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Abstract

In this study, we present the main features of the information operator approach for solving linear inverse problems

arising in atmospheric remote sensing. This method is superior to the stochastic version of the Tikhonov regularization (or

the optimal estimation method) due to its capability to filter out the noise-dominated components of the solution generated

by an inappropriate choice of the regularization parameter. We extend this approach to iterative methods for nonlinear ill-

posed problems and derive the truncated versions of the Gauss–Newton and Levenberg–Marquardt methods. Although

the paper mostly focuses on discussing the mathematical details of the inverse method, retrieval results have been provided,

which exemplify the performances of the methods. These results correspond to the NO2 retrieval from SCIAMACHY limb

scatter measurements and have been obtained by using the retrieval processors developed at the German Aerospace Center

Oberpfaffenhofen and Institute of Environmental Physics of the University of Bremen.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Several methods have been employed to retrieve atmospheric parameters from the measurements of the
atmospheric radiation. The most widely used approach is the optimal estimation method which seeks the
statistically most likely solution given the measurement and the a priori information [1]. The prior information
about the atmospheric state consists in an a priori profile and its covariance matrix and is encapsulated in the
form of probability distributions, which are independent of the measurement. When such distributions are
combined with probabilistic information about data uncertainties it is possible to derive a final (a posteriori)
probability distribution assimilating both types of information.

The optimal estimation method can be regarded as a stochastic version of Tikhonov regularization, whereas
the regularization matrix and the strength of regularization are entirely determined by the a priori covariance
matrix. Because the strength of regularization (or the regularization parameter) is an a priori constraint
commonly kept unchanged during the retrieval process, the Tikhonov solutions may be dominated by noise.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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The noise-dominated components of the solution can be filtered out by analyzing the information content of
the measurement. This method is known as the information operator approach and has been proposed by
Kozlov in a stochastic framework [2]. Applications of the information operator approach to the retrieval of
atmospheric parameters from the scattered radiance measured in the nadir geometry and the transmitted
radiance obtained from the solar occultation measurements have been reported by Hoogen et al. [3] and
Rozanov [4], respectively.

In the present paper, we will interpret the information operator approach from a deterministic point of
view, i.e., as an alternative approach to the stochastic Tikhonov regularization for solving linear inverse
problems. This interpretation will enable us to extend the basic idea of the information operator approach to
other deterministic iterative methods for nonlinear ill-posed problems.

The organization of our paper is as follows. In Section 2 we present the main features of the information
operator approach for the linear case. The basic concepts are then extended to the nonlinear case in Section 3.
Section 4 is dedicated to a comparison of retrieval results obtained by using two different processors. These
retrieval processors, which use different iterative regularization methods based on the information operator
approach, have been developed at the German Aerospace Center Oberpfaffenhofen and Institute of
Environmental Physics of the University of Bremen. Conclusions are drawn in Section 5.

2. Linear case

We consider the linear data model

y ¼ Kx, (1)

where the mapping K 2 Rm�n represents the forward model, y 2 Rm is the exact data vector and x 2 Rn is the
state vector containing the atmospheric profile to be retrieved. Measurements are made to a finite accuracy
and in practice only the noisy data vector

yd ¼ yþ d, (2)

is available. The exact data is assumed to be attainable, i.e., there exists the true solution x̂, such that y ¼ Kx̂.
In our analysis, we consider a semi-stochastic data model in the sense that the true solution x̂ is deterministic
but the measurement error d is stochastic with zero mean and the covariance matrix Sd ¼ E d � dT

� �
¼ Im,

where E is the expected value operator and Im is the identity matrix (of rank m). In general, if the measurement
error is described by a symmetric and positive definite covariance matrix Sd, a ‘‘normalized’’ data model with
identity covariance matrix can be obtained by using the prewhitening technique [1].

