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Overview

• Lighthills acoustic analogy with surface sources

– Physical interpretation of source terms

• Integration in a moving reference frame

– Ffowcs Williams and Hawkings equation

• Thickness noise

• Loading noise
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Lighthills acoustic analogy with surface sources

Permeable surface:(
∂2

∂t2
− c2∆

)
{ρ′H(f)} =

∂2

∂xixj
{TijH(f)}

+
∂

∂t

(
{ρ(vi − ui) + ρ0ui}

∂f

∂xi
δ(f)

)
− ∂

∂xi

(
{ρvi(vj − uj) + Pij}

∂f

∂xj
δ(f)

)
f(~x, t): Auxiliary function, at the surface is f = 0

f < 0
H(f) = 0

f = 0

f > 0
H(f) = 1

vi: Velocity of the medium

ui: Velocity of the surface f = 0
Pij = (p− p0)δij − τij

H: Heaviside function
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The auxiliary function f(~x, t)

S: Surface f = 0
Surface can move and deform

~n: Normal vector

∂f

∂xi
= ni |gradf |

f(~x, t) is not uniquely defined!
S

~n

f(~x, t) < 0

f(~x, t) > 0

Surface distribution:
∂f

∂xi
δ(f) = ni |gradf | δ(f)

To let f vanish after integration, the factor |gradf | is necessary.
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Surface movement

Normal velocity ~u

∂f

∂t
+ ui

∂f

∂xi
= 0

S

~u

No parametric description of the surface S!

Example: Sphere moving at constant speed
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Impermeable surface

S: Surface of solid body → no flow through S:(
∂2

∂t2
− c2∆

)
{ρ′H(f)} =

∂2

∂xixj
{TijH(f)}

+
∂

∂t
{ρ0un |grad f | δ(f)}

− ∂

∂xi
{li |grad f | δ(f)}

un = uini

li = Pijnj = (p− p0) ni − τijnj

ρ0un: Rate at which mass is displaced by the body

−li : Force per area exerted from the medium on the body
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Comparison with moving point sources

Mass source:(
1
c2

∂2

∂t2
−∆

)
p′ =

∂

∂t

{
ρ0 β̇(t) δ(~x− ~xs(t))

}
~xs: Position of the source

β: Volume displaced by the source

ρ0β̇: Rate at which mass is displaced

Momentum source:(
1
c2

∂2

∂t2
−∆

)
p′ = − ∂

∂xi
{fi(t) δ(~x− ~xs(t))}

fi: Force acting on the medium
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Virtual and real physical sources

• Real physical source: Energy is transferred from the flow into acoustic

perturbations

• Source terms in acoustic analogy can be considered as virtual sources

• Surface sources replace boundary conditions

Example: Ring vortex impinging on a wall
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Solution of acoustic analogy with surface sources

Ffowcs Williams and Hawkings, 1969

S coincides with the surface of a rigid and impermeable body

4πc2ρ′(~x, t) =
∂2

∂xi∂xj

∫
IR3

[
Tij

r |1−Mr|

]
τ=τ∗

d3~η

+
∂

∂t

∫
S

[
ρ0un

r |1−Mr|

]
τ=τ∗

dS(~η)

− ∂

∂xi

∫
S

[
li

r |1−Mr|

]
τ=τ∗

dS(~η)

~η: Coordinate in moving reference frame

cMr: Source velocity in the direction of the observer

τ∗: Retarded times
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Body-fixed coordinate system

Example: Single rotor blade

y3, η3 y3, η3

y1, η1 y1

y2, η2 y2

η1

η2 ~xs(~η∗, τ1)

~η∗

Surface S stationary in ~η-system: f = f(~η)
~xs(~η∗, τ1): Position of point with coordinate ~η∗ in ~y-space at time τ1

Approach does not work for flexible bodies!
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Source velocity

