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Abstract

The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas tur-
bine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to
heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40%
up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine sys-
tems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more
than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid
power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems
are expected to have a high potential for market introduction in the mid term view.

In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW
and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the
solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and
further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis
of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through auto-
mation and remote operation is revealed.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Solar thermal power; Solar-fossil hybrid power generation; Solar gas turbine; Solar tower plant; Pressurized air receiver; Solar
incremental cost

1. Introduction tant step in the international commitment of CO,
reduction. The direct way of producing electric

The reduction of fossil-fuel based power produc- power from solar energy, the photovoltaic technol-
tion by using solar power technology is one impor- ogy (PV), is gradually extending its focus from
purely decentralized small-scale systems towards

" Corresponding author. Fax: +49 2203 66900. large-area bulk power production. While current
E-mail address: peter.schwarzboezl@dlr.de (P. Schwarzbozl). PV system prices are still around 5000 €/ kWpy a cost

0038-092X/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.solener.2005.09.007


mailto:peter.schwarzboezl@dlr.de

1232 P. Schwarzbozl et al. | Solar Energy 80 (2006) 1231-1240

Nomenclature

Variables

E energy

A aperture area

n efficiency

o reflectivity

A incremental value
Subscripts

cos cosine effect

el electric power
ref fossil reference system

Acronyms

DNI  direct normal irradiation

LEC levelized electricity cost

PSA  Plataforma Solar de Almerd

REFOS receiver for fossil-hybrid gas turbine
systems

TRR total revenue requirement

reduction for very large-scale PV-systems (>10 MW)
to 2000 €/kW,, and below is predicted for the future
(2010+). Generating costs of solar electricity of 5—
10 €cent/kW h could then make this technology
profitable (Kurokawa, 2003). In contrast, solar ther-
mal power plants produce high-temperature heat
that is converted to electricity by conventional
power cycles. The nine commercial parabolic trough
plants in the Californian dessert (SEGS) were built
with system costs of 3000-4500 €/kW. They produce
electricity from solar energy with an annual solar-
to-electric efficiency of 10-14% and at a levelized
cost of 16-19 €cent/kW h. Future large systems of
200 MW with 12 h storage are forecasted with sys-
tem costs of 2500 €/kW and generating costs below
5 €cent/kW h (Price et al., 2002). Similar projections
are made for other solar-only technologies. In any
case, the key to cost reduction lies in mass produc-
tion after successful market penetration.

One major option for the accelerated market
introduction of solar thermal power technology are
solar-fossil hybrid power plants. Their advantage,
compared to solar-only systems, lies in low additional
investment due to an adaptable solar share, reduced
technical and economical risks due to fully dispatch-
able power, and higher system efficiency because of
reduced part load operation and fewer start-up and
shutdown-losses. And another important aspect can
be put forward in favor of hybrid systems: until ther-
mal or chemical storage technologies allow for guar-
anteed and predictable power delivery to the grid, a
conventional power capacity has to be kept on
stand-by to compensate the fluctuating power supply
of renewable energies.' This is a kind of renewable-

! This is the case already today for photovoltaics and wind
power at least in developed countries.

conventional hybrid power system but with com-
pletely separated system technology leading to eco-
nomic drawbacks! Real hybrid plants share much of
their system, hence leading to economic advantages.
A solar-fossil hybrid technology with short-term per-
spectives is the integrated solar combined cycle sys-
tem (ISCCS), where thermal power from parabolic
troughs is integrated into the bottom cycle of a com-
bined cycle power plant (Dersch et al., 2004). With
this option, the generation cost of solar kW h is
remarkably low (9 €cent/kW h without, 7.5 €cent/
kW h with thermal storage for a 310 MW, ISCCS
in California), but the achievable annual solar share
is restricted (4% without, 9% with thermal storage).

In the following paragraphs, the potential of
solar-fossil hybrid gas turbine systems will be
described to be compared with the above mentioned
technologies.