The inverse ill-posed problem is solved in the least squares sense by means of Tikhonov regularization with
a ‘‘stochastic’’ constraint [5,6]. This stochastic version of Tikhonov regularization is equivalent to the optimal
estimation method; the only difference is the smoothing error which is a deterministic quantity. Essentially, an
approximate solution is computed by minimizing the regularized function

FlinearðxÞ ¼ 1
2 kKx� ydk2 þ ðx� xaÞ

TS�1a ðx� xaÞ
� �

, (3)

where Sa is the a priori covariance matrix and xa is the a priori state vector, the best beforehand estimator of x̂.
Assuming that the a priori covariance matrix is of the form Sa ¼ s2aŜa, where sa is the a priori standard
deviation of the profile, we introduce the stochastic regularization matrix L (of rank n) by the Choleski
factorization Ŝ�1a ¼ LTL. Thus, S�1a ¼ l2aL

TL, where la ¼ 1=sa is the stochastic regularization parameter.
Note that in the framework of the optimal estimation method, the regularized function (3) is interpreted as the
logarithm of the a posteriori probability density function of the state when the measurement is given [1]. In
practice, the regularized function is expressed in terms of the deviation with respect to the a priori state
Dx ¼ x� xa, and the solution to the minimization problem is given by

Dxd
la ¼ K

y

la
rda, (4)

while the regularized solution is

xd
la ¼ xa þ Dxd

la , (5)



ARTICLE IN PRESS
A. Doicu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 103 (2007) 340–350342
where K
y

la
¼ ðKTK þ l2aLTLÞ�1KT is the regularized (generalized) inverse or the gain matrix and rda ¼

yd � Kxa is the residual vector at the a priori state. A numerical robust method for computing the regularized
solution relies on the generalized singular value decomposition (GSVD) of the matrix pair ðK ;LÞ. If K 2 Rm�n,
L 2 Rn�n, and mXn, the GSVD of the matrix pair ðK ;LÞ is given by K ¼ US1Z

�1 and L ¼ VS2Z�1, where
U 2 Rm�m and V 2 Rn�n are unitary matrices, Z 2 Rn�n is a non-singular matrix, S1 2 R

m�n and S2 2 Rn�n

are block-diagonal matrices,

S1 ¼
diagðaiÞn�n

0ðm�nÞ�n

" #
; S2 ¼ ½diagðbiÞn�n�, (6)

and gi ¼ ai=bi; i ¼ 1; 2; . . . ; n, are the generalized singular values appearing in decreasing order, i.e.,
g1Xg2X � � �Xgn [6]. We obtain K

y

la
¼ ZSUT, with

S ¼ diag
f la;i

ai

� �
n�n

0n�ðm�nÞ

" #
, (7)

and

Dxd
la ¼

Xn

i¼1

f la;i
uT

i rda
ai

zi, (8)

where

f la;i ¼
g2i

g2i þ l2a
(9)

are the filter factors, and ui and zi denote the column vectors of U ¼ ½u1; u2; . . . ; um� and Z ¼ ½z1; z2; . . . ; zn�,
respectively. The filter factors characterizing the damping or filtering of the GSVD components zi are typically
close to 1 for large gi and much smaller than 1 for the small gi. In this way, the contributions to the regularized
solution corresponding to the smaller gi are effectively filtered out.

In the optimal estimation method, the information gained by making a measurement can be described by
comparing the entropies S of the a priori and a posteriori probability density functions PðxÞ and PðxjydÞ,
respectively [1]. The information content of a measurement H is the change in entropy consequent on making
the measurement, H ¼S½PðxÞ� �S½PðxjydÞ�, and can be interpreted as the logarithm of a generalization of
the signal-to-noise ratio. H can be expressed in terms of the so-called information operator P ¼ SaKTK, as

H ¼ 1
2
ln½detðPþ InÞ�. (10)

Replacing Sa by ð1=l2aÞðL
TLÞ�1 and using the GSVD of the matrix pair ðK ;LÞ we obtain P ¼ ZSpZ�1, with

Sp ¼ ð1=l
2
aÞ½diagðg

2
i Þn�n�, and we see that the eigenvalues and eigenvectors of P are g2i =l

2
a and xi, respectively.

The information content of a measurement then becomes

H ¼
1

2

Xn

i¼1

ln 1þ
g2i
l2a

 !
. (11)

In the information operator approach, only eigenvalues which are greater than unity are considered to give a
relevant contribution to the information content and the state space spanned by the eigenvectors associated
with the relevant eigenvalues corresponds to the effective state space accessible with the measurement [2–4].

