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Four satellite rain estimations based on microwave (MW), infrared (IR) or combined MW-IR
techniques are compared with the BOlogna Limited Area Model (BOLAM) rain forecast for a severe
weather event (8–13 November 2001) over the western Mediterranean Sea.

Two of the investigated multi-channel MW rainfall algorithms use data from the Tropical Rainfall
Measuring Mission (TRMM). The Frequency Difference Algorithm relies on data from the TRMM
Microwave Imager (TMI) and the other one combines data from the Precipitation Radar (PR) with
those from the nine-channel radiometer TMI, called PR Adjusted TMI Estimations of Rainfall
(PATER) algorithm. The pure IR Rain Estimator uses geostationary IR METEOSAT data and the
combined Naval Research Laboratory algorithm uses both MW data from low orbiting satellites and IR
data from the geostationary orbit.

Validation results, computed over a common grid, which is independent of the different field of view
sizes of the applied data sets, indicate that there is generally a better performance for heavy rain
(> 6 mm h−1) than for light rain (<1 mm h−1). Both MW algorithms perform rather similarly, although
PATER shows some rain detection problems due to thick aerosol loads originating from the desert. The
BOLAM model presents a good agreement with the MW and only a minor location error of a heavy
rain area was detected. Both IR-based algorithms have problems in identifying the correct rainy areas
compared to MW. Overall, the results suggest that there are advantages in combining both techniques –
the well-known rain physics of the MW channels with the high temporal resolution of IR algorithms – to
retrieve precipitation from satellite data.
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1. Introduction

The atmosphere obtains three-quarters of its heat
energy from the release of latent heat by precipitation
(Hartman 1994; Kummerow et al. 1998). Differences
in large-scale rainfall pattern affect the entire global
circulation. However, the scarcity of conventional rain
gauge measurements, particularly over water bodies,
prevents adequate sampling of the precipitation field
for global applications. Therefore, satellite data are a
valuable source of information on clouds and rainfall
(Todd & Bailey 1995).

Various climate models predict a decrease of precipita-
tion in the future over many parts of the subtropics,

particularly in winter (Bolle 2003). Therefore, it is
essential to have not only climatological data from land
but also from over the seas. Unfortunately, rainfall,
unlike other meteorological parameters, is highly
variable both spatially and temporally. Remote areas
not covered by conventional observation networks can
now be continuously monitored by low orbiting and
geostationary satellites. The first satellite rain retrievals
in both the infrared (IR) and the microwave (MW)
spectra date back to the 1970s (Barrett 1970; Barrett
& Martin 1981; Kidder & Vonder Haar 1995). Recently,
within the EURAINSAT project (Levizzani et al. 2001,
2006; Levizzani 2003) different approaches have been
used, such as the algorithms of Turk et al. (2000a), Bauer
et al. (2000, 2001), Bauer (2001), Levizzani et al. (2001),
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Tapiador (2002) and Kidd et al. (2003), besides other
workers such as Grose et al. (2002) and Oh et al. (2002).

Passive microwave (PMW) precipitation algorithms
are directly linked to the 3-D structure of the
precipitating system. They use measurements from
different sensors on different satellites, including the
Special Sensor Microwave/Imager (SSM/I) on board
the Defense Meteorological Satellite Program (DMSP),
the Tropical Rainfall Measurement Mission (TRMM)
MW Imager (TMI) and the Precipitation Radar (PR) on
board the TRMM, and the Advanced MW Sounding
Unit (AMSU) on board the National Oceanic and
Atmospheric Administration (NOAA) satellites. PMW
techniques perform much better over the oceans than
over land, because the emission of water is very low
compared to land surfaces in the GHz range. The
usually unknown radiative emission of land can be
estimated to some extent on a global scale (Prigent
2006a, 2006b). The PMW techniques are directly related
to the hydrometeors through scattering and emission,
but the poor spatial resolution and time coverage of MW
sensors on board low Earth-orbiting platforms prevent
the tracking of developing severe storms.

The MW data used in this article rely on TRMM
measurements. Since the area of the tropics is mainly
ocean, precipitation there can only be measured
satisfactorily from space. In 1997 the TRMM satellite
(Kummerow et al. 1998), a joint US (National Aero-
nautics and Space Administration (NASA)) and
Japanese (National Space Development Agency
(NASDA)) project, was successfully launched carrying
five instruments. For the first time a satellite carried
both active and passive MW sensors for measuring
precipitation. Since the aim of TRMM is to measure
rainfall in the tropics, a low inclination orbit (35◦) with
respect to the equatorial plane was selected. After a
boost into a 400-km orbit in August 2001, the conical
swaths of TMI, about 850 km wide, now cover the
southern Mediterranean Sea up to latitude 39◦ N. The
low orbit compared to the SSM/I platform enable a
much better resolution of the TMI data, which are a
very valuable source for studying the so-called Algerian
flood in November 2001. TRMM is still in orbit and
has emerged as one of the most successful missions to
monitor and study rainfall from space.