2. Solar-hybrid gas turbine technology

Solar gas turbine systems use concentrated solar
power to heat the pressurized air in a gas turbine
before entering the combustion chamber (Figs. 1
and 2). The solar heat can therefore be converted
with the high thermal efficiency of a modern recu-
perated or combined gas turbine cycle. The combus-
tion chamber closes the temperature gap between
the receiver outlet temperature (800-1000 °C at
design point) and the turbine inlet temperature
(950-1300 °C) and provides constant turbine inlet
conditions despite fluctuating solar input. The solar
power tower technology is used with concentration
ratios up to 1000 suns to achieve the high receiver
temperatures.

A pressurized volumetric air receiver with a sec-
ondary concentrator has been developed and suc-
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Fig. 1. Solarized gas turbine plant schematic: recuperated Bray-
ton cycle.

cessfully tested, the so-called REFOS receiver tech-
nology in the scope of several German national and
international R&D projects (Buck et al., 2000,
2002). In 2002, three receiver modules were coupled
in series to a 240 kW, gas turbine and successfully
operated at receiver temperatures of up to 800 °C
(Sugarmen et al., 2003). More detailed information
about the receiver development and recent test
results with receiver temperatures up to 960 °C can
be found in Heller et al. (2005).
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3. Layout, optimization and performance calculation

Modern computer based simulation models have
been developed and adapted to analyze the perfor-
mance of solar-hybrid gas turbines in commercial
system size. The design of the optical part of the
tower system (concentrator field arrangement and
size, secondary acceptance angle, receiver aperture
and orientation and tower height) can be cost-opti-
mized using an adapted version of the HFLCAL
code (Becker and Bohmer, 1989; Schwarzbozl
et al., 2002, Fig. 3). The simulation environment
TRNSYS with the model library STEC is used
(Pitz-Paal and Jones, 1998; TRNSYS STEC, 2002,
Fig. 4) for the annual performance calculation of
the thermal power system. The link between the
optical and the thermal models is realized with a
‘field efficiency matrix’, based on the fact that for
a fixed layout of the solar part at a given location
the heliostat field efficiency only depends on the
solar angles (Eq. (1)). Both models were validated
against measurement data from the solar experi-
ments at the PSA 2002/2003.

NField = PMirror X Heos X MBlock & Shadow X nAtmosph.Att.

X nlntercept X nSecondary :f(AZimuth? Elevation).

(1)

Three industrial gas turbine systems are chosen for
detailed technical and economical analysis as poten-
tial solar-hybrid prototype plants:
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O
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Fig. 2. Solarized gas turbine plant schematic: combined Brayton and Rankine cycle.
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Fig. 3. Software for layout of solar gas turbine systems (screenshot of HFLCAL showing heliostat field arrangement with limited receiver
acceptance angle).
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Fig. 4. Software for performance calculation of solar gas turbine systems (screenshot of TRNSYS STEC for solar-hybrid gas turbine with
three serial receiver zones).

e Heron HIl—intercooled recuperated two-shaft e Solar Mercury 50—recuperated single shaft gas
engine with reheat. ISO rating 1400 MW, ther- turbine. ISO rating 4200 MW, thermal efficiency
mal efficiency 42.9%. 40.3%.
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e PGT 10—simple gas turbine with bottom cycle.
ISO rating 11100 MW (gas turbine) respectively
16100 MW (combined cycle), thermal efficiency
31.3% (gas turbine) respectively 44.6% (combined
cycle).

The solarization adds a receiver cluster directly
before each combustion chamber for solar preheat-
ing of the compressed air. The maximum receiver
exit temperature is designed to be 800 °C. One case
with a receiver design exit temperature of 1000 °C is
analyzed. The receiver design temperature rules the
maximum solar share. Two possible locations are
chosen for the analysis: Seville (Spain) as a very
good European site with interesting market perspec-
tives and Daggett (California, USA) as a very high
solar potential site (Table 1).

Table 2 summarizes the cost-optimized layout of
the prototype plants for the chosen locations, Seville
and Daggett.