Returning to the stochastic Tikhonov regularization and using this assumption, we choose
Dxd?

la 2 Spanfzig
Ncut

i¼1 , where Ncut is the maximum index i for which giXla, and set

xd
la ¼ xa þ Dxd?

la . (12)

The simplest choice of Dxd?
la is

Dxd?
la ¼

XNcut

i¼1

f la;i
uT

i rda
ai

zi, (13)
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or equivalently,

Dxd?
la ¼ K

y?

la
rda, (14)

where K
y?

la
is the truncated regularized inverse, K

y?

la
¼ Z?SUT, and

Z? ¼ ½z1; z2; . . . ; zNcut
; 0 . . . ; 0�.

Dxd?
la can also be chosen as the projection of Dxd

la onto the linear span Spanfzig
Ncut

i¼1 . In this case, the
Gramm–Schmidt procedure can be used to construct an orthonormal basis fz?i g

Ncut

i¼1 [7], and Dxd?
la is given by

Dxd?
la ¼

XNcut

i¼1

z?Ti Dxd
la

� �
z?i . (15)

From a deterministic point of view, the information operator approach with Dxd?
la given by Eq. (13) can be

regarded as a truncated version of the stochastic Tikhonov regularization. The filter factors can be expressed
as

f ?la;i ¼
f la;i; ipNcut;

0; i4Ncut

(
(16)

and we see that the information operator approach has sharper filter factors than the stochastic Tikhonov
regularization. Thus, the information operator approach appears to be superior to the stochastic Tikhonov
regularization if the regularization parameter la (determined by statistical considerations) is too low so that
noise-dominated components are included in the solution. In fact the information operator approach is a
combination between the truncated GSVD with the filter factors f TGSVD

i ¼ 1, for ipNcut and f TGSVD
i ¼ 0, for

i4Ncut, and the stochastic Tikhonov regularization with the filter factors f la;i, for i ¼ 1; 2; . . . ; n. If Dxd?
la is

computed accordingly to Eq. (15), the information operator approach can be regarded as a projected version
of the stochastic Tikhonov regularization.

In the framework of Tikhonov regularization, the retrieval is characterized by the averaging kernel
Ala ¼ K

y

la
K , which gives informations about the smoothing error, and the square root of the diagonal of the

noise covariance matrix Sð�dnoiseÞ ¼ K
y

la
K
yT
la
, which characterize the noise error. In terms of the GSVD of the

matrix pair ðK ;LÞ, we have

Ala;ij ¼
Xn

k¼1

Zikf la;k Z�1
	 


kj
(17)

and

Sð�dnoiseÞii ¼
Xn

k¼1

f la;k

ak

� �2

Z2
ik. (18)

For the information operator approach, the expression of the error in x̂ can be derived by using Eqs. (2), (12),
and (14). We obtain �dtotal ¼ �smooth þ �dnoise, where �

d
total ¼ xd � x̂ is the total error, �smooth ¼ ðA

?
la � InÞðx̂� xaÞ

is the smoothing error and �dnoise ¼ K
y?

la
d is the noise error. The entries of the truncated averaging kernel

A?la ¼ K
y?

la
K are given by

A?la;ij ¼
XNcut

k¼1

Zikf la;kðZ
�1Þkj , (19)

and it is apparent that A?la deviates more from In than Ala . The diagonal elements of the truncated noise
covariance matrix S?ð�dnoiseÞ ¼ K

y?

l K
y?T
l , are

S?ð�dnoiseÞii ¼
XNcut

k¼1

f la;k

ak

� �2

Z2
ik, (20)
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and evidently, S?ð�dnoiseÞiioSð�dnoiseÞii. Therefore, the regularized solutions computed by using the information
operator approach are characterized by larger smoothing errors and smaller noise errors than the solutions
given by the stochastic Tikhonov regularization.