While the daily evolution of precipitation is not
easily obtained from TRMM data, IR-based techniques
from geostationary satellites have been widely used
due to the high revisit period. At present, only
measurements taken from geostationary platforms have
sufficient spatial resolution (a few square km), temporal
resolution (15–30 min) and spatial coverage to follow
the rapid variations of precipitation fields properly.
Moreover, the long history and the robust technology
of instruments on geostationary platforms enable the
reanalysis of historical events and guarantee a timely
and reliable release of calibrated data. Visible and IR

measurements, however, only give indirect information
on the precipitation field, as they are limited to the
uppermost cloud layer. Their uncertainties are thus
relevant per se since the precipitating hydrometeors
do not interact directly with the photons collected
aloft by space-borne instruments at these wavelengths.
Several methods, called blended techniques, have been
developed that ‘calibrate’ IR brightness temperature
(TB) data collected from geostationary sensors by using
the more physically based rain estimates derived from
PMW instruments, radar and raingauge measurements.

Validation is a process of assessing by independent
means the uncertainties of the data products derived
from the system outputs. The rain characteristics vary
with different climate regimes, and thus any developed
method has to be validated against appropriate in situ
measurements that are taken over the region of interest.
Over the past years several intercomparisons within
the Precipitation Intercomparison Projects (PIP) and
the satellite precipitation Algorithm Intercomparison
Programmes (AIP) (Ebert et al. 1996; Ebert & Manton
1998; Adler et al. 2001) have favoured the development
and use of global satellite precipitation products. The
main result was that the PMW estimates produced the
best instantaneous results and the IR-based estimates
provided the best long-term estimates. A cross-
comparison of rainfall data sets from the low orbiting
TRMM satellite and the gauge data of the Global
Precipitation Climate Project (GPCP) are described
in Adler et al. (2002). One of the most challenging
tasks of validation-intercomparison is to find a common
structure that enables the combination of data sets in
different temporal or spatial resolutions.

In the present study a fine-scale regional intercompar-
ison of rain intensities was performed derived from
PMW and/or IR-based algorithms and the mesoscale
Bologna limited-area model (BOLAM). The selected
region is the south-western Mediterranean Sea in a
common grid for one episode, namely the Algerian flood
in early November 2001.

Following the description of the severe weather event
in Section 2, the descriptions of the data follow in
Section 3 and the method of analysis and information
on the algorithms used is given in Section 4. In Section
5, the results of the rainfall comparison are discussed,
and finally in Section 6, an assessment of the results is
presented.

2. Meteorological situation

Different rain algorithms are applied to a severe weather
episode that affected the south-western Mediterranean
area between 8 and 13 November 2001. It was
characterised by heavy rainfall and flooding over Algeria
and wind storms especially over the Balearic Islands
(Kästner & Erbertseder 2002; Pinori et al. 2002; Thomas
et al. 2003; Tripoli et al. 2005).
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Figure 1. METEOSAT-7 IR image on 9 November 2001, 1200
UTC, A = Algiers.

Figure 2. METEOSAT-7 IR image on 10 November 2001,
1200 UTC, A = Algiers.

In the middle troposphere, a cold trough, extending
from northeast to southwest over the western Mediter-
ranean Sea, developed on 9 November 2001 (Figure 1).
It was associated with a pronounced tropopause fold
and polar air advection towards the Iberian Peninsula.
On the following day, favoured by the unstable
baroclinic environment, an intense cyclone evolved
rapidly over the Algerian coast and deepened, moving
northward towards the Balearic Islands (Figure 2).
Between 9 and 10 November Algeria was struck by
a devastating flood, caused by a significant amount of
precipitation, which caused more than 700 fatalities and
massive material damage. The rainfall started in Algeria
late on 9 November and ended the next day at about
noon. Some 150 mm fell in 6 hours and almost 300 mm
in less than 24 hours, locally. The METEOSAT-7
(data: European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT)) IR images in
Figures 1 to 3 show the cloud system associated with
the cyclone, affecting the Algerian and Balearic coasts.

Figure 3. METEOSAT-7 IR image on 11 November 2001,
1200 UTC, A = Algiers.

On 11 November, the cyclone reached its maximum
intensity. Very warm continental tropical air, reaching
values up to 18 ◦C at 850 hPa, from the Sahara Desert
mixed with Arctic cold air, close to 0 ◦C at 850 hPa,
on the east side of the cyclone. In this highly unstable
air, a storm cyclogenesis with a core of tropical warm
air developed (Figure 3), which is noteworthy because
this is not usual at these latitudes (Tripoli et al. 2005).
At high levels a trough evolved into a cut-off low.
The strong pressure gradient over the Balearic Islands
induced a severe wind storm (150 km/h−1 winds), and
heavy thunderstorms were reported. Rainfall in excess
of 400 mm in less than 48 hours was observed between
10 and 12 November.