Figs. 5-8 show the layout of the solarized gas tur-
bine plants for Daggett. Each receiver zone consists
of a group of parallel connected single receiver mod-
ules. Receivers are subdivided into low-temperature
(up to 600 °C), medium-temperature (up to 800 °C)
and high-temperature modules (up to 1000 °C).
According to their temperature level, receiver zones
are located in the low-, medium- and high-flux
region of the focal spot (Schwarzbézl et al., 2002).
The averaged design flux density for each receiver
zone is indicated in the schematics of the plants.

Table 1
Definition of plant locations and design points

The annual performance of the prototype plants
was calculated by simulation of the system opera-
tion with the TRNSYS STEC software using a typ-
ical meteorological year on hourly basis for each
location. The results for 24 h operation are summa-
rized in the upper half of Table 5. The solar incre-
mental electricity is defined as the annual amount
of net electricity produced by the solar-hybrid plant
compared to the pure fossil reference plant (i.e.
same gas turbine system without solarization) using
the same amount of fuel (Eq. (2)).

Eel,ref

Ag, = Eeinybrida — - Etel hybrid

Efuel,ref

= Eetnybrid — Mrer * Etuelhybrid (2)

Using this definition, all drawbacks of the solariza-
tion (e.g. additional pressure drop) are assigned to
the solar part and we get a fair basis for comparing
hybrid systems of different solar share with each
other and with pure fossil plants. All other figures
of merit are derived from the solar incremental elec-
tricity (Table 3). The incremental solar share varies
according to the receiver inlet- and outlet-tempera-
tures between 7.5% and 28% for 24 h operation (Ta-
ble 5).

Figs. 9 and 10 show the change of the incremen-
tal solar share when reducing the capacity factor by
limiting the operation to daytime only or sun hours
only. A solar share of up to 70% is reached with the
1000 °C-Daggett case for 40% capacity factor

Seville (37.2°N)

Daggett (34.9°N)

Annual DNI
Design point definition
Design point conditions

2015 kW h/m?
21.3 noon, 800 W/m?>
25°C, 1011 mbar, 60% r.h.

2790 kW h/m>
21.3 noon, 880 W/m?>
25°C, 941 mbar, 20% r.h.

Table 2
Results of layout and cost-optimization of prototype plants

Seville Daggett
Gas turbine system Heron H1 Mercury 50 PGT10 CC Heron H1 Mercury 50 PGT10 CC PGT10 CC
Solar design temperature 800 °C 800 °C 800 °C 800 °C 800 °C 800 °C 1000 °C
Design point solar share 75% 38% 57% 75% 38% 58% 88%
Total receiver aperture 7.42 m? 12.90 m? 58.61 m? 6.88 m> 12.18 m? 54.60 m? 82.32 m?
Tower height 412m 50.6 m 103.7m 39.6m 50.6 m 100.2 m 130.2 m
Total reflective area 5460 m’ 8615m’ 41620 m 5732 m? 8615 m? 37615 m? 62733 m*
Total plant area® 0.06 km? 0.09 km? 0.43 km? 0.04 km? 0.07 km? 0.37 km? 0.47 km?

% Total plant area stands for rectangular envelope of used land area.
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Fig. 5. Solarized gas turbine prototype plant: Heron unit (location Daggett).
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Fig. 6. Solarized gas turbine prototype plant: Mercury unit (location Daggett).
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Fig. 7. Solarized gas turbine prototype plant: PGTI10 unit,
800 °C (location Daggett).

(about 3400 annual operation hours, a typical mid-
load plant). For the incremental solar to electric
efficiency values of 14-19% are reached with the
prototype plants analyzed here.

T 1 1
200 KWim? 575 KWim? 710 KWim?

Zone 1| BO0°C [Zone 2 ] 800°C  [Zone
187 m2 145m?

481 m?

400°C
12.3 bar

2eC 0 abar PGT10 Daggett1000

35kals

Fig. 8. Solarized gas turbine prototype plant: PGTI10 unit,
1000 °C (location Daggett).

