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Abstract— Low-Density Parity-Check codes (LDPCC) have
been recently investigated as a possible solution for high data
rate applications, for both space and terrestrial wireless com-
munications. A main issue is the research of low complexity
encoding and decoding schemes. In this letter we present a class
of reconfigurable LDPCC characterized by low encoding and
decoding complexity: we call them Generalized Irregular Repeat-
Accumulate (GeIRA) Codes.

Index Terms— LDPC codes, channel coding, satellite commu-
nications.

I. INTRODUCTION

RECENTLY, Low-Density Parity-Check Codes (LDPCC)
[1] have been considered as a possible solution for near

Shannon limit channel coding. For instance, their use is under
investigation in both Near-Earth and Deep-Space missions
requiring high data-rates and spectral efficiency. Satellite
telecommunication systems have always traded complexity
on the ground station for simplicity on-board. Therefore, a
main issue is the design of low-complexity encoding schemes.
Another issue to be taken into account in designing channel
codes for such applications is the error floor [2].

Three main solutions can be found in literature for an
efficient encoding of LDPCC: the algorithm proposed in [3],
the finite-geometries based construction of [4], and the class
of efficiently encodable LDPCC (eIRA) [5] related also to the
concept of of Irregular Repeat-Accumulate (IRA) codes [6].

In this letter, we present a class of IRA-like LDPC codes
with the same low encoding complexity as eIRA, that present
some further interesting properties: first, respect to codes in
[5], our solution (Generalized Irregular Repeat-Accumulate
Codes, GeIRA Codes) gives a higher flexibility in the choice
of the degree distributions (allowing for example the design
of near-regular codes). More important, GeIRA show better
performance in the high Signal-to-Noise Ratio (SNR) region.
Moreover, the behavior of the code can be modified ”on the
fly” by a simple reconfiguration procedure.

II. EFFICIENT ENCODING OF LDPCC

The algorithm proposed in [3] is a general encoding pro-
cedure applicable in principle to any LDPCC; it consists in a
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Fig. 1. Encoder structure for eIRA codes [5].

”reordering” of the parity check matrix H through permuta-
tions of rows and columns, to transform H in an approximate-
triangular matrix. A parameter g (gap) is then defined that
represents the ”distance” of H to an exact triangular form.
The overall encoding complexity, in terms of number of
multiplications, is O(n+g2), where n is the codeword length.
Nevertheless, if g is a small fraction of n, the complexity of the
encoding procedure can be maintained almost linear. However,
only LDPCC characterized by small gap are suitable for this
procedure, and this is not often the case.

LDPC Codes based on Finite Geometries [4] are cyclic
or quasi-cyclic (by construction). Therefore they can be en-
coded through low-complexity circuits based on feedback shift
registers. The main advantages of such codes are the above-
mentioned reduced encoding complexity and good properties
in terms of minimum distance. On the other hand, these codes
exist only for precise values of parameters n and k, where k
is the information block length.

Irregular Repeat-Accumulate (IRA) codes [6] are a par-
ticular class of serially concatenated turbo codes with an
inner differential encoder and an outer repetition code. IRA
codes can be encoded with the complexity O(n) proper of
turbo codes and they can be decoded with LDPCC message
passing algorithms. Extended IRA (eIRA) codes [5] extend
the structure of IRA codes to high rate systematic LDPCC.
The parity check matrix is partitioned as

H = [Hu|Hp] , (1)

where Hu is a (m×k) matrix, while Hp is a square (m×m)
matrix with m−1 columns of weight 2 and a weight 1 column.
The resulting (systematic) encoder is depicted in Fig. 1 [5].

Therefore, for eIRA codes the variable nodes degree distri-
bution is somewhat constrained since the number of weight-2
columns must be at least m − 1.
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Fig. 2. Structure of rate-1 encoder.

III. THE PROPOSED NEW CODE STRUCTURE

In this section we describe our proposal (GeIRA) for
extending the idea in [5]. We start the description of GeIRA
codes from the (systematic) encoding algorithm. It can be
summarized as follows:

1) Multiply the information vector u for a (k × m) Low-
Density Generator Matrix HT

u (resulting in a m-bits
vector v).