Two processes intensified the convective development
which led to the flooding disaster in Algeria: (1) the
cold Maritime Arctic air that crossed over the still warm
Mediterranean Sea (18 ◦C) where it picked up moisture,
destabilised, and met initially subtropical air; and (2)
the strong surface winds blowing against the mountains
(>2300 m) along the African coast that caused intense
orographic rainfall.

3. Data

3.1. Mesoscale BOLAM model

The simulations were carried out with the hydrostatic
model BOLAM (Buzzi et al. 2003). Model dynamics are
based on primitive equations, with wind components u
and v, potential temperature θ , specific humidity q and
surface pressure ps as dependent variables.

Within the 3-D model, the vertical coordinate is terrain
following (σ ). The vertical discretisation between σ

levels is of the Lorenz type, with vertical velocity
defined at levels intermediate between those where
the prognostic variables are known. The horizontal
discretisation uses geographical coordinates, with
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latitudinal rotation on an Arakawa C-grid. Second-
order horizontal and vertical differencing is employed.
The model implements an original second-order,
forward-backward advection scheme (Malguzzi &
Tartaglione 1999). A more detailed description of the
dynamics and numerical schemes can be found in
Davolio & Buzzi (2004).

The water cycle for stratiform precipitation is described
by means of five prognostic variables (cloud ice,
cloud water, rain, snow, graupel), with a simplified
approach similar to that proposed by Schultz (1995).
Deep convection is parameterised using the Kain-
Fritsch (Kain & Fritsch 1990) convective scheme,
with some modifications, including those suggested by
Spencer & Stensrud (1998) to improve the effect of
the downdraft. The surface and boundary layer scheme
is based on the mixing length theory, with exchange
coefficients computed as a function of the Richardson
number, as in Louis et al. (1981). Surface processes are
described by water and energy balances in a three-
layer ground model. The radiation is computed with
the application of the Geleyn scheme (Ritter & Geleyn
1992).

The orography used in the simulations is derived
from the interpolation and smoothing of the 1 km
(1/120◦) resolution Global Land 1-km Base Elevation
(GLOBE) Digital Elevation Model of the National
Geographical Data Center (NGDC). The initial
and lateral boundary conditions were supplied by
the European Centre for Medium-Range Weather
Forecasts (ECMWF) 6-hourly analyses at 0.5◦ × 0.5◦

resolution. Hybrid model-level data are directly
interpolated on the limited area model grid. Snow
cover, sea surface temperature, soil temperature and
soil wetness are also derived from the analyses. The
model was tested and favourably compared with many
other mesoscale limited area models during the course
of the COMPARE WMO (World Meteorological
Organisation) Project (Georgelin et al. 2000).

All the simulations were performed using a grid of
170 × 150 points, with a horizontal resolution of about
22 km (0.2◦ in rotated coordinates) and 38 vertical levels.
The spacing between levels is variable, with the highest
resolution in the boundary layer.

In order to produce 3-hourly accumulated rainfall
at 0300, 0600 and 0900 UTC, the simulations were
initialised at 1200 UTC the day before. Model-generated
precipitation at these times therefore corresponds to a
15 h, 18 h and 21 h forecast, respectively. Three forecasts
were performed and rainfall data for 9–11 November
2001 were generated.

3.2. Satellite related algorithms

The TMI collects passive radiance information at 10.7,
19.4, 21.3, 37.0 and 85.5 GHz, having increasing ground

spatial resolution from 70 to 6 km. All the channels are
horizontally (h) and vertically (v) polarised, except for
the 21.3 GHz channel, which is only vertically polarised.
The adopted PMW algorithms are based on brightness
temperatures (TB) derived from the radiances measured
in the above-mentioned channels. The main information
in the 11 GHz channel comes from the ground while at
higher frequencies the information comes from upper
parts of the atmosphere under cloud-free conditions.

Figure 4 shows TB maps from three of nine TMI
channels for one TRMM orbit over the study area.
The brightness temperature maps at 19 GHz (horizontal
polarisation (a) and vertical polarisation (b)) reveal a
considerable contrast between ocean and land owing
to the different emissions of water and land. At this
frequency the rainy bands appear to be warmer than the
cloud-free water and they can clearly be detected north
of Africa, while over land rain appears to be colder than
the background due to the high MW emission of land.
Both channels show similar TB values within the rainy
areas (low polarisation), while the rain-free oceanic areas
have considerably different TBs due to reflection at
the polarising ocean surface. This reflection indirectly
depends on the wind velocity through the wave heights.
Although the 85 GHz channel (Figure 4c) has much
better horizontal resolution than the others, the rainy
areas are not easily outlined because the rain/no-
rain contrast is much smaller. The 85 GHz channel is
influenced by scattering due to ice particles, which act
to decrease the TB by increasing the probability that
photons become scattered out of the beam before being
detected. An example of this behaviour can be seen in
Figure 4c where the two active convective cores west of
Algiers and west of Sicily are characterised by TB values
less than 190 K.

