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Abstract— This paper addresses an impedance control for
a free-floating space robot in the grasping of a tumbling
target with model uncertainty. Firstly, the operational space
dynamics for a free-floating robot is derived with a novel,
computationally efficient formulation. Then, considering the
grasped target as a disturbance force on the end-effector, the
proposed control method is completely independent of the
target inertial parameters and the end-effector can follow a
given trajectory in the presence of model uncertainty. To verify
the effectiveness of the proposed method, a three-dimensional
realistic numerical simulation is carried out.

I. INTRODUCTION

Manipulator interaction with the environment requires op-
erational space control schemes. Uncertainties in the environ-
ment model give rise to undesired forces on the robot end-
effector. In the free-floating dynamics scenario, impacts may
cause large deviations in motion and, for inadequate control
schemes, high control forces. It is therefore reasonable to
avoid impact, if possible, and to introduce compliance at the
end-effector.

In this work, the task of grasping a tumbling target by
means of a free-floating robot is addressed. The target is
assumed to be initially tumbling in some given arbitrary
free motion. Following an operational strategy by which
the impact between the robot end-effector and the target is
minimized at the grasp, the subsequent stabilization motion
is analyzed here for the case of uncertainty in the target
dynamic model. This leads to a tracking problem, where a
given nominal stabilization trajectory has to be tracked, while
accounting for the parameter uncertainty.

This problem has been indirectly addressed in the context
of adaptive control, in joint space and in operational space
[1][2]. A new formulation in the context of impedance control
is instead developed here. The resulting method provides a
very simple means of deriving the operational space dynamic
equations for a free-floating robot as well as a simple control
law, based on feedback linearization, for the resolution of the
given problem. The control method is tested in simulation for
a realistic three-dimensional scenario (see Fig. 1).

The paper is organized as follows. Section II describes
some related bibliography. Section III introduces the opera-
tional strategy for grasping. In section IV, the dynamic model
of a space robot is explained by two approaches. Section
V discusses the theoretical aspects of the control method.
In Section VI, the simulation results are illustrated. The
conclusions are summarized in Section VII.

Fig. 1: Chaser-robot and target scenario

II. RELATED PREVIOUS WORKS

The space mission to capture a tumbling target by means
of a chaser-robot may be divided into four main phases:
(1) following the target motion (Pre-contact),
(2) capturing the target with the manipulator (Contact),
(3) damping out the motion of the target relative to the

chaser (Post-contact),
(4) stabilizing the tumbling motion of the compound system

(Compound stabilization).
Phases (3) and (4) are usually categorized together in pre-
vious research. However, in this paper we consider them
separately and focus on phase (3) for motion control with
uncertainty in the target dynamic properties.

To cope with the model uncertainty, Xu and Gu proposed
an adaptive control scheme for space robots in both joint
space and operational space [1][2]. Specifically, by consid-
ering space robots as under-actuated manipulators, adaptive
control in the operational space is introduced in [2]. In
[3], both damping out of the chaser-target relative motion
and the following compound stabilization are dealt with
simultaneously by using the principle of conservation of
momentum. However, to carry out both tasks, we need to
choose a proper trajectory carefully.

With regards to phase (2), some previous research has
analyzed the impact between the target and the manipulator

1-4244-0259-X/06/$20.00 ©2006 IEEE



[4][5][6]. Nenchev et. al. discussed the effect of the impact
and proposed an attitude control scheme for the satellite,
based on the reaction null space for post-contact [4]. In [5],
the dynamic equations in the operational space are introduced
and the configuration to minimize the impact is discussed in
the planar case. In [6], Wee also analyzed the dynamical
contact between two bodies and revealed that the impulse
at contact can be minimized by optimal trajectory planing.
However, these studies do not consider the capturing of the
target, namely the model uncertainty in its dynamics.

III. SCENARIO AND ASSUMPTIONS IN THE GRASPING OF

A TUMBLING TARGET

In our envisioned scenario, it is assumed that an inverse
kinematics algorithm provides the ideal robot trajectory to
align the end-effector velocity with that of the grasping
point on the target, such that the impact at the grasp is
minimal. This may be achieved by means of an ideal visual
path tracker. Subsequently, a motion planner provides a
stabilization trajectory to bring the relative motion between
the robot and the target to zero, while ensuring feasibility of
the task. However, due to parameter uncertainty in the target,
this trajectory will require feedback tracking control.