3. Nonlinear case

In the framework of the stochastic Tikhonov regularization, the nonlinear problem,

y ¼ F ðxÞ,

yd ¼ yþ d,

with F : Rn ! Rm being the forward model, is replaced by the minimization problem minx FðxÞ, where

FðxÞ ¼ 1
2
kF ðxÞ � ydk2 þ l2akLðx� xaÞk

2
� �

. (21)

As in the linear case, the regularization matrix L and the regularization parameter la are chosen by using the
Choleski factorization of the a priori covariance matrix. The minimization problem can be solved iteratively
by using the Gauss–Newton method for the augmented residual vector

f ðxÞ ¼
F ðxÞ � yd

laLðx� xaÞ

" #
,

i.e., FðxÞ ¼ 1
2
kf ðxÞk2, while quasi-Newton approximation methods have to be employed for large-residual

problems [8]. Essentially, at each iteration step k, the Gauss–Newton method minimizes the regularized
function

Flinear
k ðxÞ ¼ kF ðxd

la;kÞ � yd þ Kðxd
la;kÞðx� xd

la;kÞk
2 þ l2akLðx� xaÞk

2, (22)

or equivalently,

Flinear
k ðDxÞ ¼ kKkDx� wd

la;kk
2 þ l2akLDxk2, (23)

where KðxÞ ¼ F 0ðxÞ is now the Jacobian matrix of F evaluated at x, Kk ¼ Kðxd
la;kÞ, Dx ¼ x� xa and

wd
la;k ¼ Kkðx

d
la;k � xaÞ þ rdla;k. rdla;k is the residual vector at the iteration step k and is given by

rdla;k ¼ yd � F ðxd
la;kÞ. The minimizer of Flinear

k is given by

Dxd
la;k ¼ K

y

la;k
wd
la;k, (24)

while the new iterate is

xd
la;kþ1 ¼ xa þ Dxd

la;k. (25)

In the framework of the information operator approach, the natural extension of the results presented in
Section 2 leads to the iterative method

Dxd?
la;k ¼ K

y?

la;k
wd
la;k (26)

and

xd
la;kþ1 ¼ xa þ Dxd?

la;k, (27)

where K
y?

la;k
is now the truncated generalized inverse at xd

la;k. By convention, the iterative regularization
method (26) and (27) will be referred to as the truncated regularized Gauss–Newton method.

An alternative Newton type method for the solution of nonlinear inverse problems is the Levenberg–Mar-
quardt method [9,10]. The key idea of the Levenberg–Marquardt method consists in repeatedly linearizing the
operator equation F ðxÞ ¼ y around the actual iterate xd

la;k,

F ðxÞ � F ðxd
la;kÞ þ Kðxd

la;kÞðx� xd
la;kÞ, (28)
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and then minimizing the Tikhonov function,

Flinear
k ðxÞ ¼ kF ðxd

la;kÞ � yd þ Kðxd
la;kÞðx� xd

la;kÞk
2 þ l2akLðx� xd

la;kÞk
2. (29)

Flinear
k can be written in standard form as

Flinear
k ðDxÞ ¼ kKkDx� rdla;kk

2 þ l2akLDxk2, (30)

where Dx ¼ x� xd
la;k, and it is readily seen that the minimizer of Flinear

k is

Dxd
la;k ¼ K

y

la;k
rdla;k. (31)

Note that the only difference between (22) and (29) is in the penality term. The reuse of xa in the penality
term—besides its use as initial guess—may have a stabilizing effect on the minimizing elements, i.e., the
iterates will never diverge to infinity in norm.

We introduce the truncated Levenberg–Marquardt method as a regularization method which computes
Dxd?

la 2 Spanfzig
Ncut

i¼1 as

Dxd?
la;k ¼ K

y?

la;k
rdla;k, (32)

and the new iterate as

xd
la;kþ1 ¼ xd

la;k þ Dxd?
la;k. (33)

In the conventional regularizing Levenberg–Marquardt method, the regularization parameter is selected at
each iteration from a trust region approach for the errors (in the data space or the state space). In the
truncated version, the regularization parameter is constant but the cutting index Ncut is variable and is
determined by the eigenvalues of the Jacobian matrix at each iteration step.

