that the code rate is 1/(1 + q). RA codes perform reasonably
well on the AWGN channel, and they tend to approach the
channel capacity as their rate R → 0 and their block length
n →∞. Their main limitations are the code rate, which cannot
be higher than 1/2, and the performance of short and medium-
length RA codes. The following subsections will present a
brief overview of the major enhancements to RA codes which
permit operation closer to capacity for both high and low rates.

B. Irregular Repeat-Accumulate codes

The systematic irregular repeat-accumulate (IRA) codes
generalize the systematic RA codes in that the repetition rate
may differ across the k information bits and that a variable
number of bits in the repeated word are combined (modulo
2) prior to sending them through the accumulator. Irregular
repeat-accumulate [31] codes provide several advantages over
RA codes. They allowing both flexibility in the choice of the
repetition rate for each information bit so that high rate codes
may be designed and capacity is more easily approached.

The Tanner graph for IRA codes is presented in Fig. 5(a)
and the encoder structure (to be discussed further later) is
depicted in Fig. 5(b). The variable repetition rate is accounted
for in the graph by letting db,i vary with i. The accumulator
is represented by the right-most part of the graph, where the
dashed edge is added to include the possibility of a tail-biting
trellis. Also, we see that dc,j interleaver output bits are added

Fig. 5. Tanner graph (a) and encoder (b) for irregular repeat-accumulate
codes.

(modulo 2) to produce the j-th accumulator input. Fig. 5 also
includes the representation for RA codes. As indicated in the
table in the figure, for an RA code, each information bit node
connects to exactly q check nodes (db,i = q) and each check
node connects to exactly one information bit node (dc,j = 1).
We remark that {db,i} and {dc,j} can be related to our earlier
notation, {dv(i)} and {dc(j)}, as follows: dv(i) = db,i for
i = 1, ..., k, dv(i) = 2 for i = k + 1, ..., n, and dc(j) =
dc,j + 2 for j = 1, ..., m.

To determine the code rate for an IRA code, define q to be
the average repetition rate of the information bits

q =
1
k

k−1∑

i=0

db,i,

and ā as the average of the degrees {dc,j},

ā =
1
m

m−1∑

j=0

dc,j .

Then the code rate for systematic IRA codes is

R =
1

1 + q/ā
.

For non-systematic IRA codes, R = ā/q.
The parity-check matrix for systematic RA and IRA codes

has the form

H = [Hu Hp], (13)

where Hp is an m×m ”dual-diagonal” square matrix,

Hp =

1 (1)
1 1

.
1 1

1 1

, (14)

where the upper-right 1 is included for tailing-biting ac-
cumulators. For RA codes, Hu is a regular matrix having
column weight q and row weight 1. For IRA codes, Hu has
column weights {db,i} and row weights {dc,j}. The encoder
of Fig. 5(b) is obtained by noting that the generator matrix
corresponding to H in (13) is G =

[
I HT

u H−T
p

]
and writing

Hu as ΠT AT , where Π is a permutation matrix. Note also
that H−T

p performs the same computation as 1/(1⊕D) (and
H−T

p exists only when the ”tail-biting 1” is absent). Two
encoding alternatives exist: (1) When the accumulator is not
tail-biting, one may use H to encode since one may solve
for the parity bits sequentially from the equation cHT = 0
starting with the top row of H and moving on downward.
(2) As discussed in the next section, quasi-cyclic IRA code
designs are possible, in which case the techniques of [13] may
be used.

We remark that the choice of the degree distributions of
the variable nodes for an IRA code are constrained by the
presence of (at least) n − k − 1 degree-2 variable nodes.
Although such a constraint ostensibly limits the code designer,
for rates R ≥ 1/2, EXIT analysis leads to optimized degree
distributions having approximately n−k−1 degree-2 variable
nodes. Moreover, when the number of degree-2 variable nodes
is exactly n−k−1, the edge connections involving the degree-
2 variable nodes induced by the IRA structure are optimal in
the sense of avoiding low weight codewords [32][33].

IRA codes and a generalization will be discussed in the
next two sections. Additional information may be found in
the following references: [31][33][34][24][38][39] [40][41].

C. Structured IRA and IRAA Codes

Given the code rate, length, and degree distributions, an
IRA code is defined entirely by the matrix Hu (equivalently,
by A and Π). While a random-like Hu would generally
give good performance, it is problematic for both encoder
and decoder implementations. For, in this case, a substantial
amount of memory would be required to store the connection
information implicit in Hu. In addition, although standard
message-passing decoding algorithms for LDPC codes are
inherently parallel, the physical interconnections required to
realize a code’s bipartite graph becomes an implementation
bottleneck and prohibits a fully parallel decoder [43]. Using a
structured Hu matrix mitigates these problems.

Tanner [24] was the first to consider structured RA codes,
more specifically, quasi-cyclic RA codes, which require tailbit-
ing in the accumulator. Simulation results in [24] demonstrate
that the QC-RA codes compete well with random-like RA
codes and surpass their performance at high SNR values.
Similar ideas were applied to IRA codes in [43][44][34].

In [34], IRA codes with quasi-cyclic structure are called
structured IRA (S-IRA) codes.

Toward the goal of attaining structure in H, one cannot
simply choose Hu to be an array of circulant permutation
matrices. For, it is easy to show that doing so will produce a
poor LDPC code in the sense of minimum distance (consider
weight-2 encoder inputs with adjacent ones). Instead, the
following strategy is proposed in [34]. Let P be an L×J array
of Q×Q circulant permutation matrices (for some convenient
Q). (Conditions for designing P to avoid 4-cycles, etc., are
described in [34].) Then set AT = P so that Hu = ΠT P
and

Ha =
[
ΠT P Hp

]
, (15)

where Hp represents the tailbiting accumulator. Note that m =
L×Q and k = J ×Q.

We now choose Π to be a standard deterministic ”row-
column” interleaver so that row lQ + q in P becomes row
qL + l in ΠT P, for all 0 ≤ l < L and 0 ≤ q < Q. Next, we
permute the rows of Ha by Π−T to obtain

Hb = Π−T H = [P ΠHp], (16)

where we have used the fact that Π−T = Π. Finally, we
permute only the columns corresponding to the parity part of
Hb, which gives

HS-IRA = [P ΠHpΠT]. (17)

It is easily shown that the parity part of HS-IRA, that is,
ΠHpΠT , is exactly in QC form,

I0 I1

I0 I0

.
I0 I0

I0 I0

, (18)

where I0 is the Q×Q identity matrix and I1 is obtained from
I0 by cyclically shifting all of its rows leftward. Therefore,
HS-IRA corresponds to a quasi-cyclic IRA code since P is also
an array of Q×Q circulant permutation matrices. Observe that,
except for a re-ordering of the parity bits, HS-IRA describes the
same code as Ha and Hb.

As described in [34], in addition to simplifying encoder
and decoder implementations, the QC structure simplifies the
code design process. Simulation results for the example codes,
which are produced by the design algorithms proposed in
[34][35][36][37], show that the S-IRA codes perform as well
as IRA codes in the waterfall region and possess very low
error floors. As an example, Fig. 6 depicts the performance of
a rate-1/2 (2044, 1024) S-IRA code simulated in software and
hardware.1 It is seen that the floors, both bit error rate (BER)
and frame error rate (FER), are quite low (it can be lower or
higher depending on the decoder implementation). Lastly, S-
IRA codes are suitable for rate-compatible code family design
[34].

1Acknowledgment to C. Jones of JPL for simulating this code for us on an
FPGA decoder.

Fig. 6. Performance of a (2044,1024) S-IRA code on the BI-AWGNC.
HW=hardware simulator. SW=software simulator.

Fig. 7. IRAA encoder.

We now consider irregular repeat-accumulate-accumulate
(IRAA) codes which are obtained by concatenating the parity
arm of the IRA encoder of Fig. 5(b) with another accumulator,
through a permuter, as shown in Fig. 7. (ARAA codes were
considered in [49].) The IRAA codeword can be either c =
[u p] or c = [u b p], depending on whether the intermediate
parity bits b are punctured or not. The parity-check matrix of
the general IRAA code corresponding to Fig. 7 is

HIRAA =
[

Hu Hp 0
0 ΠT

1 Hp

]
, (19)

where Π1 is the interleaver between the two accumulators.
When the parity bits b are not transmitted, they are considered
to be punctured, that is, the log-likelihood ratios for these bits
are initialized by zeros before decoding. When an IRAA code
is structured, we use the notation S-IRAA.

Example 2: We compare the performance of rate-1/2 (2048,
1024) S-IRA and S-IRAA codes in this example. For the S-
IRA code, db,i = 5 for all i and for the S-IRAA code, db,i = 3
for all i, and the intermediate parity vector b is not transmitted
to maintain the code rate at 1/2. The protographs for these
codes are given in Fig. 8. Because decoder complexity is
proportional the number of edges in a code’s parity-check
matrix, the complexity of the S-IRAA decoder is slightly
greater than the complexity of the S-IRA decoder, even though
the column weight in Hu is 3 for the former versus 5 for the

Fig. 8. Rate-1/2 SIRA and SIRAA protographs for the codes in Fig. 9.
The shaded node in the SIRAA protograph represents punctured bits. SIRA:
(Eb/N0)thres = 0.97 dB. SIRAA: (Eb/N0)thres = 1.1 dB.

