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Kurzfassung 
Damit Fahrerassistenzsysteme den Fahrer effizient unterstützen können, müssen diese in 

der Lage sein, die angebotene Assistenz an den Bedarf des Fahrers anzupassen. Mit 

zunehmender Anzahl und Vielfalt dieser Assistenzsysteme wächst die Menge der 

Sensordaten über das Fahrzeug, die Fahrumgebung und den Fahrer. Eine Fusion dieser 

Daten kann den Systemen eine Übersicht über die Fahrsituation zur Verfügung stellen, 

welche für die situationsabhängige Abstimmung der Assistenz nutzbar ist. Die Rohdaten 

vieler dieser Sensoren sind intrinsisch unsicher. Statt regelbasierte Datenauswertungen zu 

benutzen werden deshalb Berechnungen auf Basis der Wahrscheinlichkeitstheorie 

verwendet, um Schlussfolgerungen aus den unsicheren Daten ziehen zu können. Ein daraus 

berechneter Wahrscheinlichkeitswert gibt dem Fahrerassistenzsystem einen Hinweis auf die 

Verlässlichkeit der erhaltenen Informationen. 

 

Abstract 
In order to efficiently assist the driver, assistance systems need to be able to tune the offered 

assistance to the driver’s needs. As the number and variety of assistance systems in the 

automobile increase, we are increasingly supplied with data from various sensors about the 

state of the vehicle, the driver and the driving environment. A fusion of the available data can 

provide the systems with a valuable overview of the driving situation, which can be used for 

situation-based tuning of the assistance offered. The raw data returned by several of the 

sensors is, however, intrinsically uncertain, making a simple, rule-based evaluation of the 

data impractical. Computations based on probability theory are therefore used to draw 

inferences from the uncertain data available. The probability value assigned to the inference 

drawn offers an assistance system an indication of the level of confidence that may be 

associated with the information received.      

 



1. Introduction 
With a continuous increase in the traffic density on the roads, driver safety and comfort have 

gained increasing importance. Advanced Driver Assistance Systems support the driver in 

various aspects of the driving task, in an effort to optimize the driver’s workload. In order to 

provide a driver with relevant assistance, the assistance system must be able to tune the 

offered assistance to the driver’s needs. Information about the driving situation needs to be 

made available in order to ensure that systems offer assistance that is relevant to the 

situation, and do not distract a driver during the performance of a difficult task.  

 

With the increasing number of assistance functions customary today, the automobile is now 

commonly fitted with several sensors supplying data about the vehicle, the driver and the 

driving environment. While data is abundant, a major obstacle to the extraction of information 

is presented by the high degree of uncertainty present in the data delivered by the sensors. 

The data delivered by the automobile sensors today is sometimes imprecise or inaccurate, 

and in certain cases, can be false. The aim of this work is to construct a system for the 

automatic identification of the driving maneuver being performed using a fusion of the 

uncertain sensor data available.    

 

2. The ViewCar and the Sensors Used 
Driver behaviour analysis and testing of the prototype system are performed using the 

ViewCar. The ViewCar is a research vehicle equipped with several sensors and cameras for 

the measurement and recording of data about the driver, the vehicle and the driving 

environment. 

      
Figure 1: The DLR ViewCar 

 

A camera-based lane-detection system is used to measure the type and width of the lane 

markers, the width of the lane and the position of the vehicle in the lane. The system is 



relatively robust, but its performance deteriorates when the lane markings are faint or when 

lighting is poor. As camera sensors for use in the automotive industry have only recently 

migrated from laboratories with controlled lighting, commercial camera systems available 

today are often unable to cover the full range of brightness variations experienced in outdoor 

scenes. Grease on the camera lens can also cause deterioration in performance, as it 

causes a blurring of the captured image [1]. The lane-detection system was observed to 

perform best on freeways where lane markings are usually clearly defined. When drives were 

conducted at dusk, or when bright sunlight fell directly on the camera, its performance was 

observed to deteriorate.   

      
Figure 2: The camera-based lane-detection system and the laser scanner 

 

A laser scanner is used to measure the positions and speeds of vehicles ahead of the 

ViewCar. Although the data received is useful in producing an estimate of the traffic around 

the ViewCar, errors can cause the data to be unreliable at times. Dirt on the surface of the 

sensor, rain, fog and snow are all possible sources of error. These particles can also reflect 

the laser pulse, resulting in the production of irrelevant data [2]. The pitching motion of the 

vehicle, caused by uneven road surfaces, strong brake application or strong acceleration 

could also result in relevant objects being missed during measurement [3]. In newer sensors, 

efforts are made to combat these errors by sending laser pulses on multiple planes instead 

of a single one, and requiring multiple echoes for recognition.     

     
Figure 3: Possible sources of laser scanner error. Figure based on [2] and [3]. 