4. Numerical simulations

Several new satellite instruments such as SCIAMACHY [11] and GOMOS [12] aboard the Envisat satellite,
OSIRIS [13] onboard the Odin satellite, as well as SAGE III [14] onboard a Meteor-3M spacecraft measure in
limb viewing geometry ultraviolet and visible solar radiation scattered by the Earth’s atmosphere to monitor
vertical profiles of O3 and other minor constituents such as NO2, BrO, and OClO. A sequence of observations
(limb scan) corresponding to different tangent altitudes is used for the retrieval of atmospheric parameters.

The goal of our numerical simulations is to demonstrate the advantages of the truncation technique
described in the previous section as applied to the retrieval of NO2 vertical distributions from SCIAMACHY
limb measurements. For this purpose, retrieval results obtained by two different processors are intercompared.
The first processor developed at the German Aerospace Center (DLR) Oberpfaffenhofen uses the truncated
regularized Gauss–Newton method, while the second processor developed at the Institute of Environmental
Physics (IUP) of the University of Bremen employs the truncated Levenberg–Marquardt method. The
processors of the different groups use their own radiative transfer models to retrieve geophysical parameters
from SCIAMACHY data. The radiative transfer model used by the DLR processor is a single-scattering
model, while the multiple-scattering effect is taken into account by using look-up table corrections [15]. The
IUP processor uses a multiple-scattering model based on the combined differential–integral approach with a
Picard iterative scheme [16]. For both processors, the data model is expressed in terms of normalized limb
radiances and relies on the differential absorption technique [17], i.e.,

yd ¼ lnðInmeasÞ � Pmeas,

F ¼ lnðInsimÞ � Psim. ð34Þ

The normalized vector of limb radiances is given by In ¼ I=I ref , where I ref ¼ I ref ðlÞ is the reference radiance
spectrum for all wavelengths of interest l and I ¼ Iðs; lÞ is the vector of radiance spectra for all tangent
heights s in the selected tangent height range excepting the reference tangent height sref . As a reference scan a
limb measurement at an upper tangent height is commonly used. P is a lower-order polynomial in l, whose
coefficients are obtained by fitting the function lnðInÞ in the wavelength domain. Note that the spectra
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normalization eliminates most of the solar Fraunhofer structure, the instrument response function and the
need for an absolute instrument calibration. By subtracting lower-order polynomials from radiance spectra we
remove those spectral features that are smoothly varying functions of wavelength, particularly those due to
Rayleigh and Mie scattering. The differential absorption type model is very sensitive to weak absorptions and
has a moderate degree of nonlinearity (the number of iterations required to achieve convergence does not
exceed 4).

The atmospheric parameters are retrieved from measurements in the visible spectral range. The spectral
domain of analysis is a window of 420–450 nm in Channel 3 of the SCIAMACHY instrument. In this spectral
interval, the main retrieval gases are NO2 and O3. For each gas, the a priori covariance matrix is

½Sa�ij ¼ s2ax0ix0j exp �
jhi � hjj

lcor

� �
; i; j ¼ 1; . . . ; n, (35)

where x0 is the initial guess and lcor is a length determining the correlation between the parameters at different
altitudes hi: If not stated otherwise, sa;NO2

¼ 1:0 and sa;O3
¼ 0:2, while lcor ¼ 3:3 km for both gases. The a

priori and initial gas profiles were assumed to be identical and were chosen from the model of McLinden [18].
The retrieval grid is a rough grid with a step of 3.5 km between 10.5 and 42 km. This choice leads to a small
number of unknowns and a low computer time as required by the operational usage of a retrieval processor.
The number of limb spectra is 10, and the tangent heights vary from 13 to 43 km. The reference spectrum
chosen is the spectrum with 43 km tangent altitude.