Fig. 9. Performance comparison between rate-1/2 S-IRA and S-IRAA codes
on the BI-AWGNC, n = 2048 and k = 1024.

latter. We observe in Fig. 9 that, for both codes, there are no
error floors in the BER curves down to BER = 5 × 10−8

and in the FER curves down to FER = 10−6. While the
S-IRAA code is 0.2 dB inferior to the S-IRA code in the
waterfall region, we conjecture that it has a lower floor (which
is difficult to measure), which would be due to the second
accumulator whose function is to increase minimum distance.
¤

Example 3: This second example is a comparison of rate-
1/3 (3072,1024) S-IRA and S-IRAA codes, with db,i = 4
for the S-IRA code and db,i = 3 for the S-IRAA code. The
protographs for these codes are given in Fig. 10. In this case,
b is part of the transmitted S-IRAA codeword and the decoder
complexities are the same. We see in Fig. 11 that, in the low
SNR region, the performance of the S-IRA code is 0.4 dB
better than the S-IRAA code. However, for high SNRs, the S-
IRAA code will outperform the S-IRA code due to its lower
error floor. ¤

D. Generalized IRA codes

Generalized IRA (G-IRA) codes [38][39] increase the flex-
ibility in choosing degree distributions relative to IRA codes,
allowing, for example, the design of near-regular efficiently

Fig. 10. Rate-1/3 SIRA and SIRAA protographs for the codes in Fig. 11.
SIR: (Eb/N0)thres = 0.40 dB. SIRAA: (Eb/N0)thres = 0.83 dB.

Fig. 11. Performance comparison between rate-1/3 S-IRA and S-IRAA codes
on the BI-AWGNC, n = 3072 and k = 1024.

encodable codes. The encoding algorithms for G-IRA codes
are similar to those of IRA codes. For G-IRA codes, the
accumulator 1/(1⊕D) in Fig. 5(b) is replaced by a generalized
accumulator with transfer function 1/g(D) where g(D) =∑t

j=0 gjD
j and gj ∈ {0, 1}, except g0 = 1. The systematic

encoder therefore has the same generator matrix format, G =[
I HT

u H−T
p

]
, but now

Hp =

1
g1 1

g2 g1
. . .

... g2
.

gt

...
.

gt
.
.

gt . . . g2 g1 1

.

Further, the parity-check matrix format is unchanged, H =
[Hu Hp].

To design a G-IRA code, one must choose g(D) so that the
bipartite graph for Hp contains no length-4 cycles [38]. Once
g(D) has been chosen, H can be completed by constructing
the sub-matrix Hu, according to some prescribed degree

Fig. 12. Generic bipartite graph for ARA codes.

distribution, again avoiding short cycles, this time in all of
H.

G-IRA codes are highly reconfigurable in the sense that an
encoder and decoder can be designed for a set of different
polynomials g(D). This could be useful when faced with
different channels conditions.

E. Accumulate-Repeat-Accumulate Codes

For accumulate-repeat-accumulate (ARA) codes, introduced
in [45], an accumulator is added to precode a subset of the
information bits of an IRA code. The primary role of this
second accumulator is to improved the decoding threshold of
a code, that is, to shift the BER waterfall region leftward. ARA
codes are a subclass of LDPC codes and Fig. 12 presents a
generic ARA Tanner graph in which punctured variable nodes
are highlighted. The sparseness of the ARA graph is achieved
at the price of these punctured variable nodes which act as
auxiliary nodes that enlarge the H used by the decoder. The
iterative graph-based ARA decoder thus has to deal with a
redundant representation of the code, implying a larger H
matrix than the nominal (n − k) × n. This issue, together
with the presence of a large number of degree-1 and degree-2
variable nodes, results in slow decoding convergence.

The ARA codes presented in [45] relies on very simple
protographs. Several modified ARA protographs have been
introduced in [46][47], leading to ARA and ARA-like code
families with excellent performance in both the waterfall and
floor regions of the codes’ performance curves. The protograph
of a rate-1/2 ARA code ensemble with repetition rate 4,
denoted AR4A, is depicted in Fig. 13(a). The dark circle
corresponds to a state-variable node, and it is associated with
the precoded fraction of the information bits. As emphasized
in the figure, such a protograph is the serial concatenation
of an accumulator protograph and an IRA protograph. Half
(node 2) of the information bits are sent directly to the IRA
encoder, while the other half (node 1) is first precoded by the

Fig. 13. AR4A protographs in (a) serial-concatenated form and (b) parallel-
concatenated form. (Eb/N0)thres = 0.55 dB.

outer accumulator. This encoding procedure corresponds to a
systematic code.

A different code structure is represented by the protograph
in Fig. 13(b), which has a parallel-concatenated form. In this
case, half (node 2) of the information bits are encoded by the
IRA encoder and the other half (node 3) are encoded by both
the IRA encoder and a (3, 2) single-parity-check encoder. The
node-3 information bits (corresponding to the dark circle in
the protograph) are punctured and so codes corresponding to
this protograph are non-systematic. While the codes (actually,
code ensembles) specified by the protographs in Fig. 13(a)
are the same in the sense that the same set of codewords are
implied, the u → c mappings are different. The advantage
of the non-systematic protograph is that, although the node-3
information bits in Fig. 13(b) are punctured, the node degree is
6, in contrast with the node-1 information bits in Fig. 13(a),
in which the node degree is only 1. Given that ARA code
decoders converge so slowly, the faster-converging degree-6
node is to be preferred over the slowly converging degree-1
node.

To demonstrate this, we designed a (2048,1024) QC AR4A
code whose H matrix is depicted in Fig. 14. The first group
of 512 columns (of weight 6) correspond to node type 3 (Fig.
13) whose bits are punctured, and the subsequent four groups
of 512 columns correspond, respectively, to node types 2, 4,
5, and 1. The performance of the code, with a maximum of
Imax = 50 iterations is shown in Fig. 15. We note that the
(2048,1024) AR4A code reported in [47] achieves BER =
10−7 at Eb/N0 = 2 dB with 200 iterations, whereas in the
simulation here, BER = 10−7 is achieved at Eb/N0 = 2.2 dB
with 50 iterations. In Fig. 16, we present the BER performance

Fig. 14. H matrix for the (2048,1024) AR4A code.

Fig. 15. BER and FER performance for an AR4A code.

at Eb/N0 = 2.25 dB for the five node types that appear in
Fig. 13 for Imax ranging from 5 to 20. With 20 iterations,
we collected 400 error events, while with fewer iterations,
the numbers of collected error events were larger. From the
figure, we see that the high-degree variable nodes (node types
2 and 3) converge the fastest. We note also that, while type 3
nodes have degree 6 and type 2 nodes have degree 4, type 3
nodes initially converge slower because the bits corresponding
to those nodes are punctured so that the decoder receives no
channel LLRs for those bits. However, by 20 iterations, the
type 3 bits become more reliable than the type 2 bits.

F. Accumulator-Based Codes in Standards

IRA codes and IRA-influenced codes are being considered
for several communication standards. The ETSI DVB S2 [48]
standard for digital video broadcast specifies two IRA code
families with block lengths 64800 and 16200. The code rates
supported by this standard range from 1/4 to 9/10, and a wide
range of spectral efficiencies is achieved by coupling these

Fig. 16. Node convergence analysis for a (2048,1024) AR4A code at
Eb/N0 = 2.25 dB.

LDPC codes with QPSK, 8-PSK, 16-APSK, and 32-APSK
modulation formats. A further level of protection is afforded
by an outer BCH code.

The IEEE standards bodies are also considering IRA-
influenced QC LDPC codes for 802.11n (wireless local-area
networks) and 802.16e (wireless metropolitan-area networks).
Rather than employing a tailing-biting accumulator (which
avoids weight-one columns), these standards have replaced the
last block-column in (18) with a weight-three block-column
and moved it to the first column, as displayed below. Encoding
is facilitated by this matrix since the sum of all block-rows
gives the block-row

(
I0 0 · · · 0

)
, so that encoding is

initialized by summing all of the block-rows of H and solving
for first Q parity bits using the resulting block-row.

I0 I0

I0 I0

I0
. . .

I0
.

. . . I0

I0 I0

I0 I0

ARA codes are being considered by the Consultative Com-
mittee for Space Data Systems (CCSDS) for high data-rate
bandwidth-efficient space links. Very low floors are required
for this applications because the scientific data (e.g., images)
being transmitted from space to the ground are typically in a
compressed format.

V. LDPC CODES BASED ON FINITE GEOMETRIES

In [50], it is shown that structured LDPC codes can be
constructed based on the lines and points of geometries over
finite fields, namely Euclidean and projective geometries.

These codes are known as finite-geometry (FG) LDPC codes.
Among the FG-LDPC codes, an important subclass is the
subclass of cyclic FG-LDPC codes. A cyclic LDPC code
is completely characterized by its generator polynomial and
its encoding can be implemented with a shift-register with
feedback connections based on its generator polynomial [7].
The systematic-form generator matrix of a cyclic LDPC code
can be constructed easily based on its generator polynomial
[7]. Another important subclass of FG-LDPC codes is the
subclass of quasi-cyclic FG-LDPC codes. As pointed out
earlier, QC-LDPC codes can also be encoded easily with
simple shift-registers. In this section, we give a brief survey
of constructions of cyclic and quasi-cyclic FG-LDPC codes.

A. Cyclic Euclidean Geometry LDPC Codes

The m-dimensional Euclidean geometry over the finite field
GF(q) [7][51][52], denoted by EG(m, q), consists of qm points,
and each point is represented by an m-tuple over GF(q). The
point represented by the all-zero m-tuple 0 = (0, 0, . . . , 0),
is called the origin of the geometry. A line in EG(m, q) is
either a one-dimensional subspace of the vector space of all
the m-tuples over GF(q), or a coset of it. There are qm−1(qm−
1)/(q − 1) lines in total. Each line consists of q points. Two
points are connected by one and only one line. If a is a point
on the line L, we say that the line L passes through the point
a. Two lines either do not have any point in common or they
have one and only one point in common. If two lines have
a common point a, we say that they intersect at a. For any
point a in EG(m, q), there are exactly (qm − 1)/(q− 1) lines
passing through (or intersecting at) a. In particular, if a is not
the origin, then it lies on q(qm−1−1)/(q−1) lines not passing
through the origin. Furthermore, there are in total (qm−1 −
1)(qm − 1)/(q − 1) lines not passing through the origin.

The extension field GF(qm) of GF(q) is a realization of
EG(m, q) [7][51]. Let α be a primitive element of GF(qm).
Then, the elements 0, 1, α, α2, . . . , αqm−2 of GF(qm) repre-
sent the qm points of EG(m, q), and 0 represents the origin of
the geometry. A line is a set of points of the form {a + βa′ :
β ∈ GF(q)}, where a and a′ are linearly independent over
GF(q).

