Constellation & Formation Flying Concepts for Radar Remote Sensing

H. Fiedler, G. Krieger, M. Zink
Future SAR Systems: Motivation

Application Areas for SAR Data Products

<table>
<thead>
<tr>
<th>Agriculture</th>
<th>Risk / Disaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Farming Suite</td>
<td>Flood Damage Assessment</td>
</tr>
<tr>
<td>Crop Ripeness</td>
<td>Fire Damage Assessment</td>
</tr>
<tr>
<td>Crop Inventory</td>
<td>Storm Damage Assessment</td>
</tr>
<tr>
<td>Yield Prediction Cereals</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forestry</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Forestry Inventory</td>
<td>Reconnaissance Imagery (VHR-SAR)</td>
</tr>
<tr>
<td>Reconnaissance Inventory</td>
<td></td>
</tr>
<tr>
<td>Inventory Update</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cartography</th>
<th>Geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topo Map</td>
<td>Geology Structure Map</td>
</tr>
<tr>
<td>Regional Planning Map</td>
<td>Geology Image Map</td>
</tr>
<tr>
<td>Environmental Planning Map</td>
<td>Geology Elevation Map</td>
</tr>
<tr>
<td>Infrastructure Planning Map</td>
<td>Oil Seep Detection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marine</th>
<th>Transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Detection Service</td>
<td>Dynamic Traffic Monitoring</td>
</tr>
<tr>
<td>Oil Spill Monitoring</td>
<td>Maps of Roads, Channels, ...</td>
</tr>
<tr>
<td>Sea Ice Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

System Requirements

- **short response time**
- **high revisit frequency**
- **wide area coverage**
- **high radiometric and geometric resolution**
- **imaging with multiple**
 - polarisations
 - wavelengths
 - view angles (e.g. interferometry)
 - time intervals (change detection)
- **high reliability**
- **cost efficiency**
Future SAR Systems: Paradigm Shift to Satellite Clusters

Paradigm Shift

Large, multi-functional satellites

- Smaller, simpler satellites → reduced cost & time
- Modular design → upgradable, improved reliability
- Spatially distributed → improved revisit time / coverage / adaptability
- Separated, sparse apertures → improved performance and resolution

Virtual satellite - web of cooperating satellites
Bistatic and Multistatic SAR Systems

Definitions:
• Radar systems with a spatial separation between transmitter and receiver are called bistatic.
• Systems with multiple receivers are called multistatic.

Fully active system
(TechSAT21, Radarsat 2/3, TanDEM-X)

- two monostatic & two bi-static images
- phase synchronisation in ping/pong mode
- higher redundancy & increased flexibility

Partially active system
(BISSAT, Cartwheel, Cross-Track Pendulum)

- reduced costs & low weight of passive receivers
- increased sensitivity (no Tx/Rx switches)
- DBF on receive with MMICs in the antenna
Changeable Orbital Parameters
How Do They Look Like?

Two satellites orbit behind each other with
• different ascending nodes:
 - collision risks
 - no cross track baselines at high latitudes
• additional different eccentricities (HELIX)
 - safe operation
 - arbitrary shift in along track
Twin Satellite Formation: HELIX

- Two satellites with different right ascensions of the ascending node
- Equal inclination for both satellites
- Two completely spatially separated orbits avoid collision (e/I vect)
- Along-track displacement selectable at desired latitude
- Shift of ascending nodes or expansion of eccentricity required for cross track interferometry at high latitudes
- First implementation of operational close formation flight expected in spring 2009 with TanDEM-X for global DEM-derivation

- TerraSAR-X Add-on for Digital Elevation Measurements
- PPP Astrium/DLR
Bistatic and Multistatic SAR Systems

Definitions:
• Radar systems with a spatial separation between transmitter and receiver are called **bistatic**.
• Systems with multiple receivers are called **multistatic**.

Fully active system
(TechSAT21, Radarsat 2/3, TanDEM-X)

- two monostatic & two bi-static images
- phase synchronisation in ping/pong mode
- higher redundancy & increased flexibility

Partially active system
(BISSAT, Cartwheel, Cross-Track Pendulum)

- reduced costs & low weight of passive receivers
- increased sensitivity (no Tx/Rx switches)
- DBF on receive with MMICs in the antenna
Possible Formations

Variation of Eccentricity

Inclination

Right asc. of the asc. node

Argument of perigee

Eccentricity

Pendulum

Drift

Trinodal Pendulum

Cartwheel

Drift

CarPe

Drift

Techsat Circle

Drift

HELIX
Example: TechSat Circle

Co-ordinate System is co-rotating in barycentre of formation

- Radial
- Along-track
- Cross-track
- Flight direction
Baselines & Critical Issues

<table>
<thead>
<tr>
<th></th>
<th>CT-Pendulum</th>
<th>TN-Pendulum</th>
<th>CarPe</th>
<th>CartWheel</th>
<th>TechSAT-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross</td>
<td>One stable baseline for all orbital positions</td>
<td>Two scalable baselines with constant baseline ratio</td>
<td>One stable baseline for all orbital positions</td>
<td>One stable baseline for all orbital positions</td>
<td>One stable baseline for all orbital positions</td>
</tr>
<tr>
<td>Along</td>
<td>Two different baselines independently selectable</td>
<td>Two different baselines independently selectable</td>
<td>One baseline selectable</td>
<td>Constant baseline change</td>
<td>Constant baseline change</td>
</tr>
<tr>
<td>Critical</td>
<td>Fuel required to compensate nodal drift</td>
<td>Along track separation of satellites may be critical w/o autonomous control or e/i-vector separation</td>
<td>Reduced common Doppler bandwidth for large baselines at high latitudes</td>
<td>Reduced common Dop. bandwidth for large baselines at all latitudes and along track displacement requires frequent manoeuvring</td>
<td>Reduced common Dop. Bandwidth for large baselines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Displacements & nodal drift require frequent manoeuvring</td>
<td></td>
</tr>
</tbody>
</table>
Bistatic Scattering Coefficient