4. Economic analysis

For economic analysis, an emerging market for
solar tower plants is assumed with concentrator
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Table 3
Definition of derived figures of merit

Incremental solar Asolarshare = A£y /Eelhybrid

share
Incremental CO, Aco, = (Eetnybrid /et — Etuelnybrid) * fco,
avoidance = (dg, /Nret) - fCO,

Incremental solar to
electric efficiency

Ay = AEy/Aneisield - 1, DNI(1)dt

Solar incremental (levelized TRR — (Eeinybria — 4E,)
LEC -LECye)/ 45,

location Seville

70%

60% ——Heron L
50% --PGT10CC ||
40% s\ —&-Mercury50 ||

30%

solar share

20% -\\\
T

10% —
0%

0% 20% 40% 60% 80% 100% 120%

capacity factor

Fig. 9. Result of performance calculation: incremental solar
share as a function of capacity factor for location Seville.

location Daggett

70% A\ —4—PGT10 CC 1000 °C

60% ——Heron
\ - PGT10 CC

o 50%
& 0% :\ = Mercury50
< o
[ \\:\
% 30% “_ Y
]

10% —=

0% T T T . :
0% 20% 40% 60%  80% 100% 120%
capacity factor

Fig. 10. Result of performance calculation: incremental solar
share as a function of capacity factor for location Daggett.

costs of 132 €/m? (for 120 m? glass-metal heliostat).
The receiver costs are 16 k€/m>, 33 k€/m? and
37.5 k€/m? for the low-, medium- and high-temper-
ature receiver. The investment costs for the conven-
tional part (power block, fuel system, cooling
system, generator, grid connection) are 1520 €/kW
for the Heron system, 560 €/kW for the Mercury
system and 510 €/kW for the PGTI10 combined
cycle system.

For detailed cost calculations two types of plant
projects are notable with regard to investment and
operational cost assumptions:

e Ist plant (stand-alone)

— ‘first-of-its-kind’ plant with completely new
plant engineering,

— covering all expenses for engineering and
development of gas turbine solarization (i.e.
adaptation of combustion chamber and
control),

— fully operated by the staff on site (3 shifts for
24 h operation).

e 2nd generation plant (remote in virtual park)

— gas turbine solarization costs shared amongst
10 similar plants,

— operated remotely in a ‘virtual park’ of 4 sim-
ilar plants,

— high degree of automation,

— reduced expenses for instrumentation, control-
and auxiliary equipment,

— reduced general engineering and construction
costs,

— reduced personnel expenses due to shared staff
for operation and maintenance.

For calculation of levelized electricity costs
(LEC) financial parameters are assumed according
to Table 4 and Fig. 11.

The results of the LEC calculations can be found
in Table 5. The total LEC for a 1st plant range from
about 6.3 €cent/kW h to 19.9 €cent/kW h depend-
ing on power level and solar share. The solar incre-
mental LEC are calculated according to Table 3.
They range from 12.7 €cent/kW h to 89.7 €cent/
kW h for the 1st plant. The lower part of Table 5
shows the cost reduction that can be achieved by
2nd generation plants with remote operation and

Table 4

Additional parameters for performance and LEC calculation
Fuel heat rate kJ/kg 42100
Specific CO, emissions (fco,) kg/MW hgye 200
Losses due to outages % 2.5
Parasitic losses: Heron & Mercury % 1
PGT10 CC % 2.5
Debt-equity ratio — 75:25
Debt interest rate % 4.2
Equity interest rate % 14
Debt payback time a 12
Plant operation time a 20
General inflation rate % 2.5
Fuel cost €/MW h 13.43
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Fig. 11. Time schedule assumptions for prototype plant projects.