Let nEG = qm − 1 be the number of non-origin points in
the geometry. Let L be a line not passing through the origin.
Define the nEG-tuple over GF(2),

vL = (v0, v1, . . . , vnEG−2),

whose components correspond to the qm−1 non-origin points,
α0, α, · · · , αqm−2, of EG(m, q), where vi = 1 if the point
αi lies on L, otherwise vi = 0. The vector vL is called
the incidence vector of L. Clearly, αL is also a line in the
geometry whose incidence vector vαL is the right cyclic-shift
of vL. The lines L, αL, · · · , αnEG−1L are all different [7]
and they do not pass through the origin. Since αqm−1 = 1,
αnEGL = L. These nEG lines form a cyclic class. The
(qm−1 − 1)(qm − 1)/(q − 1) lines in EG(m, q) not passing
through the origin can be partitioned into K = (qm−1 −

1)/(q − 1) cyclic classes, denoted Q1,Q2, · · · ,QK where
Qi = {Li, αLi, · · · , αnEG−1Li} with 1 ≤ i ≤ K. For each
cyclic class Qi, we form an nEG × nEG matrix HEG,i over
GF(2) with the incidence vectors Li, αLi, · · · , αnEG−1Li as
rows. HEG,i is a circulant matrix with column and row weights
equal to q. For 1 ≤ k ≤ K, let

HEG(m,q),k =

HEG,1

HEG,2

...
HEG,k

 . (20)

Then HEG(m,q),k consists of a column of k circulants of the
same size nEG×nEG, and it has column and row weights, kq
and q, respectively. Since no two lines in EG(m, q) have more
than one point in common, it follows that no two rows or two
columns in HEG(m,q),k have more than a single 1-element in
common. We say that HEG(m,q),k satisfies the RC-constraint.
The null space of HEG(m,q),k gives a cyclic EG-LDPC code
of length nEG = qm−1 and minimum distance at least kq+1
[50][7], whose Tanner graph has a girth of at least 6.

Of particular interest is the two-dimensional Euclidean
geometry, EG(2, q), which is also called an affine plane over
GF(q) [52]. This geometry has q2 points and q(q + 1) lines,
and q2 − 1 of them do not pass through the origin. Each line
has q points and each point lies on q+1 lines. Each nonorigin
point lies on q lines that do not pass through the origin. If
L is a line in EG(2, q) not passing through the origin, then
L, αL, . . . , αq2−2L, where α is a primitive element in GF(q2),
are all the lines in the geometry not passing through the origin.
Hence, all the lines in EG(2, q) not passing through the origin
form a single cyclic class Q (i.e., K = 1). Let HEG(2,q) denote
the (q2−1)×(q2−1) circulant formed by the incidence vectors
of lines in Q. It is a (q2−1)×(q2−1) matrix over GF(2) with
both column and row weights equal to q. The null space of
HEG(2,q) gives a cyclic EG-LDPC code of length q2 − 1 and
minimum distance at least q + 1. For q = 2s, the parameters
of the code with parity-check matrix HEG(2,q) are as follows
[7]:

Length n = 22s − 1,
Number of parity bits n− k = 3s − 1,
Dimension k = 22s − 3s,
Minimum distance dmin ≥ 2s + 1,
Size of the LDPC matrix (22s − 1)× (22s − 1),
Row weight 2s,
Column weight 2s.

Generators polynomials for these codes can be readily ob-
tained from [7].

Example 4: The cyclic LDPC code constructed based
on the two-dimensional Euclidean geometry EG(2, 26) over
GF(26) is a (4095, 3367) LDPC code with rate 0.822 and
minimum distance 65. The performance of this code with
iterative decoding using the SPA is shown in Fig. 17. At a
BER of 10−6, it performs 1.65 dB from the Shannon limit.

Fig. 17. Performance of the binary (4095,3367) cyclic EG-LDPC code given
in Example 4 over the BI-AWGNC.

Since it has a very large minimum distance, it has a very low
error-floor. ¤

B. Cyclic Projective Geometry LDPC Codes

The m-dimensional projective geometry over GF(q), de-
noted by PG(m, q), consists of nPG = (qm+1 − 1)/(q − 1)
points. Each point is represented by a non-zero (m + 1)-tuple
a over GF(q) such that all q−1 non-zero multiples βa, where
β is a non-zero element in GF(q), represent the same point. A
line in PG(m, q) consists of all points of the form β1a1+β2a2,
where a1 and a2 are two (m + 1)-tuples that are linearly
independent over GF(q) and β1 and β2 are elements in GF(q),
with β1 and β2 not simultaneously equal to zero. There are
(qm+1 − 1)(qm − 1)/(q2 − 1)(q − 1) lines in PG(m, q) and
each line consists of q+1 points. Two points are connected by
one and only one line and each point lies on (qm−1)/(q−1)
lines.

The extension field GF(qm+1) of GF(q) is a realization of
PG(m, q) [7]. Let α be a primitive element of GF(qm+1). A
point in PG(m, q) is represented by a non-zero element αi.
Every nonzero element in the base field GF(q) can be written
as αl for some l which is divisible by (qm+1 − 1)/(q − 1).
Hence, the elements αi and αj represent the same point in
PG(m, q) if and only if i ≡ j (mod (qm+1 − 1)/(q − 1)).
Therefore, we can take the elements 1, α, . . . , αnPG−1 to
represent all the points in PG(m, q).

Let L be a line in PG(m, q). Define the nPG-tuple over
GF(2) vL = (v0, v1, . . . , vnPG−1) whose components corre-
spond to the nPG = (qm+1 − 1)/(q − 1) points of PG(m, q),
where vi = 1 if the point represented by αi lies on L,
otherwise vi = 0. The vector vL is called the incidence
vector of L. Clearly, αL is also a line in the geometry whose
incidence vector vαL is the cyclic-shift of vL.

For even m, the lines in PG(m, q) can be partitioned into
K1 = (qm − 1)/(q2 − 1) cyclic classes Q1,Q2, · · · ,QK1 ,

each class consisting of nPG lines. For each cyclic class Qi,
we can form an nPG×nPG circulant HPG,i with both column
and row weights equal to q + 1. For 1 ≤ k ≤ K1, form the
following matrix:

H(1)
PG(m,q),k =

HPG,1

HPG,2

...
HPG,k

 , (21)

which has column and row weights k(q + 1) and q + 1,
respectively. The null space of H(1)

PG(m,q),k gives a cyclic PG-
LDPC code of length nPG = (qm+1−1)/(q−1) and minimum
distance at least k(q + 1) + 1 whose Tanner graph has a
girth of at least 6. For odd m, the lines in PG(m, q) can be
partitioned into K2 + 1 cyclic classes, Q0,Q1,Q2, · · · ,QK2 ,
where K2 = q(qm−1−1)/(q2−1). Except for Q0, each cyclic
class consists of nPG lines. The cyclic class Q0 consists of
only λ = (qm+1− 1)/(q2− 1) lines. For each cyclic class Qi

with i 6= 0, we can form a nPG×nPG circulant HPG,i with the
incidence vectors of the lines in Qi as rows. For 1 ≤ k ≤ K2,
we can form a matrix H(2)

PG(m,q),k of the form given by (21).

The null space of H(2)
PG(m,q),k gives a cyclic PG-LDPC code

of length nPG and minimum distance at least k(q + 1) + 1
whose Tanner graph has a girth of at least 6.

As in the case of Euclidean geometries, the two-dimensional
projective geometry, PG(2, q), which is also called a projective
plane over GF(q) [52], is of particular interest. This geometry
has q2 + q + 1 points and q2 + q + 1 lines. Each line has
q + 1 points and each point lies on q + 1 lines. If L is a line
in PG(2, q), then L, αL, . . . , αq2+qL, where α is a primitive
element in GF(q2), are all the lines in the geometry. Hence,
all the lines in PG(2, q) form a single cyclic class Q (i.e.,
K1 = 1). Let HPG(2,q) denote the nPG×nPG circulant formed
by the incidence vectors of the lines in Q. It is a (q2 + q +
1) × (q2 + q + 1) matrix over GF(2) with both column and
row weights equal to q + 1. The null space of HPG(2,q) gives
a cyclic PG-LDPC code of length q2 + q + 1 and minimum
distance at least q + 2. For q = 2s, the parameters of the
cyclic PG-LDPC code given by the null space of HPG(2,q)

are as follows [7]:

Length n = 22s + 2s + 1,
Number of parity bits n− k = 3s + 1,
Dimension k = 22s + 2s − 3s,
Minimum distance dmin ≥ 2s + 2,
Size of the LDPC matrix (22s + 2s + 1)× (22s + 2s + 1),
Row weight 2s + 1,
Column weight 2s + 1.

Generators polynomials for these codes can also be readily
obtained from [7].

Fig. 18. Performance of the binary (3510,3109) quasi-cyclic PG-LDPC code
given in Example 5 over the BI-AWGNC.

C. Quasi-Cyclic Finite Geometry LDPC Codes

Let REG(m,q),k be the transpose of the parity-check matrix
HEG(m,q),k of a cyclic EG-LDPC code given by (20), i.e.,

REG(m,q),k , HT
EG(m,q),k = [HT

1 HT
2 · · ·HT

k], (22)

which consists of a row of k circulants of size nEG × nEG.
It is a (qm − 1) × k(qm − 1) matrix with column and row
weights q and kq, respectively. The null space of REG(m,q),k

gives a quasi-cyclic EG-LDPC code of length k(qm − 1) and
minimum distance at least q + 1 whose Tanner graph has a
girth of at least 6.

Similarly, let R(e)
PG(m,q),k be the transpose of H(e)

PG(m,q),k

with e = 1 or 2. Then the null space of H(e)
PG(m,q),k gives a

quasi-cyclic PG-LDPC code of length k(qm+1 − 1)/(q − 1)
and minimum distance at least q + 2.