The applied rain retrievals and rain data are now briefly
described.

The IR Rain Estimator (IRE) is an operational
rapid update purely IR-based algorithm to diagnose
half-hourly near-surface rainfall. It is an empirical
technique suited for acquisitions from geostationary
satellites such as METEOSAT. It uses some relevant
features of the cloud top evolution and structure as
well as information from a numerical weather prediction
model (F. Meneguzzo, private communication).

In the adopted blended technique (Turk et al. 2000a,
2000b), hereafter called the Naval Research Laboratory
(NRL) technique, the original operational set-up of the
software (global, automatic, real time, using a suite of
PMW and IR observations) was adapted to the task
of analysing test case studies. In the NRL technique,
rain intensities derived from PMW measurements are
used to create global, geo-located rain rate (RR) and TB
(brightness temperature) relationships that are renewed
as soon as new co-located data are available from
both geostationary and PMW instruments. The rain
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(a)

(b)

(c)

Figure 4. 10 November 2001, orbit time 0025 UTC. TMI
brightness temperatures of (a) top: 19h; (b) mid: 19v; and
(c) bottom: 85v GHz channels (v = vertical, h = horizontal
polarisation, A=Algiers).

Figure 5. 10 November 2001, TMI orbit 22741 + 22742,
00:25 + 02:10 UTC. A = Algiers, top: PATER, bottom: FDA –
PMW algorithms.

rate can be derived, in principle, from any source,
provided they are geo-located rain intensities measured
in mm h−1, and contain some useful information (orbit,
date, start time, sensor, satellite). For the present work
the rain rate estimates are derived from SSM/I data.
From the brightness temperatures measured in seven
polarised channels from 19.2 to 85.5 GHz, rain rates are
derived by means of the NOAA-NESDIS (National
Environmental Satellite, Data and Information Services)
operational algorithm (Ferraro & Marks 1995; Ferraro
1997). The NESDIS algorithm derives rain rates at the
A-scan resolution of the SSM/I (∼ 25 km) by means
of non-linear relationships involving the instrument
channels (vertical and horizontal polarisation) that have

Figure 6. 10 November 2001, 0300 UTC. A = Algiers,
BOLAM – model.

Figure 7. 10 November 2001, 0300 UTC. A = Algiers, NRL –
combined IR-MW algorithm.

Figure 8. 10 November 2001, 0300 UTC. A = Algiers, IRE –
IR algorithm.

been calibrated using large sets of ground reference
data collected by radar networks in different countries.
The physical basis of such relationships are the
scattering of MW radiation due to large ice particles
above the freezing level occurring in precipitating
clouds, and the emission from liquid water. This latter
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phenomenon can be sensed only above oceanic surfaces
owing to the high and largely unknown emissivity
of land surfaces in the MW spectral range. Relying
on PMW measurements only (without need for a
large input-database of physical properties) and on
simple but well-founded relationships, this algorithm
is very robust and lends itself to global applications.
To calibrate IR measurements, the globe (or the
study area) is subdivided into equally spaced boxes
(2.5◦ latitude × 2.5◦ longitude). For each box, space and
time coincident IR and PMW measurements are reduced
to the worse spatial resolution and then collected.
The co-location process allows for time and space
offsets (15 min and 10 km, respectively). In order to
form a meaningful statistical ensemble, the method can
look at older PMW orbit-IR slot intersections, until a
certain (75%) box coverage is reached and a minimum
number of coincident observations are gathered for a
2.5◦ × 2.5◦ region. By means of this set of rain rates
and corresponding TB, the rain rate–TB relationships
are derived by applying a probability matching method
(Calheiros & Zawadzki 1987).

The Frequency Difference Algorithm (FDA) by Kidd
described in Ebert (1996) uses the 19v and 19h GHz
channels and relates them to the rain rate. This PMW
satellite rain algorithm is operationally applied to
TRMM as well as SSM/I orbit data over land and
ocean.