 

A positioning system is used to measure the geographical position of the vehicle. Differential 

GPS is used to correct errors common to the receiver in the vehicle and a receiver at a fixed 



base station, such as the errors due to atmospheric refraction of the signals, changes in the 

orbital path of the satellites, and clock inaccuracies. Multipath and receiver noise errors, 

however, remain. In order to correct these errors, an inertial platform measures the 

movement of the vehicle and uses a Kalman filter to estimate the correct position. An 

odometer is used to correct the drift in the calculated position caused by rounding errors in 

the measured velocity.    

                    
Figure 4: The positioning system and GPS multipath error. 

 

3. Data Fusion 
Although the data received from individual sensors contains inaccuracies and uncertainties, 

a fusion of the data for the extraction of information has several advantages. A combination 

of the observations of independent sensors measuring the same variable can enable an 

estimation of the reliability of the data. The fused data from several sensors enables the 

creation of a joint context in which the data from the individual sensors can then be 

interpreted. The combined system displays increased robustness, as one sensor can 

contribute data when another is unavailable or inoperative. The fusion of data from a set of 

“average-performance” sensors could provide the same level of performance as a single, 

highly-reliable sensor at a lower cost [4]. Our aim is to fuse the uncertain data from the 

various sensors in order to infer the driving maneuver being performed. 

 

4. Probabilistic Reasoning 
As conclusions may not be drawn from a Boolean combination of the variables involved, we 

base our computations on probabilities. Bayesian Networks are a useful tool for probabilistic 

reasoning. Bayesian Networks combine the classical theoretical framework of probability 

theory with the support of computational constructs in order to draw inferences from 

uncertain data. A Bayesian Network is a directed, acyclic graph, representing a domain of 

interest. Nodes of the graph represent the variables of interest in the domain, while the 



edges of the graph represent the causal dependencies between the nodes. The strengths of 

these dependencies are described by local conditional probability tables [5].  

 

The core of Bayesian Inference lies in Thomas Bayes’ inversion formula. Given a hypothesis 

H and evidence e, the conditional probability of H being true given e can be calculated as: 
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Bayes’ Theorem can be used to compute probability values for uncertain system variables by 

combining the data provided by several sensors. If a single sensor supplies data with a 

degree of reliability too low to allow a decision, the combination of supporting data from other 

sensors can increase our confidence in the data to a degree which renders it useful [6]. If the 

sensors supply conflicting evidence, the result of the fusion will favor the sensor possessing 

the better historical output quality, while the conflicting evidence will result in a reduction of 

the probability associated with the output. 

 

Given a hypothesis H and two pieces of evidence e1 and e2 from two independent sensors, 

Bayes’ Rule for the fusion of this evidence states that the probability of the hypothesis H 

being true given the two independent pieces of evidence e1 and e2 can be expressed as [7]: 
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As e1 and e2 are independent of one another,  
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The importance of this equation is that it enables us to update our belief in a hypothesis in 

response to evidence received from multiple, independent sources. It allows us to calculate 

the value , a term usually difficult to compute, in terms of quantities that may be 

directly determined from experiments. ,  and  are the prior probabilities of 

the hypothesis and each piece of evidence, while  and  represent the 

probability of observing each piece of evidence when the hypothesis is true.  
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 An important feature of Bayesian Networks is their support of bidirectional inference. 

Inferences in a Bayesian Network can be derived by propagating information in any direction. 



Given evidence about any subset of its variables, the network supports the computation of 

the probabilities of any other subset [8].  

 

If the lane sensor, for example, returns uncertain evidence about the width of the lane, 

independent evidence that the current road is a freeway can be used to infer the probable 

width of the lane. 

 

5. The Prototype Maneuver-Recognition System 
A prototype maneuver-recognition system is in development at the DLR. Data from the 

automobile data bus, the positioning system, the lane detection system and the laser 

scanner is input to the system. A reference test stretch of road was defined for the test 

drives. Static environmental information about the stretch was recorded. Input from the 

positioning system is mapped to road information about the speed limit, the number of lanes 

and the presence of a ramp at the identified location. The input information is used to build 

an internal representation in the system of the driving situation and the driver’s actions. A 

Bayesian model of the domain of driving maneuvers is used to map the acquired evidence to 

the most likely driving maneuver. The output of the system is the recognized maneuver along 

with its probability.  

 
Figure 5: Three-level hierarchical driver model 

 

The Bayesian Network is a simplified model of the domain of driving maneuvers. The driving 

task is considered to be a hierarchical task with three levels. Navigation is the high-level task 



of route-planning, and the correlation of driving directions to signs and landmarks on the 

road. Guidance is the selection of speed and path in response to the road geometry, 

hazards, traffic and the physical environment. Control refers to the exchange of information 

and control inputs between the driver and the vehicle. Most control activities are skill-based, 

and performed with little conscious effort [9].  