Example 5: Consider the 3-dimensional projective geome-
tries PG(3, 23) over GF(23). This geometry consists of 585
points and 4745 lines, each line consists of 9 points. The
lines in this geometry can be partitioned into 9 cyclic classes,
Q0,Q1, · · · ,Q8, where Q0 consists of 65 lines and each of
the other 8 cyclic classes consists of 585 lines. For each Qi

with 1 ≤ i ≤ 8, we can form a 585 × 585 circulant HPG,i

over GF(2) with the incidence vectors in Qi as the rows. Set
k = 6. Form the following 585× 3510 matrix: R(2)

PG(3,23),6 =
[HT

PG,1 HT
PG,2 · · ·HT

PG,6], which has column and row weights
9 and 54, respectively. The null space of this matrix gives
a (3510, 3109) quasi-cyclic PG-LDPC code with rate 0.8858
and minimum distance at least 10. The performance of this
code decoded with iterative decoding using the SPA is shown
in Fig. 18. At a BER of 10−6, it performs 1.3 dB from the
Shannon limit. ¤

Other LDPC codes constructed based on finite geometries
can be found in [53][54][55][56][57]. Finite geometry LDPC
codes can also effectively decoded with one-step majority-

Fig. 19. Performance of the binary (4095,3367) EG-LDPC code given in
Example 4 with various decoding techniques over the BI-AWGNC.

logic decoding [7], hard-decision bit-flipping (BF) decoding
[1][50][7] and weighted BF decoding [50][58][59][60]. These
decoding methods together with the soft-input and soft-output
(SISO) iterative decoding based on belief propagation offer
various trade-offs between performance and decoding com-
plexity. The one-step majority-logic decoding requires the
least decoding complexity while the (SISO) iterative decoding
based on belief propagation requires the most decoding com-
plexity and the other two decoding methods are in between.
Fig. 19 shows the performances of the (4095,3367) cyclic
EG-LDPC code given in Example 4 with various decoding
methods.

VI. REGULAR RS-BASED LDPC CODES

This section first gives a brief survey of a class of structured
LDPC codes that are constructed from the codewords of
Reed-Solomon (RS) codes with two information symbols.
Then two new classes of Reed-Solomon-based quasi-cyclic
LDPC codes are presented. Experimental results show that
constructed codes perform very well over the AWGN channel
with iterative decoding.

In [61], a class of structured regular LDPC codes was
presented which were constructed from the codewords of
RS codes with two information symbols. These codes are
referred to as RS-based LDPC codes and their parity-check
matrices are arrays of permutation matrices. RS-based LDPC
codes perform well with iterative decoding over the AWGN
channel. Most importantly, they have low error-floors and their
decoding converges very fast. These features are important in
high-speed communication systems where very low error rates
are required, such as the 10G Base-T Ethernet. In this section,
we first give a more general form of the RS-based LDPC codes
presented in [61] and then we present two classes of RS-based
QC LDPC codes.

Let α be a primitive element of the finite field GF(q). Then
the following powers of α, α−∞ , 0, α0 = 1, α, . . . , αq−2,
form the q elements of GF(q) and αq−1 = 1. For i =
−∞, 0, 1, · · · , q − 2, represent each element αi of GF(q) by
a q-tuple over GF(2),

z(αi) = (z−∞, z0, z1, z2, . . . , zq−2), (23)

with components corresponding to the q elements,
α−∞, α0, · · · , αq−2, of GF(q), where the i-th component
zi = 1 and all the other components equal to zero. This
binary q-tuple z(αi) is an unit-vector with one and only one
1-component and is called the location vector of αi. It is
clear that the location vectors of two different elements in
GF(q) have their 1-components at two different locations.
Suppose we form a q × q matrix A over GF(2) with the
location vectors of the q elements of GF(q) as rows arranged
in any order. Then A is a q × q permutation matrix.

Consider an extended (q, 2, q − 1) RS code Cb over GF(q)
[7] of length q with two information symbols and minimum
distance q−1. The nonzero codewords of Cb have two different
weights, q− 1 and q. Because the minimum distance of Cb is
q− 1, two codewords in Cb differ in at least q− 1 places, i.e.,
they have at most one place where they have the same code
symbols. Let v be a nonzero codeword in Cb with weight q.
Then, the set C(0)

b = {cv : c ∈ GF (q)} of q codewords in
Cb of weight q forms a one-dimensional subcode of Cb with
minimum distance q and is a (q, 1, q) extended RS code over
GF(q). Any two codewords in C(0)

b differ at every location.
Partition Cb into q cosets, C(0)

b , C(1)
b , · · · , C(q−1)

b , based on the
subcode C(0)

b . Then two codewords in any coset C(i)
b differ at

every location and two codewords from two different cosets
C(i)

b and C(j)
b with i 6= j differ in at least q − 1 locations.

For 0 ≤ i < q, form a q × q matrix Gi over GF(q) with the
codewords in C(i)

b as rows. Then all the q entries in a column
of Gi are different and they form all the q elements of GF(q).
It follows from the structural properties of the cosets of C(0)

b

that any two rows from any matrix Gi differ at every position
and any two rows from two different matrices Gi and Gj with
i 6= j can have at most one location where they have identical
symbols.

For 0 ≤ i < q, replacing each entry in Gi by its location
vector, we obtain a q×q2 matrix Bi over GF(2) which consists
of a row of q permutation matrices of size q × q,

Bi = [Ai,0 Ai,1 · · · Ai,q], (24)

where Ai,j has the location vectors of the q entries of the
j-th column of Gi as rows. Next, we form the following q×q
array of q × q permutation matrices with B0,B1, · · · ,Bq−1

as submatrices arranged in a column:

Hrs,1 =

B0

B1

...
Bq−1

 (25)

=

A0,0 A0,1 · · · A0,q−1

A1,0 A1,1 · · · A1,q−1

...
...

. . .
...

Aq−1,0 Aq−1,1 · · · Aq−1,q−1

 .(26)

Hrs,1 is a q2 × q2 matrix over GF(2) with both column and
row weights q. For q > 7, each permutation matrix Ai,j is
a sparse matrix and hence Hrs,1 is also a sparse matrix. It
follows from the structural properties of the matrices Gi’s
that no two rows (or two columns) of Hrs,1 can have more
than one 1-component in common. This implies that there are
no four 1-components at the four corners of a rectangle in
Hrs,1, that is, Hrs,1 satisfies the RC-constraint and, hence,
has a girth of at least 6 [50][7].

For any pair of integers, (dv, dc), with 1 ≤ dv, dc ≤ q,
let Hrs,1(dv, dc) be a dv × dc subarray of Hrs,1. Then
Hrs,1(dv, dc) is a dvq × dcq matrix over GF(2) with column
and row weights dv and dc, respectively. It is a (dv, dc)-regular
matrix which also satisfies the RC-constraint. The null space
of Hrs,1(dv, dc) gives a (dv, dc)-regular RS-based LDPC code
Crs,1 of length dcq with rate at least (dc−dv)/dc and minimum
distance at least dv + 1 [50], [7], whose Tanner graph has
a girth of at least 6. Since Hrs,1 consists of an array of
permutation matrices, no odd number of columns of Hrs,1 can
be added to zero. This implies that the RS-based regular LDPC
code Crs,1 has only even-weight codewords. Consequently, its
minimum distance is even, at least dv + 2 for even dv and
dv + 1 for odd dv . The above construction gives a class of
regular LDPC codes whose Tanner graphs have girth at least
6. For each (q, 2, q− 1) extended RS code Cb over GF(q), we
can construct a family of regular RS-based LDPC codes with
various lengths, rates and minimum distances. Cb is referred
to as the base code.

Example 6: Consider the (64, 2, 63) extended RS code Cb

over GF(26). Based on the codewords of this RS code Cb, we
can construct a 64 × 64 array Hrs,1 of 64 × 64 permutation
matrices. Suppose we choose dv = 6 and dc = 32. Take
a 6 × 32 subarray Hrs,1(6, 32) from Hrs,1, say the 6 × 32
subarray at the upper left corner of Hrs,1. Hrs,1(6, 32) is a
384× 2048 matrix over GF(2) with column and row weights
6 and 32, respectively. The null space of this matrix gives
a (2048, 1723) regular RS-based LDPC code with rate 0.841
and minimum distance at least 8. Assume transmission over
the AWGN channel with BPSK signaling. The performance of
this code with iterative decoding using the SPA (50 iterations)
is shown in Fig. 20. At a BER of 10−6, the code performs
1.55 dB from the Shannon limit. The standard code for the
IEEE 802.2 10G Base-T Ethernet is a (2048, 1723) regular
RS-based LDPC code given by the null space of a 6 × 32
subarray of the array Hrs,1 constructed above. ¤

Fig. 20. Performance of the binary (2048,1723) regular RS-based LDPC
code given in Example 6 over the BI-AWGNC.

A. Class-I RS-Based QC-LDPC Codes

RS codes were originally defined in polynomial form in
frequency domain [63]. Using the polynomial form, arrays of
circulant permutation matrices that satisfy the RC-constraint
can be constructed from all the codewords of an RS code over
a prime field GF(p) with two information symbols. Based on
these arrays of circulant permutation matrices, a class of QC-
LDPC codes can be constructed.

Let p be a prime. Consider the prime field GF(p) =
{0, 1, · · · , p−1} under modulo-p addition and multiplication.
Let P = {a(X) = a1X + a0 : a1, a0 ∈ GF (p)} be the set of
p2 polynomials of degree one or less with coefficients from
GF(p). For each polynomial a(X) in P , define the following
p-tuple over GF(p): v = (a(0),a(1), · · · ,a(p − 1)), where
a(j) = a1 · j + a0 with j ∈ GF (p). Then the set of p2 p-
tuples,

Cb = {v = (a(0),a(1), · · · ,a(p− 1)) : a(X) ∈ P}, (27)

gives a (p, 2, p−1) RS code over GF(p) with two information
symbols. The RS code Cb given by (27) is not cyclic.