The over-ocean satellite rainfall algorithm PR Adjusted
TMI Estimations of Rainfall (PATER: Bauer et al. 2001)
is a physical PMW algorithm developed for moderate
and heavy rain intensities. A principal component
analysis reduces the redundant information content of
the nine TMI channels to only two empirical orthogonal
functions. The retrieval database of forward simulations
of TMI-TB, is generated from several 3-D cloud models
including hydrometeor profiles, the melting layer and
different geometries (Bauer 2001). The algorithm has a
stand-alone PMW component based on TMI brightness
temperatures only, and an optional calibration with
carefully co-located surface rain intensities retrieved
from PR measurements (having a spatial resolution of
about 5 km), downscaled to the lower spatial resolution
of the 11 GHz channel of TMI (∼50 km). Since the
swath of the coincident PR measurements is only
about 215 km, these high-resolution data are useful for
calibration issues, provided that the PR data are bias
free. However, recent comparison analysis of PR with
ground-based radar data revealed an underestimation
of the PR rain rates (Schumacher & Houze 2000).
Assumptions in the PATER retrieval imply a minimum
rainfall rate of 1 mm h−1.

4. Method of analysis

In a pre-study, Kästner (2003) reported on rain rates
from the experimental over-ocean PATER algorithm

that were merged from three TRMM overpasses per day
and then downscaled to a 1◦ × 1◦ grid for a comparison
with the independent 1◦-daily Global Precipitation
Climatology Centre (GPCC) data (Rudolf et al. 1996)
at adjacent gauge locations at coasts or islands. The
result was a correlation coefficient of 0.71 between
the data sets, although the temporal data structure was
different – merged instantaneous versus accumulated
rain rates. This result was very encouraging because
the best operational rain algorithm in the PIP-3 study
(Adler et al. 2002) performed with a correlation of
0.75. The false alarm rate (see below) indicated a
sensitivity of the PATER algorithm to be about 0.7 mm
h−1 at this 1◦ resolution, which is equivalent to a
liquid water content of 0.05 g m−3. In the cited inter-
comparison study, the use of a common area, period,
grid and format was essential for combining data sets
with different temporal and spatial resolutions that
sometimes described different physical observables.
All subsequent tasks such as calibration, sampling, or
error analysis needed a common grid that allowed an
equivalent evaluation.

For the joint effort of validating and comparing several
rain algorithms developed and applied within the scope
of the EURAINSAT project, the different data types
were reassembled in a unique grid that provides an
effective basis for comparing instantaneous and merged
space measurements of different algorithms with a
mesoscale forecast from the BOLAM model. Con-
tinuous and categorical statistics were used according
to Ebert et al. (1996) and Ebert & Manton (1998).
The categorical statistical measures are defined in a
two-class contingency table. Let N be the total number
of cases and a, b, c, d defined for two data sets A and B
as follows:

a = hits (rain(A)/rain(B))
b = misses (rain(A)/no rain(B))
c = false alarms (no rain(A)/rain(B))
d = correct negatives (no rain(A)/no rain(B))

From combinations of these four elements, the statistical
measures used are defined as follows:

ACCU: accuracy = (a + d)/N with
N = a + b + c + d

BS: bias score = (a + c)/(a + b)
FAR: false alarm rate = c/(a + c)

POD: probability of detection = a/(a + b)
TS: threat score = a/(a + b + c)

ETS: equitable threat score
= (a − rnd)/(a + b + c − rnd)

where rnd = (a + b) ∗ (a + c)/N
OR: odds ratio = (a ∗ d)/(b ∗ c)

HK: Hanssen-Kuipers skill score
(Hanssen & Kuipers 1965) = a/(a + b) − c/(c + d)

= POD − c/(c + d)
HSS: Heidke skill score (Heidke 1926)

= ((a + d) − E)/(N − E)
where E = ((a + b) ∗ (a + c) + (b + d) ∗ (c + d))/N
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ETS, HK and HSS are commonly used for rainfall
verification purposes. Which of them is the most
appropriate is still an open issue (Manzato 2005): ETS
is sensitive to hits and penalises both misses and false
alarms, while HSS measures improvement over random
chance. More information on the different scores for
satellite-based rainfall can be found online (Ebert 2005).

The study area extends from 15◦W to 20◦E (Canary
Islands to Italy) and from 30◦N to 60◦N (Morocco to
Great Britain). The common study period is from 8
to 13 November 2001, and the resolution of the grid
for the resampling of rain intensities is 0.25◦ (∼ 28 km)
both in latitude and longitude. TRMM and IRE data do
not evenly cover the study area, and so the subsequent
comparison was conducted only over the available
common area. The temporal coincidence was optimal
for the two PMW algorithms, because PATER and FDA
have the same TMI database, otherwise the temporal
offset (time window) was less than +/−15 minutes
for comparisons with IR (NRL, IRE) and in most
cases better than +/−90 minutes for comparisons with
the independent model data, which have a 3-hourly
temporal resolution. Comparisons were performed for
single orbits as well as for merged data within 3 h
periods.

5. Results

A validation study of the satellite rainfall estimations
has been performed for the Algerian flood event
using independent intercomparison of different rainfall
retrievals, including pure PMW, pure IR, combined
MW/IR techniques and model results using BOLAM.