Bistatic scattering depends on:

- Incident angle θ_{Tx}
- Scattering angle θ_{Rx}
- Out-of-plane angle ϕ
- Frequency
- Polarization

Extended Observation Space:

- improved detection
- improved segmentation
- improved classification
Polarimetric Interferometry

Inversion of Coherent Scattering Model
(e.g. Random Volume + Ground)

$h_v, \sigma, \phi_0, m_{1-3}$

(from K. Papathanassiou & S. Cloude, 2001)
Polarimetric SAR Interferometry: Performance Example for TerraSAR-L

Monostatic Repeat Pass System
\((\gamma_{\text{temp}} = 0.7) \)
- Height Error and Height Bias
- Poor Inversion Accuracy

Bistatic Single Pass System
\((\gamma_{\text{temp}} = 1.0) \)
- Height Error and Height Bias
- Good Inversion Accuracy

\(\mu_{\text{min}} \) and \(\mu_{\text{max}} \) polarisations

\textbf{sufficient separation of phase pdfs}
Tomography with Micro-Satellite Array

Basic Idea: Cluster of receiver satellites forming a sparse aperture in cross-track

- enables real three-dimensional imaging
- allows accurate measurement of vertical scatterer distribution
- reliable extraction of biophysical parameters (e.g. forest height, ground topography, ...)
- does not rely on a priori model assumptions
- not affected by layover or foreshortening
- cross-track distance between the individual satellites defines the height of ambiguity
- total tomographic baseline defines the height resolution

(from A. Reigber & A. Moreira, 2000)
Ambiguity Reduction and Wide Swath Imaging with Multiple Receivers

- single transmitter illuminates **wide image swath**
- multiple receivers record scattered signal simultaneously
- N receivers allow reduction of PRF by a factor of 1/N without raising azimuth ambiguities:
 - increase of swath width by factor N at **full azimuth resolution** (as opposed to ScanSAR)
 - great variability in optimum receiver displacement:
 \[x_i - x_j \approx \frac{2 \cdot v \cdot (i-l)}{PRF \cdot N} + k_i \] for \(i \in \{1,2,...,N-1\}, k_i \in \mathbb{Z} \)
 - reconstruction also possible for other displacements
 - performance can be optimized by PRF adaptation
 - requires stable oscillators or RF synchronization and accurate measurement of relative displacement
- major application: **high resolution** imaging of a **wide image swath** with **small antennas** (e.g. distributed L-Band SAR with multiple microsatellites)
Super-Resolution with Passive Receivers

Increased geometric resolution of SAR images by:

- along-track displacement of parasitic satellites:
 ⇒ different Doppler centroids
 ⇒ super-resolution in azimuth by coherent combination of shifted Doppler spectra

- across-track displacement of receiving satellites:
 ⇒ different incidence angles
 ⇒ super-resolution in range by coherent combination of images with different ground range spectra
Geostationary Illuminator / LEO Receivers

Basic Idea:
- constant illumination by geostationary transmitter
- signal reception by multiple low-cost receivers

Illuminator:
- geostationary orbit
- high Tx power (CW)
- large antenna area
- optional: steerable antenna

Advantages:
- substantially improved revisit times without cost explosion
- multiple missions may share one illuminator

Receivers:
- low-cost micro-satellites
- small antennas
- passive (receive only)
- low earth orbit
Example: Orbit optimized for short revisit times of dedicated area (h=404 km, 31 orbits/2 days)

⇒ up to 5 observations per repeat cycle

Average Revisit Time

- ~ 1 h
- ~ 17 min
Digital Beamforming in Passive Receivers

Digital beamforming on receive makes effective use of the total signal energy in the large illuminated footprint:

⇒ **mapping of a wide swath**
 or multiple spots
 (in spite of extended antennas in elevation)

⇒ **very long synthetic apertures**
 (also with long receiver apertures)
 – high azimuth resolution
 – more independent looks
 – improved sensitivity

⇒ **interference suppression**

⇒ **ambiguity reduction**

⇒ **multiple phase center MTI**
 (e.g. STAP)

Transmitter Footprint
125 km x 250 km
(X-Band, $d_{\text{ant}}=10\text{m}$, $\Theta=48^\circ$)

Receiver Footprint
Ø ≤ 10 km
(X-Band, $d_{\text{ant}}=2\text{m}$, $h=400\text{ km}$)
Challenges in Bi- and Multistatic SAR

Oscillator Phase Noise

Pulse Synchronization

Antenna Pointing & Calibration

Orbit Control & Relative Position Sensing

Bistatic Processing
Conclusions

Future SAR systems must provide
 • broad coverage and short revisit times
 • multiple view angles, polarisations, baselines, and frequencies

New and affordable concepts are
 • multi-static SAR
 – enables smaller and cheaper satellites
 – provides more information and increased sensitivity
 – benefits from advanced technologies
 • digital beam forming
 – makes full use of information at antenna array
 – improves performance
 • satellite constellations
 – may share common illuminator
 – symbiotic use of platforms (e.g. with Nav./Com.)
 – allow for decreased revisit times
Vision

Continuous Global Monitoring for Environment and Security by a Reconfigurable SAR Satellite Constellation
Questions