Consider the subset P0 = {a(X) = a0 : a0 ∈ GF (p)} of
zero-degree polynomials in P . Then the set of p-tuples,

C(0)
b = {(a(0),a(1), · · · ,a(p− 1)) : a(X) ∈ P0}

= {(a0, a0, · · · , a0) : a0 ∈ GF (p)} , (28)

constructed from the zero-degree polynomials in P0 forms
a one-dimensional subcode of Cb and is a (p, 1, p − 1) RS
code over GF (p) with minimum distance p. Partition Cb with
respect to C(0)

b into p cosets, C(0)
b , C(1)

b , · · · , C(p−1)
b , where

C(i)
b = {(a(0), · · · ,a(p−1)) : a(X) = iX+a0, a0 ∈ GF (p)}.

(29)
For 0 ≤ i < p, C(i)

b contains p codewords in Cb of the
following form:

(i · 0 + a0, i · 1 + a0, · · · , i · (p− 1) + a0). (30)

The codeword (i · 0, i · 1, ..., i · (p − 1)) in C(i)
b is the coset

leader.
For 0 ≤ i < p, form a p × p matrix Gi over GF(p) with

the codewords in the i-th coset C(i)
b as rows. For 0 ≤ j <

p, the j-th column of Gi consists of the following entries:
i · j + 0, i · j + 1, · · · , i · j + (p − 1), which form all the p
elements of GF(p). From (28) to (30), we readily see that any
two rows in Gi differ in all p places. Replacing each entry in
Gi by its location vector, we obtain a row of p permutation
matrices of size p× p,

Bi = [Ai,0 Ai,1 · · · Ai,p−1],

where Ai,j has the location vectors of i · j +0, i · j +1, · · · , i ·
j + (p− 1) as the rows,

Ai,j =

z(i · j + 0)
z(i · j + 1)
...
z(i · j + (p− 1))

 . (31)

Under modulo-p addition and multiplication, the location
vector z(i ·j+(k+1)) of the field element i ·j+(k+1) is the
right cyclic-shift (one place to the right) of the location vector
z(i · j + k) of the field element of i · j + k and z(i · j + 0)
is the right cyclic-shift of z(i · j + (p − 1)). Therefore Ai,j

is not just a permutation matrix but also a circulant, called a
circulant permutation matrix. For 0 ≤ i < p, Bi is hence a
row of p circulant permutation matrices of size p× p.

Form the following p×p array of p×p circulant permutation
matrices:

Hrs,2 =

B0

B1

...
Bp−1

 (32)

=

A0,0 A0,1 · · · A0,p−1

A1,0 A1,1 · · · A1,p−1

...
...

. . .
...

Ap−1,0 Ap−1,1 · · · Ap−1,p−1

 .(33)

Hrs,2 is a p2 × p2 matrix over GF(2) with both column and
row weights p. Since the rows of Hrs,2 correspond to the
codewords in the (p, 2, p − 1) RS code Cb over GF(p) given
by (27) and two codewords in Cb can have at most one place
with the same code symbol, no two rows (or two columns)
in Hrs,2 can have more than one 1-component in common.
Hence Hrs,2 satisfies the RC-constraint and its associated
Tanner graph has a girth of at least 6.

For any pair of integers, (dv, dc), with 1 ≤ dv, dc ≤ p, let
Hrs,2(dv, dc) be a dv×dc subarray of Hrs,2. Hrs,2(dv, dc) is
a dvp× dcp matrix over GF(2) with column and row weights
dv and dc, respectively, and it also satisfies the RC-constraint.
The null space of Hrs,2(dv, dc) gives a regular RS-based QC-
LDPC code of length dcp with rate at least (dc − dv)/dc and
minimum distance at least dv + 2 for even dv , and dv + 1
for odd dv , whose Tanner graph has a girth of at least 6.

Fig. 21. Performance of the binary (5256,4895) regular RS-based QC-LPDC
code given in Example 7 over the BI-AWGNC.

The above construction gives a class of QC-LDPC codes with
various lengths, rates and minimum distances.

Example 7: Consider the (73, 2, 72) RS code Cb over the
prime field GF(73) that is constructed based on the set of
polynomials of degree 1 or less over GF(73). Using this base
RS code, we can construct a 73× 73 array Hrs,2 of 73× 73
circulant permutation matrices. Choose dv = 5 and dc = 72.
Take a 5×72 subarray Hrs,2(5, 72) from Hrs,2. Hrs,2(5, 72)
is a 365 × 5256 matrix over GF(2) with column and row
weights 5 and 72, respectively. The null space of Hrs,2(5, 72)
gives a (5256, 4895) regular RS-based QC-LDPC code with
rate 0.9313. The minimum distance of this code is estimated
to be 12 which is twice as large as its lower bound dv +1 = 6.
The performance of this code with iterative decoding using the
SPA with 50 iterations is shown in Fig. 21(a). At a BER of
10−6, it perform 1.15 dB from the Shannon limit. The rate of
decoding convergence of this code is shown in Fig. 22(b). We
see decoding of this code converges very fast. At a BER of
10−6, the gap between 5 and 50 iterations is about 0.2 dB. ¤

B. Class-II RS-Based QC-LDPC Codes

In the previous two subsections, we presented two classes of
RS-based LDPC codes. A code in either class is constructed
based on partitioning all the codewords of an extended RS
code with two information symbols into cosets with respect to
a one-dimensional RS subcode. In this subsection, we present
another class of RS-based LDPC codes. The construction of
this class of LDPC codes is based on only the minimum
weight (m-w) codewords of extended RS codes with two
information symbols. In the construction, the m-w codewords
of an extended RS code with two information symbols are first
partitioned into q uniform classes (defined below), each with
q−1 m-w codewords. Then based on these uniform classes, a
q× q array of (q−1)× (q−1) circulant permutation matrices

Fig. 22. The decoding convergence rate of the (5256,4895) QC-LDPC code
given in Example 7.

is formed. The null space of any subarray of this array of
circulant permutation matrices gives a QC-LDPC code.

Earlier we defined the location vector of an element in
the Galois field GF(q) as a q-tuple with exactly one 1-
component. In our new construction of RS-based LDPC codes,
we introduce a new type of location vector for the elements
of GF(q). Let α be a primitive element in GF(q). For each
nonzero element αi in GF(q) with 0 ≤ i < q − 1, its location
vector z(αi) is defined as a (q − 1)-tuple,

z(αi) = (z0, z1, · · · , zq−1), (34)

with components corresponding to the q−1 nonzero elements,
α0, α, · · · , αq−2, of GF(q), where the i-th component zi = 1
and all the other q− 2 components are zeros. Note that the 0-
element of GF(q) is not included in formation of this location
vector of a nonzero element in GF(q). The location vector of
the 0-element of GF(q) is defined as the all-zero (q−1)-tuple,
(0, 0, ..., 0).

Again consider the (q, 2, q − 1) extended RS code Cb with
two information symbols. It contains q(q − 1) codewords of
weight q− 1. Each of these m-w codewords contains one and
only one 0-component. For i = −∞, 0, 1, · · · , q− 2, let vi =
(v−∞, v0, v1, · · · , vq−2) be a m-w codeword in Cb with i-th
component vi,i = 0. Let Ui = {vi, αvi, · · · , αq−2vi} be the
set of q−1 m-w codewords with the i-th components equal to
zero. Then the q(q−1) m-w codewords can be partitioned into
q subsets, U−∞, U0, U1, · · · , Uq−2, each consisting of q − 1
m-w codewords. These sets are called uniform classes of m-w
codewords in Cb. Two m-w codewords in the same uniform
class Ui differ in all the q−1 nonzero positions and they both
have zeros at the i-th position. Two m-w codewords from two
different classes differ in at least q − 1 positions.

For the i-th uniform class Ui of m-w codewords, we form a
(q−1)×q matrix Gi over GF(q) with the q−1 m-w codewords

in Ui as rows,

Gi =

vi

αvi

...
αq−2vi

 (35)

=

vi,−∞ vi,0 · · · vi,q−2

αvi,−∞ αvi,0 · · · αvi,q−2

· · · · · · . . . · · ·
αq−2vi,−∞ αq−2vi,0 · · · αq−2vi,q−2

 .(36)

The i-th column of Gi is a column of q − 1 zeros and any
other column consists of q − 1 distinct nonzero entries which
are the q − 1 nonzero elements of GF(q). It follows from the
structural properties of the uniform classes of m-w codewords
of the (q, 2, q− 2) extended RS code Cb that any two rows in
the same matrix Gi differ in exactly q−1 places and any two
rows from two different matrices Gi and Gj differ in at least
q − 1 places.

Replacing each entry in Gi by its location vector defined by
(34), we obtain a row of q submatrices of size (q−1)×(q−1),

Bi = [Ai,−∞ Ai,0 · · · Ai,q−2], (37)

where Ai,i is a (q − 1) × (q − 1) zero matrix and all the
other q− 1 submatrices Ai,j’s are (q− 1)× (q− 1) circulant
permutation matrices. Form the following q× q array of (q−
1)× (q − 1) circulant permutation and zero matrices:

Hrs,3 =

B−∞
B0

...
Bq−2

 (38)

=

A−∞,−∞ A−∞,0 · · · A−∞,q−2

A0,−∞ A0,0 · · · A0,q−2

...
...

. . .
...

Aq−2,−∞ Aq−2,0 · · · Aq−2,q−2

 ,(39)

where the submatrices, A−∞,−∞,A0,0, · · · ,Aq−2,q−2, on the
main diagonal of Hrs,3 are zero matrices and the other
submatrices are (q−1)×(q−1) circulant permutation matrices.
Hrs,3 is a q(q − 1) × q(q − 1) matrix over GF(2) with both
column and row weights q − 1. It follows from the structural
properties of matrices Gi’s that no two rows (or two columns)
of Hrs,3 have more than one 1-component in common and
hence it satisfies the RC-constraint. The associated Tanner
graph of Hrs,3 is free of cycles of length 4 and hence has
a girth of at least 6.