The results of this intercomparison are shown in
Figures 5–8 for a fixed target date (10 November 2001,
0300 UTC), corresponding to the period of maximum
rainfall intensity during the Algerian flood. A complete
analysis of the categorical statistics with selected scores
of all possible combinations of the above rainfall
algorithms within the period 8–13 November 2001 is
given in Table 1.

Figure 5 shows three areas of heavy rainfall, one is
located west of the Canary Islands, the biggest one
west of Algiers (36◦46′N, 3◦02′E) and one west of
Sicily. The three rain areas coincide very well for both
MW algorithms. Also, the strong rain intensities are
similar except for the Sicily area. FDA works over
land and ocean, PATER exclusively over ocean. The
overall correlation coefficient of 0.88 for both PMW
algorithms is limited to moderate (1 to 3 mm h−1), high
(3 to 6 mm h−1) and very high (>6 mm h−1) rain rates.
The coherent rain area with low intensities (around
1 mm h−1) off the north coast of Libya is erroneously
detected (Figure 5, top). It is the result of strong desert
aerosol, also detected as aerosol fallout in Rome the
next day. The rainy speckles over the Atlantic are due to
cumulus convective showers within the cold air, which

are widely below the minimum detectable threshold of
1 mm h−1.

Compared to the PMW techniques, the BOLAM model
rainfall forecast shows wide agreement for the strong
rain bands (Figure 6). The main rain structure agrees
well, with only one heavy rain area being too far
west of Sicily. However, the shower pattern over the
Atlantic is not well matched and there are many areas
with light rain in the model that are not detected
with the MW algorithms. These data show a high
correlation coefficient (0.83) with FDA, while the
overall performance is somewhat less, due to too much
light rain in BOLAM.

The two IR-based algorithms, NRL and IRE (Figures 7
and 8), give heavy rain areas over the Mediter-
ranean Sea, but not at the correct position. The
Algerian coast, where the maximum precipitation fell,
would not be classified as a heavy rain area. The com-
bined MW/IR NRL algorithm performs much better
than the pure IR algorithm IRE.

In Table 1, N (the number of compared pairs for
the period 8–13 November 2001) differs for each
algorithm. The most comprehensive data set is from
NRL due to the high repetition rate of METEOSAT.
The following abbreviations are used: B = BOLAM,
F = FDA, P = PATER. Extreme values are in bold
(maxima) and italic (minima). For each algorithm
a summary line is given and all comparisons are
summarised in a total line, the last line giving the event
occurrences as a percentage.

The accuracy of the different intercomparisons ranges
from 0.62 (BOLAM versus IRE), via respectable 0.78
(BOLAM versus FDA), to optimal 0.82 (PATER versus
FDA). No bias between PATER and FDA is indicated
(score = 1), though this is not surprising as they use
the same TRMM database. The FDA performs best in
terms of accuracy, while the PATER algorithm seems
to be nearly bias free in all intercomparisons. The
bias score of BOLAM versus both PMW techniques
is quite high. This is mainly due to the low rain
intensities often present in the model forecasts, which
are not detected either with PATER or with FDA,
potentially because of the high rain/no-rain threshold.
An optimal FAR is obtained with FDA, and POD is best
with BOLAM. Consequently, BOLAM has an optimal
performance with HK, which depends on POD. Both
IR algorithms show their strengths with the scores of
HSS, ETS and TS, which are not independent of each
other.

As can be seen in Table 1, each algorithm has its own
strength, but none of them performs perfectly with
all the scores e.g. PATER is generally bias free, but
has the worst ETS and HSS. Therefore, it seems to be
worthwhile to combine the high temporal resolution of
IR with the better rainfall identification performance of
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Table 1. Categorical statistics for different satellite rain retrievals and BOLAM forecasts.

N c d
comp. a b false correct ACCU BS FAR POD OR HK HSS ETS TS
pairs hits misses alarms negatives best = 1 best = 1 best = 0 best = 1 best = N best = 1 best = 1 best = 1 best = 1

P vs. F 3352 84 298 298 2672 0.82 1 0.78 0.22 2.53 0.12 0.12 0.06 0.12
P vs. B 8354 409 1761 993 5191 0.67 0.65 0.71 0.19 1.21 0.03 0.03 0.02 0.13
P vs. NRL 14619 482 2091 2222 9824 0.7 1.05 0.82 0.19 1.02 0 0 0 0.1
P vs. IRE 2593 187 431 519 1456 0.63 1.14 0.74 0.3 1.22 0.04 0.04 0.02 0.16
PATER 28918 1162 4581 4032 19143 0.7 0.9 0.78 0.2 1.2 0.03 0.03 0.01 0.12