The tracking problem of the stabilization trajectory may
be formulated in joint or in operational space. It is however
important to realize that the target parameter uncertainty may
be treated as an adaptive control problem [1], if the target
dynamics wants to be included into the control formulation.
This however, does not allow to formulate the more general
impedance control theory, which should be independent of
the target dynamics, to include consideration of impact
forces. In the problem addressed here, the target uncertainty is
seen as a disturbance force on the end-effector, with respect to
the expected internal force involved in the stabilizing motion.

IV. MODELING AND EQUATIONS OF MOTION

This section introduces the model of a space robot. As
described above, the focus of this research is to follow a
desired trajectory in operational space when the space robot
grasps the target with unknown dynamic properties. Since
our interest is the influence of the contact forces on the
environment, or on the target motion in relation to the chaser,
it is convenient to refer to operational space schemes.

To derive the dynamics of free-floating space robots in
the operational space, two approaches are possible. The
dynamic equations of free-floating space robots are generally
expressed with linear and angular velocities of the base and
the motion rate of each joint as generalized coordinates[7].
However, considering the system switched around, modeled
from the end-effector to the base, it can be represented by the
motion of the end effector and that of the joints in the same
structure as in the conventional expression. This scheme is
termed here the inverted chain approach. On the other hand,
we can also obtain the dynamics in the operational space from
the conventional representation of space robots as introduced
in [5] in a straightforward manner, which we term here the
forward chain approach.

The following subsections explain the dynamic equations
of the system, developed in the two ways mentioned above,
for a serial rigid-link manipulator attached to a floating base,
as shown in Fig. 2. It is shown that the inverted chain
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Fig. 2: General model for a space robot with external force

approach has a computational advantage with respect to the
forward chain approach.

A. Dynamics for space robots – Inverted chain approach

Differing from a ground based manipulator, the model of
a free-floating space robot is invertible from the end-effector
to the base, in the sense of no fixed base of the system. This
subsection explains the dynamics of a space robot in this
sense.

1) Equation of motion: Considering the generalized coor-
dinates as the linear and angular velocities of the end-effector,
��� � ���

�
���

�
�� � ����, and the motion rate of the joints,

�� � ����, the equations of motion are expressed in the
following form:�
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The symbols used here are defined as follows:

�� � ���� : inertia matrix on the end-effector.
�� � ���� : inertia matrix of the arm.
��� � ���� : coupling inertia matrix between the

end-effector and the arm.

�� � ���� : non-linear velocity dependent term
on the end-effector.

�� � ���� : non-linear velocity dependent term
of the arm.

�� � ���� : force and moment exerted on the
end-effector.

�� � ���� : force and moment exerted on the
base.

� � ���� : torque on the joints.

In the case that �� is generated actively (e.g. jet thrusters
or reaction wheels etc.), the system is called a free-flying



robot. On the other hand, if no active actuators are applied
on the base, the system is termed a free-floating robot. In this
paper, we consider the free-floating robot.

By canceling out the end-effector acceleration ��� in (1),
the equations of motion can be reduced to the joint space
formulation:���
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2) Equations of motion in the operational space: The
upper part of (1) clearly describes the equations of motion
in the operational space:
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where �� � ����
�� describes the input command gener-

ated by the joint actuators.
Substituting equation (2) into (3), the acceleration of the

end-effector can be represented by the torques on the joints
and by the external forces/torques on the end-effector, with
the assumption of no external forces/torques on the base
�� � �:

��� � ����

�
���

����

�
�

����

�
�� ����

����

�
��

��
���

�
��� � 	 (4)

where 	 � ����

�
�� � ���

�
���

����

�
��� denotes the

Coriolis and centrifugal forces in operational space.

B. Dynamics for space robots – Forward chain approach

The other way to derive the equations of motion in the
operational space is by applying the classical expressions to
a space robot. A similar approach has been introduced in [5].
To formulate the dynamics of the system with the forward
chain approach, the general expressions for space robots are
briefly reviewed first.

1) Equations of motion: The equations of motion in joint
space for a free-floating space robot are generally expressed
in the following form [7]:
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where ��
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so-called generalized inertia matrix, generalized Coriolis and
centrifugal forces and generalized Jacobian of a space robot,
respectively [4].

2) Linear and Angular Momentum Equations: The motion
of the system is also governed by the momentum equations
in the absence of external forces:�
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in which the generalized coordinates are the linear and angu-
lar velocities of the base satellite, ��� � ���

�
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and the motion rate of the joints, �� � ����. �� � ���� and
��� � ���� denote the inertia matrix of the base and the
coupling inertia between the base and the joints, respectively.
Note that �� and �� represent the total linear and angular
momentum around the base coordinate system.