For 1 ≤ dv, dc ≤ q, let Hrs,3(dv, dc) be a dv × dc

subarray of Hrs,3. It is a dv(q − 1) × dc(q − 1) matrix over
GF(2). If Hrs,3(dv, dc) does not contain zero matrices on the
main diagonal of Hrs,3, it is a regular matrix with column
and row weights dv and dc, respectively. The null space of
Hrs,3(dv, dc) gives a (dv, dc)-regular RS-based QC-LDPC
code of length dc(q−1) with minimum distance at least dv +2
for even dv and dv + 1 for odd dv , whose Tanner graph has a
girth of at least 6. If Hrs,3(dv, dc) contains some zero matrices

Fig. 23. Performance of the binary (2016,1692) QC-LDPC code given in
Example 8 over the BI-AWGNC.

of Hrs,3, then it has two column weights dv − 1 and dv and
may have two row weights dc − 1 and dc. In this case, the
null space of Hrs,3(dv, dc) gives a near regular QC-LDPC
code. The above construction gives another class of RS-based
QC-LDPC codes.

Example 8: Suppose the (64, 2, 63) extended RS code over
GF(26) is used as the base code Cb for constructing QC-LDPC
codes. Based on the m-w codewords of this base code, we can
construct a 64×64 array Hrs,3 of 63×63 circulant permutation
and zero matrices. Set dv = 6 and dc = 32. Take a 6 × 32
subarray Hrs,3(6, 32) from Hrs,3, avoiding the zero matrices.
Then Hrs,3(6, 32) is a 378 × 2016 matrix over GF(2) with
column and row weights 6 and 32, respectively. The null space
of Hrs,3(6, 32) gives a (2016, 1692) regular RS-based QC-
LDPC code with rate 0.8392. The performance of this code
with iterative decoding using the SPA with 50 iterations is
shown in Fig. 23. At a BER of 10−6, it performs 1.55 dB from
the Shannon limit. This code is the quasi-cyclic counterpart
of the (2048, 1723) regular RS-based LDPC code given in
Example 4 (or the standard code for the IEEE 802.3 10G Base-
T Ethernet). Its encoding can be implemented with 6 shift-
register-adder-accumulator (SRAA) units [13], each consisting
of 126 flip-flops, 64 two-input XOR gates and 64 two-input
AND gates. The performance of this code is almost the same
as that of the standard code for the IEEE 802.3 10G Base-T
Ethernet. ¤

VII. MASKING

Given a dv × dc array of permutation matrices, Hrs,e =
[Ai,j] with e = 1, 2 or 3, a set of permutation matrices
can be masked (i.e., replaced by zero matrices) to generate
a new LDPC code. The masking operation can be mod-
eled mathematically as a special matrix product [7][64]. Let
W(dv, dc) = [wi,j] be a dv × dc matrix over GF(2). Define
the following matrix product:

Mrs,e(dv, dc) = W(dv, dc) ~ Hrs,e(dv, dc) = [wi,jAi,j],
(40)

where wi,jAi,j = Ai,j for wi,j = 1 and wi,jAi,j = O
(a zero matrix) for wi,j = 0. With this operation, a set
of permutation matrices in Hrs,e(dv, dc) is masked by the
0-entries of W(dv, dc). We call W(dv, dc) the masking
matrix, Hrs,e(dv, dc) the base array (or base matrix), and
Mrs,e(dv, dc) the masked array (or matrix). The masked ma-
trix Mrs,e(dv, dc) is an array of permutation and zero matri-
ces. The distribution of permutation matrices in Mrs,3(dv, dc)
is identical to the distribution of 1-entries in the masking
matrix W(dv, dc).

It is clear that masking operation preserves the RC-
constraint on the rows and columns of the base array
Hrs,e(dv, dc) and hence the masked matrix Mrs,e(dv, dc)
also satisfies the RC-constraint. Furthermore, masking reduces
the density of 1-entries in the base matrix and therefore
the masked matrix is a sparser matrix. Consequently, the
associated Tanner graph of Mrs,e(dv, dc) has either a larger
girth or a smaller number of short cycles than that of the base
matrix. If the girth of the masking matrix is g > 6, then the
girth of the Tanner graph of the masked matrix is at least g.
Since the size of a masking matrix is in general not very large,
it is quite easy to construct masking matrices with relatively
large girth, say 8, 10 and 12, either by computer search or by
the techniques given in [65][66].

The null space of the masked matrix Mrs,e(dv, dc) gives an
LDPC code C(m)

rs,e with girth at least 6. For e = 2 or 3, C(m)
rs,e is

a QC-LDPC code. If the masking matrix is a regular matrix
with constant column and row weights, then C(m)

rs,e is a regular
LDPC code. If the masking matrix has varying column and
row weights, then C(m)

rs,e is an irregular LDPC code. Masking is
an effective technique for constructing long structured regular
and irregular LDPC codes. The performance of an LDPC code
constructed by masking depends on the choice of the masking
matrix. Regular masking matrices can be constructed using
algebraic or combinatorial methods. An irregular masking
matrix can be constructed by computer search based on the
variable- and check-node degree distributions of a code’s
Tanner graph derived by the evolution of the probability
densities of the messages passed between the two types of
nodes in a belief propagation decoder as proposed in [67].

Example 9: In this example, we choose the (257, 2, 256)
extended RS code over GF(257) as the base code Cb for code
construction. Using the method given in Section VI-B, a 257×
257 array Hrs,3 of 256× 256 circulant permutation matrices
can be constructed based on the minimum weight codewords
of Cb. Choose dv = 8 and dc = 64. Take a 8 × 64 subarray
Hrs,3(8, 64) subarray from Hrs,3 (avoiding zero matrices) as
the base array for masking. Construct an 8 × 64 masking
matrix W(8, 64) that consists of a row of eight 8×8 circulant
matrices whose generators (top rows) are given in Table 1.
W(8, 64) has column and row weights 4 and 32, respectively.
Masking the base array Hrs,3(8, 16) with W(8, 64), we obtain
a 2048 × 16384 regular masked matrix Mrs,3(8, 64) with

Fig. 24. Performance of the binary (16384,14337) QC-LDPC code given in
Example 9 over the BI-AWGNC.

column and row weights 4 and 32, respectively. The null space
of Mrs,3(8, 64) gives a (16384, 14337) regular RS-based QC-
LDPC code with rate 0.875. The performance of this code with
iterative decoding using the SPA is shown in Fig. 24. At a BER
of 10−6, it performs 0.85 dB from the Shannon limit. ¤

TABLE I. GENERATORS OF CIRCULANTS

IN THE MASKING MATRIX OF EXAMPLE 9.
g1 = (10011010) g2 = (11011000)
g3 = (00111010) g4 = (01100110)
g5 = (01111000) g6 = (11100010)
g7 = (11010010) g8 = (01010110)

An irregular LDPC code is given by the null space of a
sparse matrix H with varying column weights and/or varying
row weights so that the code’s Tanner graph has varying nodal
degrees. The nodal degree distributions (hence, row/column
weight distributions) from the node perspective (see Example
1) are expressed in terms of two polynomials [67], v(X) =∑d′v

i=1 viX
i−1 and c(X) =

∑d′c
i=1 ciX

i−1, where vi and ci

denote the fractions of variable- and check-node with degree
i, respectively, d′v and d′c denote the maximum variable- and
check-node degrees, respectively. Irregular LDPC codes can be
constructed based on the degree distributions of a code graph
and masking an array of permutation matrices. First we design
the degree distributions, v(X) and c(X), of the variable- and
check-nodes of the graph of a code of rate R based on EXIT
charts (or density evolution [16]). Then choose proper para-
meters, dv, dc and q (or p) that will give us the desired code
length and rate R,where dv ≥ d′v and dc ≥ d′c. By computer
search, we construct a masking matrix W(dv, dc) that has
column and row weight distributions identical (or close) to
v(X) and c(X). Construct a base array Hrs,e(dv, dc) with
e = 1, 2 or 3 using a method given in the last three subsections.
Masking the base matrix Hrs,e(dv, dc) by W(dv, dc), we
obtain a masked matrix Mrs,e(dv, dc) which has column and

row weight distributions identical (or close) to v(X) and c(X).
This masking not only gives a structured irregular LDPC code
but also simplifies the code construction. Since the Tanner
graph of the base matrix Hrs,e(dv, dc) is already free of cycles
of length 4, the Tanner graph of the resultant irregular LDPC
code is also free of cycles of length 4 and hence has a girth of
at least 6. By contrast, in random construction, a large random
bipartite graph based on the degree distributions must first
constructed. In the process of constructing a code graph by
computer, effort must be made to avoid cycles of length 4,
which may not be easy.

Since optimal degree distributions for a given code rate
are derived based on the assumptions of infinite code length,
cycle-free code graph, and an infinite number of decoding
iterations. When applied to construct short codes, the optimal
degree distributions are no longer optimal any more and they
usually result in an irregular code with a high error-floor.
Therefore, proper adjustment of the degree distributions must
be made to achieve good performance.