F vs. P 3352 84 298 298 2672 0.82 1 0.78 0.22 2.52 0.12 0.12 0.06 0.12
F vs. B 6127 686 1121 257 4063 0.78 0.52 0.27 0.38 9.67 0.32 0.37 0.23 0.33
F vs. NRL 7143 357 1086 279 5421 0.81 0.44 0.44 0.25 6.39 0.2 0.25 0.14 0.21
F vs. IRE 930 116 217 73 524 0.69 0.57 0.39 0.35 3.84 0.23 0.25 0.14 0.29
FDA 17552 1243 2722 907 12680 0.79 0.54 0.42 0.31 6.38 0.25 0.29 0.17 0.26

B vs. P 8354 409 993 1761 5191 0.67 1.55 0.81 0.29 1.21 0.04 0.03 0.02 0.13
B vs. F 6127 686 257 1121 4063 0.78 1.92 0.62 0.73 9.67 0.51 0.37 0.23 0.33
B vs. NRL 13880 1374 1846 1513 9147 0.76 0.9 0.52 0.43 4.5 0.28 0.3 0.17 0.29
B vs. IRE 3777 842 377 1079 1479 0.61 1.58 0.56 0.69 3.06 0.27 0.23 0.13 0.37
BOLAM 32138 3311 3473 5474 19880 0.72 1.29 0.62 0.49 3.46 0.27 0.25 0.14 0.27

NRL vs. P 14619 482 2222 2091 9824 0.7 0.95 0.81 0.18 1.02 0 0 0 0.1
NRL vs. F 7142 357 279 1086 5421 0.81 2.27 0.75 0.56 6.39 0.39 0.25 0.14 0.21
NRL vs. B 13880 1374 1513 1846 9147 0.76 1.12 0.57 0.48 4.5 0.31 0.3 0.17 0.29
NRL vs. IRE 6320 1302 702 986 3324 0.73 1.14 0.43 0.65 6.25 0.42 0.41 0.25 0.44
NRL 41961 3516 4715 6008 27716 0.74 1.16 0.63 0.43 3.44 0.25 0.23 0.13 0.25

IRE vs. P 2593 187 519 431 1456 0.63 0.88 0.7 0.26 1.22 0.04 0.04 0.02 0.16
IRE vs. F 930 116 73 217 524 0.69 1.76 0.65 0.61 3.84 0.32 0.25 0.14 0.29
IRE vs. B 3777 842 1079 377 1479 0.61 0.63 0.31 0.44 3.06 0.24 0.23 0.13 0.37
IRE vs. NRL 6314 1302 986 702 3324 0.73 0.88 0.35 0.57 6.26 0.39 0.41 0.25 0.44
IRE 13614 2447 2657 1727 6783 0.68 0.82 0.41 0.48 3.62 0.28 0.29 0.17 0.36

total 134178 11678 18149 18149 86202 0.73 1 0.61 0.39 3.06 0.22 0.22 0.12 0.24
total in % 100 9 14 14 64

Data rely on 8–13 November 2001 of the western Mediterranean region.
B = BOLAM, F = FDA, P = PATER. Maximum values per column are in bold, minimum in italic. For each algorithm a summary line is given and all comparisons are summarised in a total line, the last line gives
the event occurrences as percentage.
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MW techniques for monitoring rainfall from space. The
NRL algorithm or the now available TRMM 3B42RT
products belong to this category. The low MW pixel
resolution makes a 0.25◦ (∼28 km) latitude–longitude
grid appropriate, but better spatial resolution is required
by the users.

The overall FAR is about 0.61, the POD is only 0.39,
and misses and false alarms are in the order of 14%,
showing that there is still a highly visible potential for
the development of each algorithm. At the moment,
no single algorithm is able to characterise the rainfall
situation satisfactorily, but a combination of different
approaches, bringing together the qualities of each
algorithm, seems to be the best way to tackle the
problem of rainfall estimation and shows considerable
promise. Problems are still present in the detection
of light rain in the MW retrievals and in following
the development of storms. Moreover, the models
suffer to some extent from location errors of the
forecasted rain areas, depending on the time intervals
between programme start and valid time, and the IR
methods have difficulty with short time accumulations
and instantaneous rain rates. The accuracy of all
comparisons together has a mean value of 0.73 on a
small-scale grid of ∼28 km. Nevertheless, the accuracy is
dependent on the rain/no-rain threshold, the minimum
detectable rain rate of the PMW algorithms.

Note, that even in this heavy rain event, only 9%
are hits (rain/rain), whereas 64% are correct negatives
(no-rain/no-rain), the latter dominate the statistics of
accuracy, OR, HK, ETS and HSS.