The total linear and angular momentum can be also ex-
pressed around the end-effector coordinates:�
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The expression of the angular momentum is generally de-
pendent on the reference frame. Therefore, the following
transformation can be obtained between (6) and (7):�
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where 
� � ���� and �� � ���� respectively denote
the identity matrix and the zero matrix. ��� represents the
vector from the base to the end effector and the operator ���
indicates the cross product. �� denotes the Jacobian matrix
from the base to the end effector.

3) Kinematics: The kinematic relationship between the
operational and the joint space is described as follows, by
using (8) and the generalized Jacobian matrix ��

�
which

include the dynamic parameters of the system:
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where �� � �� ��
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��� � ���� denotes the inertia

matrix of the base projected on the end-effector.
4) Equations of motion in the operational space: By using

equation (5) and (9), the dynamic equations in the operational
space can be obtained in a straightforward manner.

The derivative of (9) leads to the equations of motion in
the operational space in function of the acceleration of the
end-effector and that of the joints:
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To obtain the equations of motion in function of the
acceleration of the end effector and the torques on each joint,
equation (5) is substituted into equation (10).
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where � � �����
���

� ���� ��� � ���� denotes the ki-
netic energy in the operational space for ground based
manipulators[8][9]. ���� � �
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gal forces in operational space.



C. Comparison between the two expressions

Let us compare the above two expressions in the two
previous subsections for the operational space dynamics. By
comparing (3) and (10), or (4) and (11), it is clear that the
following equalities result.
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The above relationships are obtained by comparison of
the single terms. Therefore, the two equations (3) and (10),
or (4) and (11) are equivalent. However, expression (3) has an
advantage over expression (10) in view of the computational
consumption ( e.g. the calculation of � � ���

�
����
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�
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and �� � �� ��
��

�
��

�
���). In case of limited computational

performance, it is desired that the computational consuming
is reduced as much as possible. By using the inverted chain
approach, we can calculate the inertia matrix of the end-
effector �� directly instead of with the calculation of �� �
�� ��

��

�
��

�
���, which involves two matrix inversions.

V. IMPEDANCE CONTROL IN THE OPERATIONAL SPACE

As mentioned in section III, the robot should follow a given
trajectory to dampen out the motion of the end-effector with
respect to the base coordinate fame, to eventually stabilize
the system.

This section proposes an interaction control for space
robots, which is based on the ideas of impedance control
for ground based manipulators [10]. However, the interaction
control is exploited here to follow a desired trajectory, by
regarding the internal forces at the grasping point of the target
as external forces on the end-effector.

In the grasping of the tumbling target, the uncertainty in
the target inertial properties may give rise to unsustainable
forces at the end-effector. The mechanical impedance (mass-
damper-spring) imposed on the end-effector, is then useful to
avoid this situation. The advantage of the impedance control
is that the inertia (mass) characteristics of the end effector
can be suitably designed. For example, if the impedance
characteristics of the end-effector are made similar to those of
the target, this leads to the so-called mechanical impedance
matching [11]. As such, impact can be treated together with
uncertainty.

Furthermore, he impedance control is developed in the
operational space, since the impedance characteristics should
be determined with respect to the environment, or to the target
motion, or even to account for collision avoidance for the
chaser-target compound.

For the motion damping, let us consider a control model
which consists of the space robot alone, while the model
for the real system includes the target with some model
uncertainty, as shown in Fig. 3. The latter uncertainty is
source of error in the motion planning solution for the desired
damping trajectory ��� . The internal forces between the end-
effector and the target can be expressed in function of the
known motion of the system, with the assumption of no
external forces. Therefore, these can then be modeled as

τ
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Fig. 3: Control block diagram

virtual external forces for the control model, as shown in
Fig. 3.

In the case without force measurement, the control law can
be determined as follows (c.f. (3)):
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 � �� (16)

with
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where ��� � �� � ��� denotes the error between the oper-
ational space position and orientation �� and the desired
equilibrium point ��

�
. ��, �� and ��, respectively, repre-

sent the desired inertia, damping and stiffness matrices which
specify the dynamic impedance behavior of the end-effector.
The input command on torque level is obtained from (2):
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In the presence of internal forces and torques ��, the
controlled space robot is described in the following form,
from (3) and (16):
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that reveals the existence of a nonlinear coupling term due
to the internal forces ��. Substituting (17) into (19) yields
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The expression in (20) establishes a relationship through
a generalized mechanical impedance between the vector of
resulting forces ���

��

� �� and the vector of displacements��� in the operational space.
To avoid the coupled motion attributed by ���

�
in (20),

it is necessary to measure the internal forces and torques



between the target and the end-effector. In this case, the
control law is selected as:
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with
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The torque input can be expressed in function of the com-
mand �� and of the internal forces ��:
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On the assumption of no error on the force measurements,
the following linear impedance can be achieved:

��
���� ���

���� ������ � �� (24)

With proper selection of the control gains, asymptotic sta-
bility is guaranteed. However, the component of the internal
force �� arising from the compound motion, never converges
to zero, until the compound is itself stabilized in the inertial
frame. As such, if the force is not measured, one can only
expect that the resulting error remains bounded. Clearly,
the magnitude of this residual error depends on the control
parameters.