In Figs. 1 and 2 we illustrate the retrieved profiles and the relative errors computed with the conventional
and the truncated versions of the regularized Gauss–Newton method. The results are calculated with the DLR
processor and correspond to SCIAMACHY measurements recorded on January 15, 2004 at latitude 26� south
and longitude 164� west. For this example we use a weak regularization by choosing a high value for the
standard deviation of the NO2 profile, i.e., sa;NO2

¼ 5:0. The curves show that the conventional solution is
undersmoothed and the truncated regularized Gauss–Newton method filters out the profile oscillations.
Consequently, the conventional solution has smaller smoothing errors and larger noise errors than the
truncated solution. The smoothing error is the dominant error source and this component of the total error
increases at low and high altitudes.
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Fig. 1. Retrieved profiles computed with the conventional and truncated versions of the regularized Gauss–Newton method for a weak

regularization.
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Fig. 3. Retrieved profiles computed with the conventional and truncated versions of the regularized Gauss–Newton method for a strong

regularization.
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The profiles plotted in Fig. 3 correspond to a stronger regularization, i.e., sa;NO2
¼ 1:0. In this case, both

methods give similar results and the additional regularization effect of the truncated regularized
Gauss–Newton method does not play a significant role.

In our next example, spectral data from four orbits: 9816 (15 January 2004), 10740 (20 March 2004), 12105
(23 June 2004) and 13379 (20 September 2004) have been analyzed. Exemplary retrieved profiles are shown in
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Fig. 4. Exemplary profiles computed with the truncated versions of the Gauss–Newton and Levenberg–Marquardt methods: (a) orbit

9816 and (b) orbit 10740.
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Fig. 5. Exemplary profiles computed with the truncated versions of the Gauss–Newton and Levenberg–Marquardt methods: (a) orbit

12105 and (b) orbit 13379.
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Figs. 4 and 5. Even though the truncated regularized Gauss–Newton method contains an a priori dependent
regularization term, the retrievals are largely free of the a priori contamination. The truncated
Levenberg–Marquardt solutions show small oscillations as compared to the truncated Gauss–Newton
solutions. Note that in general, the Levenberg–Marquardt method may lead to undersmoothed solutions as
compared to the regularized Gauss–Newton method because the contribution of the regularization term
decreases during the iterative process (as xd

la;k converges).
In Fig. 6 we plot the relative differences between the solutions. The differences are averaged over all states of

the SCIAMACHY orbits and on average one curve corresponds to 25 profiles. The relative differences are
smaller than 10% in the maximum of the NO2 profile and less than 20% below 20 km. The reason for this
discrepancy at low altitudes is that the sensitivity to NO2 is low and due to the strong regularization, the
truncated Gauss–Newton solution is influenced by the a priori information.
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5. Conclusion

The main features of the information operator approach for solving linear inverse problems have been
presented. Relying on the GSVD of the Jacobian and the regularization matrix we showed that the
information operator approach is a truncated version of the stochastic Tikhonov regularization with sharper
filter factors. Due to a stronger regularization, the information operator solutions are characterized by larger
smoothing errors and smaller noise errors than the Tikhonov solutions. The main feature of this method is the
filtering of the noise-dominated components of the Tikhonov solutions generated by an inappropriate choice
of the regularization parameter.

The idea of projecting the regularized solution onto the effective state space accessible with the
measurement has been extended to the nonlinear case by deriving the truncated versions of the Gauss–Newton
and Levenberg–Marquardt methods. The numerical simulations concerning the intercomparison of two
different processors demonstrated the applicability of this truncation technique to SCIAMACHY limb
measurements. The number densities of NO2 retrieved with the different methods agree to within 10% at the
peak of the profiles.

In our analysis, the regularization parameter together with the regularization matrix are specified by the a
priori covariance matrix. In the deterministic version of the Tikhonov regularization, the optimal value of the
regularization parameter is computed by using appropriate parameter-choice methods as for instance the L-
curve method [6], the generalized cross-validation approach [19] or the minimum bound method [20].
Essentially, the optimal value of the regularization parameter is a trade off between the data and a priori
constraint. These parameter choice methods can also be formulated for the information operator approach if
we regard this method as a truncated Tikhonov regularization with the filter factors f ?l;i ¼ f l;i for ipNcut, and
f ?l;i ¼ 0 for i4Ncut, where Ncut is the maximum index i for which giXl. Formulations of parameter choice
methods for the information operator approach will be the topic of a future paper.
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