Example 10: The following degree distributions of
variable- and check-nodes of a bipartite graph are designed
for a code with rate 1/2 and length between 4000 and 5000:
v(X) = 0.25X + 0.625X2 + 0.125X8 and c(X) = X6.
The average variable-node and check-node degrees are 3.5
and 7, respectively. Suppose we want to construct a code
of length about 4600. To construct such a code, we choose
the (73, 2, 72) RS code Cb over GF(73) as the base code
and construct a 73 × 73 array Hrs,2 of 73 × 73 circulant
permutation matrices based on the method presented in
Section VI-A. Choose dv = 32 and dc = 64. Take a 32× 64
subarray Hrs,2(32, 64) from Hrs,2 as the base array for
masking. It is a 2336× 4672 matrix over GF(2) with column
and row weights 32 and 64, respectively. Construct a masking
matrix W(γ, ρ) by computer search with column and row
weight distributions close to the degree distributions v(X) and
c(X) given above. Masking the base array Hrs,2(32, 64) with
W(32, 64), we obtain a masked 32× 64 array Mrs,2(32, 64)
of circulant permutation and zero matrices. The column
and row weight distributions of Mrs,2(32, 64) are identical
to v(X) and c(X). The null space of Mrs,2(32, 64) gives
a (4672, 2336) irregular RS-based QC-LDPC code. The
performance of this code with iterative decoding using the
SPA (50 iterations) is shown in Fig. 25. The code performs
very well: at a BER of 10−6, it is 1.6 dB from the Shannon
limit. ¤

VIII. CONCLUSION AND OPEN PROBLEMS

This paper provided fundamentals in the design of LDPC
codes. The EXIT chart technique for determining near-optimal
degree distributions for LDPC code ensembles was first dis-
cussed to provide a target for the code designer. The utility
of representing codes by protographs and how this naturally
leads to quasi-cyclic LDPC codes was also discussed, after
which the EXIT chart technique was extended to the special
case of protograph-based LDPC codes. Discussed next was
several design approaches for LDPC codes which incorporate

Fig. 25. Performance of the binary (4672,2336) QC-LDPC code given in
Example 10 over the BI-AWGNC.

one or more accumulators, including quasi-cyclic accumulator-
based codes. The second half the paper then switched to
several algebraic LDPC code design techniques including
codes based on finite geometries and codes whose designs are
based on Reed-Solomon codes. The algebraic designs lead to
cyclic, quasi-cyclic, and structured codes. Finally, the masking
technique for converting regular quasi-cyclic LDPC codes to
irregular codes was presented. While the paper focuses on
the BI-AWGNC, as discussed in the paper, good BI-AWGNC
codes tend to be universally good across many channels.

The ultimate goal in the LDPC code field is a situation that
is analog of BCH or RS codes, that is, a straightforward design
technique and a straightforward performance analysis. While
this may be possible someday, in the short term, some of the
open problems that are undergoing studies by researchers are
as follows. It is well known that error-floors can be due to a
small minimum distance or it can be the fault of the iterative
decoder. Thus, there is a tremendous amount of research being
undertaken to understand the floor phenomenon. Another issue
is the design of short codes. As mentioned in Section II,
decoding threshold prediction techniques assume an infinite
codeword length and an infinite number of decoding iterations.
This leads one to ask about threshold prediction for short
codes with a finite number of iterations. Another problem
being studied is generalized LDPC codes in which the single
parity-check nodes and repetition nodes of Tanner graphs were
replaced by more complex constraints. This was first consid-
ered by Tanner [2]. Other problems include lower bounding
the minimum distance of an LDPC code and understanding
the impact of cycle structure and distribution on an iterative
decoder.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T. Press, Cam-
bridge, MA, 1963. (Also, R. G. Gallager, “Low density parity-check
codes,” IRE Trans. Inform. Theory, IT-8, pp. 21-28, Jan. 1962.)

[2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.

[3] D. MacKay and R. Neal, “Good codes based on very sparse matrices,”
Cryptography and Coding, 5th IMA Conf., C. Boyd, Ed., Lecture Notes
in Computer Science, Oct. 1995.

[4] N. Alon and M. Luby, “A linear time erasure-resilient code with nearly
optimal recovery,” IEEE Trans. Inform. Theory, vol. 42, pp. 1732-1736,
Nov. 1996.

[5] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, ”A digital fountain
approach to reliable distribution of bulk data,” Proc. ACM SIGCOMM
’98, Vancouver, BC, Canada, Jan. 1998, pp. 56-67.

[6] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse
Matrices,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431,
1999.

[7] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, 2nd editon, Prentice-Hall, Upper Saddle River, NJ., 2004.

[8] W. E. Ryan, “An Introduction to LDPC Codes,” CRC Handbook for
Coding and Signal Processing for Recording Systems, Ed., B. Vasic and
E. Kurtas, CRC Press, 2004.

[9] C. Jones, A. Matache, T. Tian, J. Villasenor, R. Wesel, “The universality
of LDPC codes on wireless channels,” in Proc. Military Comm. Conf.
(MILCOM), Oct. 2003.

[10] M. Franceschini, G. Ferrari, and R. Raheli, “Does the performance of
LDPC codes depend on the channel?” in Proc. Int. Symp. Inf. Theory
and its Applns, 2004.

[11] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: Model and erasure channel properties,” IEEE Trans.
Inform. Theory, vol. 50, pp. 2657-2673, Nov. 2004.

[12] F. Peng and W. E. Ryan and R. D. Wesel, “Surrogate channel design of
universal LDPC codes,” IEEE Commun. Letters, vol. 10, pp. 480-482,
Jun. 2006.

[13] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of
low-density parity-check codes,” IEEE Trans. Commun., vol. 54, pp.
71-81, Jan. 2006.

[14] S. ten Brink, “Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes,” IEEE Trans. Commun., vol. 49, pp. 1727-1737,
Oct. 2001.

[15] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, pp. 670-678, Apr. 2004.

[16] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans.
Information Theory, vol. 47, pp. 619-637, Feb. 2001.

[17] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative Turbo Decoder Analysis
Based on Density Evolution,” IEEE Journal on Selected Areas in
Communications, vol. 19, pp. 891-907, May, 2001.

[18] H. El Gamal and A. R. Hammons, “Analyzing the Turbo Decoder Using
the Gaussian Approximation,” IEEE Trans. Inform. Theory, vol. 47, no.
2, pp. 671-686, Feb. 2001.

[19] M. Ardakani and F. R. Kschischang, ”A More Accurate One-
Dimensional Analysis and Design of LDPC codes,” IEEE Trans. on
Comm., Dec. 2004, pp 2106-2114.

[20] M. Tüchler, S. ten Brink, and J. Hagenauer, ”Measures for tracing
convergence of iterative decoding algorithms,” Proc. 4th IEEE/ITG
Conf.on Source and Channel Coding, Berlin, Germany, Jan. 2002.

[21] E. Sharon, A. Ashikhmin, and S. Litsyn, “EXIT functions for the
Gaussian channel,” Proc. 40th Annu. Allerton Conf. Communication,
Control, Computers, Allerton, IL, Oct. 2003, pp. 972-981.

[22] E. Sharon, A. Ashikhmin, and S. Litsyn, “EXIT functions for continuous
channels - Part I: Constituent codes,” submitted, IEEE Trans. Commun.

[23] S. ten Brink and G. Kramer, ”Design of repeat-accumulate codes for
iterative detection and decoding,” IEEE Trans. Sig. Proc., vol. 51, pp.
2764-2772, Nov. 2003.

[24] R. Michael Tanner, “On quasi-cyclic repeat-accumulate codes,” in Proc.
37th Allerton Conf. on Communication, Control, and Computing, Sept.
1999.

[25] Jun Xu, Lei Chen, Lingqi Zeng, Lan Lan, and Shu Lin, “Construction
of low-density parity-check codes by superposition,” IEEE Trans. Com-
mun., vol. 53, pp. 243-251, Feb. 2005.

[26] T. J. Richardson and R. L. Urbanke, “Multi-edge type ldpc
codes,” to appear, IEEE Trans. Inf. Theory. [Online]. Available:
http://lthcwww.epfl.ch/

[27] J. Thorpe, “Low-Density Parity-Check (LDPC) Codes Constructed from
Protographs,” JPL INP, Tech. Rep., Aug. 2003, 42-154.

[28] G. Liva, Block Codes Based on Sparse Graphs for Wireless Communi-
cation Systems, Ph.D. thesis, Università degli Studi di Bologna, Italy,
2006.

[29] G. Liva and M. Chiani, ”Extrinsic information transfer analysis for
protograph-based LDPC codes”, submitted, IEEE Trans. Comm., 2006.

[30] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for Turbo-
like codes,” in Proc. 36th Allerton Conf. on Communication, Control,
and Computing, Allerton, Illinois, Sept. 1998, pp. 201-210.

[31] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate
codes,” in Proc. International Symposium on Turbo codes and Related
Topics, Sept. 2000, pp. 1-8.

[32] M. Chiani and A. Ventura, ”Design and performance evaluation of
some high-rate irregular low-density parity-check codes, Proc. IEEE
Globecom, Nov. 2001.

[33] M. Yang, Y. Li, and W. E. Ryan, “Design of efficiently encodable
moderate-length high-rate irregular LDPC codes,” IEEE Trans. Com-
mun., vol. 52, pp. 564-571, Apr. 2004.

[34] Y. Zhang and W. E. Ryan, “Structured IRA Codes: Performance Analysis
and Construction,” IEEE Trans. Commun., 2006, to appear.

[35] Xiao Yu Hu and Evangelos Eleftheriou and Dieter Michael Arnold,
”Progressive edge-growth Tanner graphs,” Proc. 2001 GlobeCom Conf.,
San Antonio, Texas, Nov. 2001, pp. 995-1001.

[36] T. Tian and C. Jones and J. Villasenor and R. D. Wesel, “Characterization
and selective avoidance of cycles in irregular LDPC codes,” in Proc.
ICC’03, May, 2003.

[37] M. Fossorier, ”Quasi-Cyclic Low-Density Parity-Check Codes From
Circulant Permutation Matrices,” IEEE Trans. Inf. Theory, vol. 50., Aug.
2004, pp. 1788-1793.

[38] G. Liva, E. Paolini, and M. Chiani, “Simple Reconfigurable Low-
Density Parity-Check Codes,” IEEE Commun. Letters, vol. 9, pp. 258-
260, March, 2005

[39] S. J. Johnson and S. R. Weller, “Constructions for irregular repeat-
accumulate codes,” in Proc. IEEE Int. Sym. Inform. Theory, Adelaide,
Sept. 2005.

[40] L. Dinoi, F. Sottile, and S. Benedetto, ”Design of variable-rate irregular
LDPC codes with low error floor,” 2005 IEEE Int. Conf. Comm., May
2005.

[41] A. Roumy, S. Guemghar, G. Caire, and S. Verdu, ”Design methods for
irregular repeat-accumulate codes,” IEEE Trans. Inform. Theory, vol. 50,
pp. 1711-1727, Aug. 2004.