Furthermore, in case of force measurement, the external
forces and torques can be compensated more easily, because
of the resulting decoupling. In practice, the tolerance of the
deviation error should be analyzed prior to the implementa-
tion.

VI. SIMULATION STUDY

This section presents the numerical simulation results of
a realistic three-dimensional model as shown in Fig. 1. The
chaser robot has a 7 DOF manipulator mounted on the base
satellite, whose dynamic parameters are shown in Table I.
The size of the target is the same as that of the chaser satellite.
It is assumed that prior to the contact, the target is tumbling
around one axis at a constant angular velocity of 0.05 [rad/s]
at the capturing with the chaser-robot and that the end effector
of the robot follows the grasping point on the target with the
same velocity. The grasping point is deviated from the center
of mass of the target by 0.5 [m]. As far as the end effector
has the same velocity as that of the grasping point of the
target, no impact between the two systems is induced.

In the simulation examples, the target parameters of the
planned motion are given in Table II, while those of the
controlled motion in Table I, giving the extent of uncertainty
introduced in the system.

A. Target uncertainty cases
Two cases with different impedance characteristics are

illustrated here. The values of inertia, damping and stiffness
matrices on the end-effector are selected as shown in Table
III and IV. To obtain the desired control performance one
may also revert to several existing methods (e.g. Factoriza-
tion design, Double diagonalization design) [12]. To set the
parameters, care should be taken by considering how softly
the end-effector grasps the target, to prevent it from bouncing
away.

Figs. 4 to 6 illustrate the simulation results. Fig. 4 shows
the velocity of the end-effector with respect to the base
coordinate frame. Fig. 5 illustrates the motion of the base

TABLE I: Dynamic parameters for a space robot
mass ���� ��������� ��������� ���������

Base 140 18.0 20.0 22.0

mass ���� � ������
Each Link 3.3 0.0056

TABLE II: Estimated dynamic parameters for a target
mass ���� ��������� ��������� ���������

Base 50 10.0 10.0 10.0

satellite. Fig. 6 shows the internal forces and torques due to
the target. In these figures, the solid line depicts the desired
trajectory, the dashed line depicts the case (1) and the dotted
line depicts the case (2).

Even if parameter errors occur in the system, the end-
effector finally converges to the desired trajectory with
respect to the base coordinate frame. The base satellite
continues to move in the inertial coordinate frame due to
the non-zero momentum of the system. This motion can be
compensated with extra actuators on the base, such as jet
thrusters and reaction wheels. The compound motion in the
inertial frame causes the bounded internal forces. However,
the internal forces due to the target decrease to almost zero
here. If the forces are measured, the error can be compensated
properly.

Here it is clearly shown that the simple impedance control
method is useful to follow the trajectory and we do not need
any target parameters to implement the control.

B. Initial impact case
Furthermore, Fig. 7 shows the velocity profile of the end-

effector in case of impact at the contact time (� � �).
The solid line depicts the desired trajectory, the dashed line
depicts the case with impact, resulting in an initial velocity
error of 0.05 [rad/s]. It is shown that the end-effector finally
converges to the desired velocity with the same impedance
control scheme.

VII. CONCLUSIONS

A novel and very simple method is presented to derive
a dynamic model for a free-floating robot in operational
space, necessary for the desired control implementation.
Furthermore, an impedance control theory is derived from
this, based on feedback linearization, to account for target
parameter uncertainty. However, the derived formulation of
the control law is independent of the target parameters. The
effectiveness of the method is shown with simulation results.

TABLE III: Desired impedance parameters - case (1)
x y z roll pitch yaw

�� 100 100 100 300 300 300
�� 300 300 300 300 300 300
�� 100 100 100 500 500 500

TABLE IV: Desired impedance parameters - case (2)
x y z roll pitch yaw

�� 1.0 1.0 1.0 30 30 30
�� 0.05 0.05 0.05 20 20 20
�� 1.0 1.0 1.0 50 50 50
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Fig. 6: Internal forces and torques due to the target, ��
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Fig. 7: Velocity of the end-effector in the initial impact case,
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Finally, the developed method sets a base for more general
compliance control tasks, which may include impact with the
environment.
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