2) Input the m-bits vector v to a rate-1 encoder character-
ized by a transfer function

F (z) =
1

1 +
∑t

j=1 gjz−j
, 1 ≤ t ≤ m − 1, (2)

with gj ∈ GF (2) and define the m output bits of the
rate-1 encoder to be the parity vector p.

3) Pose the encoded codeword x = [u | p].
We denote by {xj} a sequence of bits and with xj the jth

element of the sequence. The rate-1 encoder can be realized
through a recursive digital filter with the structure shown in
Fig. 2. Its input/output relation in the discrete time domain is
described by the difference equation pi = vi +

∑t
j=1 gjpi−j .

Denoting the generic codeword as x = [u |p], the
parity-check matrix of the code can be partitioned as in
(1), with suitable Hu and Hp. Imposing the condition
xHT = 0, it immediately follows p = uHT

u H−T
p . Thus,

H−T
p is the binary transformation matrix corresponding

to the recursive digital filter with transfer function
(2); its rth row (r = 0, . . . ,m − 1) is then given by
[0 . . . 0 f0 f1 . . . fm−1−r], where the number of 0s
preceding f0 is r and {fq} is the discrete impulse response
of the digital filter. The following theorem gives the structure
of sub-matrix Hp.

Theorem 1: Submatrix Hp has the following structure
(blanks represent zeros):

Hp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
g1 1

g2 g1
. . .

... g2
. . .

. . .

gt

...
. . .

. . .
. . .

gt
. . .

. . .
. . .

. . .
gt . . . g2 g1 1

gt . . . g2 g1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Proof: It is sufficient to prove that the product A between
H−T

p and the transpose of the matrix given in (3) is the order-

m identity matrix Im. Define the jth element of {xj} as:

xj =

⎧⎨
⎩

1 if j = 0
gj if 1 ≤ j ≤ t
0 elsewhere .

(4)

The jth element of the rth row of matrix A, Ar,j , can be
written as

Ar,j =
∞∑

l=−∞
fl−rxj−l . (5)

By introducing the sequence {αr
j}, defined as

αr
j =

{
Ar,j if 0 ≤ j ≤ m − 1
0 otherwise ,

(6)

equation (5) can be also written as {αr
j} = {fj−r} ∗ {xj}.

By applying the z-transform to both terms it follows αr(z) =
F (z)z−r (1 +

∑t
j=1 gjz

−j) = z−r, from which αr
j = δr−j .

Therefore, the (j, r) element of A is a 1 if and only if j = r,
0 otherwise.
It is known that a condition to obtain good performance when
using a Belief Propagation (BP) decoder, is that the bipartite
graph [7] of the code must contain no short cycles (or at
least a small number of short cycles). Recall that the length
of a cycle is defined as its total number of edges. If F (z)
is properly chosen, length 4 cycles involving columns of Hp

only can be avoided. In the following, we give a necessary and
sufficient condition for that. Define g(z−1) =

∑t
i=0 gi z−i

(gi ∈ {0, 1} and g0 = 1), and denote with Ω the ensemble
of indexes of non-zero coefficients of g(z−1). It is simple to
prove that there are no length 4 cycles only involving columns
of Hp, if and only if for every choice of indexes i, j, η, ξ ∈
Ω and i �= j, η �= i, ξ �= j the following condition holds

i − j �= η − ξ. (7)

Once the rate-1 encoder has been chosen, the parity-check
matrix can be then completed by constructing the systematic
sub-matrix Hu, according to a given degree distribution,
possibly avoiding short cycles (also taking into account the
1s already present in Hp).

IV. RECONFIGURABLE ENCODING AND DECODING

LDPC codes described in previous section are highly recon-
figurable. On encoding side, the reconfigurability is guaranteed
by the possibility of modifying the binary coefficients of
polynomial g(z−1) with the exception of g0. This implies the
possibility of varying the weight distributions of both rows and
columns in the parity-check matrix, according to the choice of
g(z−1). On decoding side, it must be first observed that each
non zero coefficient in polynomial g(z−1) implies the presence
of a certain number of edges in the bipartite graph associated
to the parity-check matrix H, connecting some parity variable
nodes and check nodes. In order to obtain a reconfigurable
decoder, one possibility is to prearrange connections between
variable and check nodes according to the case of gi = 1, i =
1 . . . t, and then to force the messages received by variable
and check nodes along inactive edges (i.e. edges associated
to the forced to zero coefficients of g(z−1)) to values that
give no contribution to the decoding process. Although this
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Fig. 3. Performance comparison between codes C1 and C2.

solution for the decoder is in principle applicable to any set
of codes (with the same number of variable and check nodes),
in the case of GeIRA this does not imply an excessive increase
of complexity, since only edges associated to coefficients of
g(z−1) are involved in the procedure.