Summary of results of performance calculation and cost analysis for 24 h operation

Name sev_H1 dag H1  sev_M50 dag M50 sev_PGTI10 dag PGT10 dag PGT10_1000
Power system Heron-HI Heron-HI Mercury 50 Mercury 50 PGT10 PGTI10 PGT10
ISO rating MW] 14 14 4.2 4.2 16.1 16.1 16.1
Location Sevilla Daggett  Sevilla Daggett Sevilla Daggett Daggett
Annual DNI [kW h/m?] 2015 2791 2015 2791 2015 2791 2791
Capacity factor [%] 100% 100% 100% 100% 100% 100% 100%
Annual field efficiency [%] 52.7% 56.1% 55.8% 60.4% 54.1% 57.9% 55.8%
Annual receiver efficiency [%] 79.0% 77.2% 78.9% 79.9% 73.3% 75.4% 75.3%
Annual power cycle efficiency  [%] 40.4% 38.4% 35.9% 35.9% 44.9% 43.4% 43.9%
Net electric energy [MWh] 11259 10610 32842 32769 130999 125612 119678
Solar incremental electricity [MWh] 1689 1918 2459 2871 15251 20298 33237
Incremental solar share [%] 15.0% 18.1% 7.5% 8.8% 11.6% 16.2% 27.8%
Incremental CO, avoidance [t/a] 826 972 1359 1576 6837 9438 15454
Incremental solar to electric

Efficiency [%] 15.4% 14.5% 14.2% 14.6% 18.3% 19.3% 19.0%
Ist plant (stand alone)

Total investment costs k€] 8632 8456 8974 8678 25406 24578 31155
There of solar equipment 22% 21% 27% 26% 33% 32% 40%
Spec. investment costs [E/kW.] 6640 7046 2362 2480 1728 1731 2225
Fixed O&M costs [k€/a] 1032 1028 1337 1331 2090 2072 2419
Thereof personal expenses 69% 70% 58% 59% 53% 54% 54%
Levelized electricity costs

(LEC) [€/kWh] 0.1913 0.1993 0.1004 0.0988 0.0631 0.0633 0.0694
Reference plant LB3 [€/kWh] 0.0667 0.0698 0.0563 0.0563 0.0458 0.0474 0.0474
CO,-avoidance cost [€/kg] 1.6976 1.4129 1.0655 0.8843 0.3318 0.2125 0.1708
Solar incremental LEG [€E/kWh] 0.8969 0.7857 0.6452 0.5417 0.1945 0.1462 0.1268
2nd generation plant (remote in virtual park)

Total investment costs [k€] 5763 5595 6583 6302 21206 20421 26023
Thereof solar equipment 31% 30% 36% 34% 39% 37% 47%
Spec. investment costs [E/kW,] 4433 4663 1732 1801 1443 1438 1859
Fixed O&M costs [k€/a] 451 447 731 725 1653 1637 1952
Thereof personnel expenses 47% 48% 33% 34% 49% 49% 51%
Levelized electricity costs

(LEC) [€/kWh] 0.1161 0.1196 0.0752 0.0736 0.0568 0.0568 0.0616
Reference plant LEC [€/kW h] 0.0667 0.0698 0.0563 0.0563 0.0458 0.0474 0.0474
CO,-avoidance cost [€/kgl 0.6732 0.5434 0.4561 0.3602 0.2111 0.1257 0.1099
Solar incremental LED [€/kWh] 0.3960 0.3452 0.3084 0.2540 0.1404 0.1058 0.0985

automation. The reduction potential of the solar
LEC is especially high (>50%) for small power lev-

els. For the largest plant a cost digression of >20%
is possible, leading to solar LEC below 10 €cent/
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location Daggett
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Fig. 12. Results of cost analysis. Total LEC as a function of
capacity factor for 2nd generation plant in Daggett.
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Fig. 13. Results of cost analysis. CO,-avoidance cost for 2nd
generation plant in Daggett as a function of power level.

kW h. The investment cost is then reduced to
1860 €/kW (—16%) and the fixed O&M costs are
reduced to 1950 k€/a (—20%).

Fig. 12 left shows the variation of total LEC for
the 2nd generation plants as a function of capacity
factor. With the largest plant (PGT10 CC
1000 °C), electricity at an annual solar share of
70% can be produced at total cost of 10.5 €cent/
kW h (compare to Fig. 10). This can be an interest-
ing option for green power markets. Relating the
solar LEC to the annual amount of CO, that can
be avoided when operating the hybrid plant instead
of the pure fossil reference plant, the CO,-avoidance
costs can be calculated for each individual plant
(Fig. 13). For the higher power level a value well
below 200 €/ton CO, can be reached.