6. Conclusions

A heavy rainfall episode characterised by intense
convection – the Algerian flood – in November 2001
was selected for a validation analysis of different satellite
rainfall algorithms representing MW, IR or combined
MW/IR retrievals and forecasts of the mesoscale
BOLAM model. The variety of multi-sensor rainfall
estimations applied to the same event is one of the
strengths of the EURAINSAT project that brought
these different approaches together. The rainfall data
were uniquely gridded at 0.25◦ (∼28 km) latitude–
longitude in a common area over south-western
Europe. Categorical statistics based on dichotomous
data (rain/no rain) were generally used because the
correlation coefficient for two different rainfall data sets
has already been shown to be dependent on the choice
of the grid size (Turk et al. 2002).

The maximum correlation coefficient is reached in this
study on the 0.25◦ grid for both PMW techniques –
0.88 for PATER versus FDA (orbit 22741). The best
correlation for the model BOLAM versus PATER
reaches 0.83 (orbit 22742). Generally, the correlation
coefficient is not thought to be the most appropriate

measure in rain algorithm intercomparisons because the
frequency distribution of rain is a very skewed one and
not a Gaussian.

The accuracy varies for the same data sets by changing
the grid size, too. Threshold tests with PATER and
FDA have further shown how crucially dependent the
accuracy results are on the minimum detectable rain
rate (Kästner 2003). A practicable threshold seems to
be reached when the sum of hits and misses is firmly
above the false alarms. Since the rainy pixels are usually
in the minority, the statistics are dominated by the
correct negatives and not by the hits. Therefore, the
use of entity-based methods like contiguous rain area
verification may give further insights into algorithm
performances (Ebert & McBride 2000).

Special interest was focused on the PATER algorithm
that uses active PR and passive TMI data of the TRMM
satellite. The PATER retrieval is crucially dependent
on the forward 3-D cloud model calculations. There
is a need for better and more comprehensive cloud
models that cover the whole spectrum of natural
clouds, particularly clouds with moderate and light rain
(intensities below 1 mm h−1).

Both PMW retrievals, PATER and FDA, rely on the
same TMI orbit data and so it was expected that their
comparison would result in a rather similar rainfall
area and intensity, disregarding low rain events due
to assumptions in the retrievals. Both algorithms are
assessed to be of equal quality in a heavy rainfall event,
except the restriction of PATER to ocean surfaces only.
The FDA has optimal accuracy values and PATER is
almost bias free. The most successful comparison of pure
PMW with other techniques was against the BOLAM
model output followed by the NRL blended MW/IR
technique, both performing better than the pure IR
technique.

A general outcome was that each algorithm has its
own strength and there is not a single algorithm with
optimal performance. The combination of different
retrievals seems to be better suited to tackling the rain
detection and estimation problem. The results suggest
a combination of IR and PMW rainfall estimates so
that the strength of both, the well-known rain physics
of the MW channels and the high temporal resolution
of IR algorithms, improves the precipitation estimates
from satellite data. A better temporal sampling is
necessary because data from low orbiting satellites are
not well suited to follow the development of a storm
event.

Moreover, small-scale convective showers in cold air
generally seem to be difficult to detect for the mesoscale
hydrostatic models (area) as well as for the MW
algorithms (intensity), but the strong and heavy frontal
rain bands present almost no problem for MW-based or
model-based detection. With a mean accuracy of 0.73 at
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a 28-km scale this is an encouraging prospect and paves
the way for satellite rainfall products being assimilated
into mesoscale models for more precise flood forecasts
and heavy rain events.

New observations from satellite missions are already
available from METEOSAT Second Generation (MSG),
which provides an image frequency of 15 minutes,
thereby enhancing the use of life history techniques for
convective systems. The launch of new MW sensors,
like the Global Precipitation Measurement (GPM)
(Flaming 2002) will provide three-hourly data that could
be used for the calibration of the IR datasets. The
GPM scientific team acknowledged the value of high
frequency channels for the detection of light rain and
snow, especially over land (Bidwell et al. 2005), and
NASA has recently approved the incorporation of high
frequency capability on GPM instruments.
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(1996) Comparison of rain gauge analyses, satellite-based
precipitation estimates and forecast model results. Adv.
Space Res. 18: 53–62.

Schultz, P. (1995) An explicit cloud physics parameterization
for operational numerical weather prediction. Mon.
Weather Rev. 123: 3331–3343.

Schumacher, C. & Houze, R. A. (2000) Comparison of Radar
Data from the TRMM Satellite and Kwajalein Oceanic
Validation Site. J. Appl. Meteorol. 39: 2151–2164.

Spencer, P. L. & Stensrud, D. J. (1998) Simulating flash flood
events: importance of the subgrid representation of the
convection. Mon. Weather Rev. 126: 2884–2912.

Tapiador, F. (2002) A new algorithm to generate global
rainfall rates from satellite infrared imagery. Revista de
Teledeteccion 18: 57–61.

Thomas, W., Baier, F., Erbertseder, T. & Kästner, M. (2003)
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