V. NUMERICAL RESULTS

In this section we present some numerical results in terms
of Bit Error Rate (BER) assuming BP decoding of GeIRA
codes on the Binary-Input AWGN channel. Here, BER has
been computed on information bits only; this has been made
possible by the systematic structure of the code. For each value
of Eb/N0 (where Eb denotes the energy per information bit
and N0 is the one-sided noise power spectral density) simula-
tion has been stopped as soon as achieving 100 wrong frames
after decoding. We present the performance of a (4000, 2000)
GeIRA code with two different choices of polynomial g(z−1):
in particular, code C1 has g1(z−1) = 1 + z−1, while code C2

has g2(z−1) = 1 + z−1 + z−4. The edge degree distributions
[8] for C1 are:

λ1(x) = 0.0001 + 0.3077x + 0.2730x2 + 0.4193x6

ρ1(x) = 0.4000x5 + 0.6000x6,

and they are optimized for threshold according to density
evolution [8]. The analogue edge degree distributions for C2

are

λ2(x) = 0.0001 + 0.0030x + 0.6330x2 + 0.3639x6

ρ2(x) = 0.0004x5 + 0.4070x6 + 0.5926x7.

No length 4 cycles are present in the bipartite graph of both
codes. Note that it is possible to switch from one code to
the other by simply modifying only one configuration bit
in both encoder and decoder. In Fig. 3, C1 and C2 are
compared setting the maximum number of iterations (Imax)
to 10 and 100. Consider first the case of Imax = 100. In
the low Signal-to-Noise Ratio (SNR) region (Eb/N0 < 2dB)
the performance of C1 is better than C2, due to optimized
distribution for the threshold; at BER = 10−5 an additional
coding gain of 0.4dB can be obtained by using C1 instead of
C2. Note that the gap between code C1 and the Shannon limit
(for a binary input AWGN channel) at BER = 10−4 is only

about 1.1 dB. For Eb/N0 > 2dB, C2 outperforms C1, due to its
lower error floor. This behavior is to be related to the higher
minimum distance of C2: codewords of weights 10,11,13,16
were found by BP decoder for code C1, while no undetected
errors [2] occurred in the case of C2. This result could appear
somewhat disappointing: in fact C2’s error floor gains only a
factor of 6 with a sacrifice of 0.4 dB in the waterfall region.
Anyway, the construction of code C2 is constrained to that of
code C1, whose distributions are designed for achieving good
performance at the threshold. The above mentioned gain of
a factor 6 in the error floor is thus achieved with a slightly
modified distribution, preserving the reconfigurability. In this
sense, these results can be considered interesting.

From Fig. 3 it can be noted that if Imax is reduced to
10, the BER crossover point is reached at BER � 6 · 10−5

instead of BER � 4 · 10−7. Hence, C2 presents a higher
decoding convergence speed than C1. The reconfigurable de-
coding scheme made up of (C1, C2) could be interesting in
scenarios characterized by a time varying channel. In such
situation, if a feedback channel is available, for sufficiently
high values of SNR C2 should be preferred. On the other
hand, in the presence of a low SNR, it should be preferable
to switch to C1, exploiting its good behavior in the waterfall
region. We found similar results for other values of code-
rates and codeword lengths, although the advantages of such
a reconfigurable scheme seem to be more evident for not too
high code-rates. This is probably due to the fact that in the
case of high code-rates the edge degree distributions are less
sensible to modifications of polynomial g(z−1).

VI. CONCLUSIONS

In this letter, we proposed a class of reconfigurable LDPC
codes, GeIRA, that can be considered as a generalization of
IRA codes, with the same low encoding complexity and fur-
ther properties which could make them interesting in scenarios
characterized by time varying channels. A possible encoding
circuit and its implications in terms of parity-check matrix
have been presented.
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