5. Further development and market introduction

At the current status of the development of solar-
hybrid gas turbine systems with pressurized volu-

metric receivers the main issues for further R&D
are:

e verification of O&M assumptions for the receiver
and the power conversion subsystem;

e further increase of the solar share to reduce
greenhouse gas emissions;

o further cost reduction of solar components (i.e.
heliostats, receiver modules).

Test operation of the 240 kW, solar-hybrid sys-
tem at the PSA was continued until summer 2004
within the HST project, funded by the German
Ministry of Environment (BMU). As part of this
project one receiver was tested at air outlet temper-
atures up to 1030 °C. This results in a further
increase of the solar share of solar-hybrid power
plants. Another future option is the inclusion of
high-temperature heat storage systems, also leading
to an increased solar share.

Although the cost predictions indicate potential
competitive applications in the green power market,
the introduction of this new technology is hampered
by several factors:

e Power production costs are still higher than with
conventional fossil fuel options.

e Up to now, only a few possibilities exist for the
funding of hybrid systems with fossil contribu-
tions above 30% (solar shares <70%).

e Exploiting the full potential of high efficiencies of
combined cycle plants (>50%) requires power
levels above 50 MW,; this means a very high
investment cost which is not realistic for the
introduction of a new technology.

From the latter it is clear that market introduc-
tion is mainly possible at lower power levels, with
the option of future scale-up. At power levels below
10 MW,, gas turbine systems are mainly used for
decentralized power generation with cogeneration
of heat or cooling power. First cost assessments
for such cogeneration units indicated a potential
for solar-hybrid gas turbine units (Sugarmen et al.,
2003). Therefore, the planned steps towards market
introduction of this new technology are as follows:

1. Gain further experience in long term behavior of
the key components.

2. Design and installation of a first prototype plant
based on a small gas turbine or microturbine,
with cogeneration.
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3. Market introduction of the technology at power
levels up to several MW,, as cogeneration units.

4. Upscaling to power plants with combined cycle
for high efficiency.

A first demonstration system is currently under
construction in Empoli, Italy. Two small solar
tower plants, each with receiver, microturbine,
absorption chillers and water heat exchanger, will
deliver 160 kW,, hot water and cooling for a hospi-
tal. Other small-scale applications are planned.

6. Conclusions

The cost-optimized design and performance pre-
diction for solar-hybrid gas turbine plants in the
power levels 1.4 MW,, 4.2 MW, and 16.1 MW, for
two different locations were shown. An annual aver-
age solar to net electric efficiency of up to 19% was
calculated, amongst the highest conversion efficien-
cies for solar electric technologies. The cost analysis
showed total plant investment costs from 7000 €/
kW down to below 1800 €/kW, depending on power
level and solar share. Solar LEC between about
13 €cent/kW h up to 90 €cent/kW h were calculated.
Using the cost reduction potential that lies in com-
bined design, construction and operation of multi-
ple distributed plants leads to solar LEC of below
10 €cent/kWh for an electric power level of
16.1 MW. So, the solar-hybrid gas turbine power
technology shows interestingly low cost for solar
produced bulk electricity at a moderate power level.
The values predicted for ISCC plants can be
reached, but with a smaller system (16 MW instead
of 310 MW) and with a significantly higher solar
share (28% instead of 9%, see chapter 1). The
advantage compared to large-scale PV plants and
other pure solar systems lies in full dispatchability.

CO,-avoidance cost down to 20 €/ton were calcu-
lated for this technology. This is an interesting fig-
ure especially when compared to published costs
for CO, avoidance through fuel substitution in the
conventional utility-scale power sector ranging from
70 to 700 US$/ton (e.g. Narula et al., 2002).

The high technical and economical potential of
this technology is outlined. While larger units
(>10-15 MW) especially combined cycle systems
show very low cost for solar produced bulk electric-
ity (which will further decrease with increasing
power level), small-scale units (<5-10 MW) should

be applied in distributed markets using cogenera-
tion to start market introduction.
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