[42] H. Zhong and T. Zhang “Design of VLSI implementation-oriented
LDPC codes,” in Proc. 58th Vehicular Technology Conf., Oct. 2003,
pp. 670-673.

[43] M. M. Mansour, “High-performance decoders for regular and irregular
repeat-accumulate codes,” in Proc. IEEE GLOBECOM, Nov. 29-Dec. 3,
2004, pp. 2583-2588.

[44] Y. Zhang, W. E. Ryan, and Y. Li, “Structured eIRA codes,” in Proc.
38th IEEE Asilomar Conf. on Signals, Systems, and Computers, Pacific
Grove, CA, Nov. 2004, pp. 7-10.

[45] A. Abbasfar, K. Yao, and D. Disvalar, “Accumulate Repeat Accumulate
Codes,” in Proc. IEEE GLOBECOM, Dallas, Texas, Nov. 2004.

[46] D. Divsalar, S. Dolinar, J. Thorpe, and C. Jones, “Constructing LDPC
codes from simple loop-free encoding modules,” in Proc. IEEE Inter-
national Conference on Communications, May 2005.

[47] D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, “Protograph based
LDPC codes with minimum distance linearly growing with block size,”
in Proc. IEEE GLOBECOM, Nov. 2005.

[48] Second generation framing structure, channel coding and modulation
systems for Broadcasting, Interactive Services, News Gathering and
other broadband satellite applications, ETSI, EN 302 307, 2004.

[49] D. Divsalar, S. Dolinar, and J. Thorpe, ”Accumulate-repeat-accumulate-
accumulate-codes”, Proc. 60th Vehicular Technology Conf., Sept. 2004,
pp. 2292-2296.

[50] Y. Kou, S. Lin, and M. Fossorier, “Low density parity check codes
based on finite geometries: a rediscovery and new results,” IEEE Trans.
Inform. Theory, vol. 47, no.11, pp. 2711-2736, Nov. 2001.

[51] H. B. Mann, Analysis and Design of Experiments. New York: Dover,
1949

[52] A. P. Street and D. J. Street, Combinatorics of Experimental Design.
Oxford, UK: Clarendon Press, 1987.

[53] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, “ On algebraic
construction of Gallager and circulant low density parity-check codes,”
IEEE Trans. Inform. Theory, vol. 50, no.6 , pp. 1269-1279, June 2004.

[54] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “ Near Shannon limit quasi-
cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 52,
no. 7, pp. 1038-1042, July 2004.

[55] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-Ghaffar, “ Codes on finite
geometries,” IEEE Trans. Inform. Theory, vol. 51, no. 2, pp. 572–596,
Feb. 2005.

[56] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. Abdel-Ghaffar, “Algebraic
construction of quasi-cyclic LDPC codes for the AWGN and erasure
channels,” IEEE Trans. Commun., to appear.

[57] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construc-
tion of regular and irregular LDPC codes: geometry decomposition and
masking,” submitted to IEEE Trans. Inform. Theory, 2004.

[58] Juntan Zhang and Marc P. C. Fossorier, “A modified weighted bit-
flipping decoding of low-density parity-check codes,” IEEE Commun.
Letters, vol. 8, no. 3, March 2004

[59] Zhenyu Liu and Dimitris A. Pados, “ A decoding algorithm for finite-
geometry LDPC codes,” IEEE Trans. on Commun. , vol. 53, no. 3,
March 2005

[60] Ming Jiang, Chunming Zhao, Zhihua Shi, and Yu Chen, “An improve-
ment on the modified weighted bit flipping decoding algorithm for LDPC
codes,” IEEE Commun. Letters, vol.9, no. 9, Sept. 2005

[61] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, ”Construction of
low-density parity-check codes based on Reed-Solomon codes with two
information symbols,” IEEE Commun. Lett., vol. 7, no. 7, pp. 317-319,
July 2004.

[62] Z. -W. Li, L. Chen, L. -Q. Zeng, S. Lin, and W. Fong, ”Efficient encoding
of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun.,
vol.54, no. 1, pp. 71-81, Jan. 2006.

[63] I. S. Reed and G. Solomon,”Polynomial codes over certain fields,” J.
Soc. Ind. Appl. Math., 8: 300-304, Jun. 1960.

[64] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar,”Construction
of regular LDPC codes: decomposition and masking,” IEEE Trans.
Inform. Theory, in revision, 2006.

[65] L. Lan, L. -Q Zeng, Y. Y. Tai, L. Chen, S. Lin, and K. Abdel-
Ghaffar,”Construction of quasi-cyclic LDPC codes for AWGN and
binary erasure channels: a finite field approach,” IEEE Trans. Inform.
Theory, in revision, 2006.

[66] L. Lan, Y. Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar,”A trellis-
based method for removing cycles for bipartite graphs and construction
of low density parity check codes,” IEEE Commun. Lett., vol. 8, no. 7,
pp. 443-445, Jul. 2004.

[67] X. -Y. Hu, E. Eleftheriou, and D. M. Arnold,”Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inform. Theory,
vol 51, no.1, pp. 386-398, Jan. 2005.

Gianluigi Liva was born in Spilimbergo, Italy. He
received the M.S. degree in Electrical Engineering,
in 2002, and the Ph.D. degree, in 2006, from the
University of Bologna, Bologna, Italy. He is cur-
rently working at the Institute of Communications
and Navigation of the German Aerospace Center
(DLR) in Munich. His research interests include the
design and the analysis of error correcting codes
based on sparse graphs for space communication
systems.

Shumei Song was born in Henan, China. She re-
ceived the B.S.E.E. degree from Tsinghua Univer-
sity, Beijing, China, in 2000, and the M.S.E.E degree
from Peking University, Beijing, China, in 2003.
She is currently working toward the Ph.D degree in
communication and coding theory at the University
of California, Davis.

Lan Lan received the B.E. and M.E. degrees from
the University of Electronic Science and Technology
of China, Chengdu, China, in 1998 and 2001, and the
Ph.D. degree in electrical engineering from the Uni-
versity of California, Davis, in 2006. She is currently
working for Keyeye communications company as a
DSP design engineer. Her research interests include
error-control coding techniques and their application
in digital communications and digital storage sys-
tems.

Yifei Zhang received the B.E. and M.E. degrees in
electrical and communication systems from Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 1998 and 2001, respectively. She is
currently working toward the Ph.D. degree in the
Department of Electrical and Computer Engineering,
University of Arizona, Tucson. Her research interests
include error-control coding and its implementation
for digital communications and data storage systems.

Shu Lin (S’62-M’65-SM’78-F’80-LF’00) received
the B.S.E.E. degree from the National Taiwan Uni-
versity, Taipei, Taiwan, in 1959, and the M.S. and
Ph.D. degrees in electrical engineering from Rice
University, Houston, TX, in 1964 and 1965, respec-
tively.

In 1965, he joined the Faculty of the University
of Hawaii, Honolulu, as an Assistant Professor of
Electrical Engineering. He became an Associate
Professor in 1969 and a Professor in 1973. In 1986,
he joined Texas A&M University, College Station,

as the Irma Runyon Chair Professor of Electrical Engineering. In 1987, he
returned to the University of Hawaii. From 1978 to 1979, he was a Visiting
Scientist at the IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, where he worked on error control protocols for data communication
systems. He spent the academic year of 1996-1997 as a Visiting Professor
at the Technical University of Munich, Munich, Germany. He retired from
University of Hawaii in 1999 and he is currently an Adjunct Professor at
University of California, Davis. He has published numerous technical papers
in IEEE TRANSACTIONS and other refereed journals. He is the author
of the book, An Introduction to Error-Correcting Codes (Englewood Cliff,
NJ: Prentice-Hall, 1970). He also co-authored (with D. J. Costello) the
book, Error Control Coding: Fundamentals and Applications (Upper Saddle
River, NJ: Prentice-Hall, 1st edition, 1982, 2nd edition, 2004), and (with
T. Kasami, T. Fujiwara, and M. Fossorier) the book, Trellises and Trellis-
Based Decoding Algorithms, (Boston, MA: Kluwer Academic, 1998). His
current research areas include algebraic coding theory, coded modulation,
error control systems, and satellite communications. He has served as the
Principle Investigator on 32 research grants.

Dr. Lin is a Member of the IEEE Information Theory Society and the Com-
munication Society. He served as the Associate Editor for Algebraic Coding
Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY from
1976 to 1978, and as the Program Co-Chairman of the IEEE International
Symposium of Information Theory held in Kobe, Japan, in June 1988. He
was the President of the IEEE Information Theory Society in 1991. In 1996,
he was a recipient of the Alexander von Humboldt Research Prize for U.S.
Senior Scientists and a recipient of the IEEE Third-Millennium Medal, 2000.

William E. Ryan received the Ph.D. degree in elec-
trical engineering from the University of Virginia
(Charlottesville, VA) in 1988 after receiving the B.S.
and M.S. degrees from Case Western Reserve Uni-
versity and the University of Virginia, respectively,
in 1981 and 1984.

After receiving the Ph.D. degree Prof. Ryan held
positions in industry for five years, first at The
Analytic Sciences Corporation, then at Ampex Cor-
poration, and finally at Applied Signal Technology.
From 1993 to 1998, he was an assistant professor

and then associate professor in the Department of Electrical and Computer
Engineering at New Mexico State University, Las Cruces, NM. From 1998
to present, he has been on the faculty in the Department of Electrical and
Computer Engineering at the University of Arizona, Tucson, AZ, first as an
associate professor and then as full professor.

Prof. Ryan has over 75 publications in the leading conferences and journals
in the area of communication theory and channel coding. He is also preparing
the textbook Iteratively Decodable Codes: Construction and Decoding (Shu
Lin, co-author) to be published by Cambridge University Press. His research
interests are in coding and signal processing with applications to magnetic
data storage and wireless data communications. He was an associate editor
for the IEEE Transactions on Communications from 1998 through 2005. He
is a Senior Member of the IEEE.