For each coordinate in the ~η-system a position ~xs(~η, τ) and a velocity

~vs =
∂~xs

∂τ
in the ~y-space can be defined

~xs(~η, τ)

θ
~vs(~η, τ)

~x: Observer

Mr(~x, ~η, τ) =
|~vs|
c

cos θ

Mach number of point with coordinate ~η in the direction of the observer
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Square brackets

Summation:[
q

r|1−Mr|

]
τ=τ∗

=
N∑

n=1

q(~η, τ∗
n)

r(~x, ~η, τ∗
n) |1−Mr(~x, ~η, τ∗

n)|

τ∗
n = τ∗

n(~x, ~η, t) solution of

c · (t− τ∗) = |~x− ~xs (~η, τ∗) |

N = N(~x, ~η, t): Number of solutions τ∗
n

If |~vs(~η, τ)| < c for all τ , then N = 1

r(~x, ~η, τ) = |~x− ~xs (~η, τ) |
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Super-sonic source motion

Example: Super-sonic source point

Consider fix ~η:

~xs(~η, τ∗
2 ) ~xs(~η, τ∗

1 )

|~vs| > c

(~x, t): Observer

N(~x, ~η, t) = 2
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Sonic boom

Example:

Unaccelerated movement of source point ~xs(~η, τ)
|~vs| > c

Observer on the Mach cone:

cos θ =
c∆t

|~vs|∆t
=

c

|~vs|

Mr =
|~vs|
c

cos θ

→ Mr = 1

1
|1−Mr|

is singular

current
position of

source point

Mach cone

c∆t

θ ϑ

|~vs|∆t
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Observed source geometry

Consider all sources on the surface of a rigid body which are received

simultaneously:

Observed geometry is a set of points in ~y-space:

Σ(~x, t) = {~y | ~y = ~xs(~η, τ∗
n) for all ~η ∈ S and valid τ∗

n = τ∗
n(~x, ~η, t)}

~η ∈ S if and only if f(~η) = 0
Σ coincides with S only if the body is at rest

Σ may have a strange geometry!
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Collapsing sphere

g(~y, τ) = 0

f(~y, τ) = 0

Intersection Γ(τ)

Observer

Surface Σ is set union of all lines Γ(τ) for all τ < t

g(~x, t, ~y, τ) = t− |~x− ~y |
c

− τ

Radius of sphere: c (t− τ)
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Solution of acoustic analogy with surface sources

Ffowcs Williams and Hawkings, 1969

S coincides with the surface of a rigid and impermeable body

4πc2ρ′(~x, t) =
∂2

∂xi∂xj

∫
IR3

[
Tij

r |1−Mr|

]
τ=τ∗

d3~η

+
∂

∂t

∫
S

[
ρ0un

r |1−Mr|

]
τ=τ∗

dS(~η)

− ∂

∂xi

∫
S

[
li

r |1−Mr|

]
τ=τ∗

dS(~η)

ρ0un: Rate at which mass is displaced by the body

−li : Force per area exerted from the medium on the body
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Comparison with moving point sources

Mass source:(
1
c2

∂2

∂t2
−∆

)
p′ =

∂

∂t

{
ρ0 β̇(t) δ(~x− ~xs(t))

}

p′(~x, t) =
∂

∂t

[
ρ0β̇

4πr|1−Mr|

]
τ=τ∗

=
∂

∂t

{
N∑

n=1

ρ0β̇(τ∗
n)

4πr|1−Mr|

}
Momentum source:(

1
c2

∂2

∂t2
−∆

)
p′ = − ∂

∂xi
{fi(t) δ(~x− ~xs(t))}

p′(~x, t) = − ∂

∂xi

[
fi

4πr|1−Mr|

]
τ=τ∗

= − ∂

∂xi

{
N∑

n=1

fi(τ∗
n)

4πr|1−Mr|

}
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Thickness noise

Formulation of Farassat:

Only one part of the surface sources(
1
c2

∂2

∂t2
−∆

)
p′T =

∂

∂t
{ρ0un |gradf | δ(f)}

Solution:

4πp′T(~x, t) =
∂

∂t

∫
S

[
ρ0un

r|1−Mr|

]
τ=τ∗

dS(~η)

Rigid body: ∫
S

ρ0un dS(~η) = 0
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Thin body

� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

S
~η1

~η2

~n1

~n2

Opposite points: ~η1 and ~η2

If ~η1 and ~η2 are close to each other

τ∗(~x, ~η1, t) ≈ τ∗(~x, ~η2, t)

un(~η1, τ
∗(~η1)) ≈ −un(~η2, τ

∗(~η2))

Mr(~η1, τ
∗(~η1)) ≈ Mr(~η2, τ

∗(~η2))
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Infinite thin body

It the body becomes thinner:

|~η1 − ~η2| → 0

and [
ρ0un

r|1−Mr|

]
τ=τ∗

(~η1) +
[

ρ0un

r|1−Mr|

]
τ=τ∗

(~η2) → 0

The integral vanishes for infinite thin bodies!

A body without volume generates no thickness noise: p′T = 0
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Loading noise

Again only one part of the surface sources:(
1
c2

∂2

∂t2
−∆

)
p′L = − ∂

∂xi
{li |gradf | δ(f)}

Solution:

4πp′L(~x, t) = − ∂

∂xi

∫
S

[
li

r|1−Mr|

]
τ=τ∗

dS(~η)

Total force from the body acting on the medium:

Fi =
∫
S

li dS(~η)
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Force term with spatial derivative

Reformulation:

4πp′L(~x, t)

= − ∂

∂xi

∫
S

[
li

r|1−Mr|

]
τ=τ∗

d3~η

=
∂

∂t

∫
S

[
lr

cr |1−Mr|

]
τ=τ∗

d3~η +
∫
S

[
lr

r2|1−Mr|

]
τ=τ∗

d3~η

lr = li

(
xi − xs,i(~η, τ)

r

)
= ~l

(
~x− ~xs(~η, τ)

r

)
lr: Component of the force li in the direction from the source position

at ~xs(~η, τ) towards the observer at ~x
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Spanwise lift distribution

Rotor blade of helicopter:

Hover flight

Radius

Lift
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Simplified rotor

Hover flight
~F force on medium
~F steady

distant
observer (~x, t)

~F

~F

R

Loading noise:

4πp′L(~x, t)

≈ ∂

∂t

∫
S

[
lr

cr |1−Mr|

]
τ=τ∗

d3~η

≈ 1
c

∂

∂t

[
Fr

R |1−Mr|

]
τ=τ∗
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Directivity

Hover flight

Simplified rotor

Loading noise

Mr = 0

Fr = 0

4πp′L(~x, t) ≈ 1
c

∂

∂t

[
Fr

R |1−Mr|

]
τ=τ∗
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Azimuthal variation of source strength

Observer180◦ 0◦

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

360270180900

Ms = 0.4
Ms = 0.5
Ms = 0.6
Ms = 0.7

Azimuthal angle

1
|1−Mr|Hover flight

Simplified rotor

Observer angle β

relative to rotor plane:

Ms = |~vs|/c · cos β
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Loading-noise signal

Hover flight with simplified rotor

Point source in circular motion

0

7205403601800

Ms = 0.4
Ms = 0.5
Ms = 0.6
Ms = 0.7

Azimuthal angle

p′L ∼
∂

∂t

(
1

|1−Mr|

)

→ same lift at less angular velocity reduces noise

→ higher harmonics in the signal
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Concluding remarks

• A moving point source can be used as simple model for a rotor blade

• Propeller blade is analog to rotor blade

• A perfectly silent helicopter is theoretically not possible

• Lower rotor frequency → less noise

• Real helicopter in forward flight is much more complicated
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