 

In the initial prototype, ten driving maneuvers were selected for recognition: stopped, follow 

road, follow car, turn left, turn right, merge left, merge right, overtake, enter freeway and exit 

freeway. A Bayesian model of the control and guidance levels of the driver model was used 

as the basis of inference. The results of early evaluations of this prototype, while promising, 

indicated a need for improvement [10]. In an evaluation of 40 minutes of driving data in the 

Braunschweig area, 92.1 % of the maneuvers driven were recognized by the system. The 

correct maneuver was recognized during 77% of the drive duration. An unrecognized 

maneuver was returned during 9.2% of the drive duration, and a false maneuver was 

recognized during 13.7% of the drive duration.  

 

In order to improve the recognition accuracy of the system, a more detailed model of the 

domain is in development, which includes the top-down inference of the expected driving 

maneuver. The model used in the first prototype was restricted to the guidance and control 

tasks, and maneuver recognition was performed using a bottom-up approach. Evidence 

about the driver’s actions was used to infer the probable maneuver being performed.  

 

In the current phase of development, top-down inference is being added to the system. 

Navigation information in the form of the planned route has been added to the system. The 

model has been extended to supply it with the ability to infer expected maneuevers and their 

probabilities, given information about the state of the driving situation and the driver’s 

planned route. As such inferences are extremely dependent upon characteristics of the 

driver, care is taken to include a high level of variance in the probability distributions used. 

The goal is to support the bottom-up inference, not to override it.  

 

6. Lane Identification 
In order to be able to use the information about the driver’s planned route and the traffic 

situation to predict lane changes, information about the lane on which the driver is traveling is 

required. While the lane-detection sensor returns information about the width and markings 

on the current lane, it does not tell us which lane of the road the vehicle is currently using.  



 

In order to support the top-down inference of the performance of a lane change maneuver, a 

system has been developed to infer the current lane upon which the vehicle is traveling. The 

system uses vehicle data from the automobile data bus, data about the lane markings and 

the width of the current lane from the lane-detection sensor, along with information about the 

number of lanes on the road from the geographic data in order to infer the current lane. A 

probabilistic fusion of the data is performed here as well, as uncertainties are present both in 

the geographical data and in the lane data. The system was designed for use on rural roads 

and freeways. Lane markings in the cities are often faint, and the resulting probabilities are 

too low to be used as meaningful information.  

 

The current lane was classified into one of the following categories: the only lane, the left 

lane, the middle lane, the right lane or the right lane with a neighboring exit. The lane-

identification system was tested with data from a 35-minute trial drive performed with the 

ViewCar on roads in the Braunschweig area. 7.4 minutes of the trial drive took place on 

suburban and/or rural roads, while 27.6 minutes were driven on the freeway. The recognition 

threshold was set to 60%. The correct lane was identified during 88% of the duration of the 

drive. A wrongly identified lane was returned during 8.6% of the drive. The recognition 

probability lay below the 60% threshold during 3.4% of the drive.  

 

On the freeway, where the performance of the lane-recognition system was fairly robust, 

data regarding the lane markings and widths was clear, and supported the inference of the 

lane being used. On the smaller, single-lane roads where lane markings were less prominent 

and sometimes unavailable, geographic data supplied the information that the vehicle was 

traveling on the road’s only available lane.  Errors in lane identification were commonly 

observed during the execution of a lane change maneuver.  

 

7. Perspectives 
The positive results observed with early prototypes of both the maneuver-recognition system 

and the lane-identification system support the viability of the Bayesian approach to 

information extraction. Early evaluations of the prototypes provide good indications of the 

areas where improvement is required.  

 

The models must be tuned in order to achieve higher recognition rates with the systems. 

Several of the probability distributions used in the prototype models are approximations 



based on the observed frequencies of the values. A detailed statistical analysis of the 

variables must be performed, and the probability distributions in the models need to reflect 

these results, in order to improve the recognition accuracy.  

 

The experiments with maneuver recognition highlighted the importance of maneuver 

classification. In the initial classification, the ten maneuvers selected were defined as being 

mutually exclusive. Evaluation of the data illustrated the impracticality of the approach. 

Despite definitions that attempted to clearly demarcate the differences between the 

maneuvers, both human observers and the recognition system alike were at times unable to 

unambiguously classify certain maneuvers. A clear, well-defined classification of the driving 

task is required, wherein basic, mutually exclusive maneuvers are defined as such, while 

others are treated as special cases of one or more of these basic maneuvers, and identified 

based on the attributes of the driving situation. 

 

In the case of the lane-identification system, the lane-change state must be explicitly 

modeled so as to eliminate the observed errors in lane identification during the performance 

of the maneuver.  

 
Figure 6: Driver gaze behavior: an indicator for driver intent 

 

Researchers have described the usefulness of driver-gaze behavior in predicting driver intent 

[11], [12]. A camera-based gaze-detection system in the ViewCar measures driver gaze 

behavior. Concurrent research at the DLR focuses on the analysis of the driver’s gaze 

behavior, and the possibility of using the driver’s gaze information to infer her intentions. The 

incorporation of this information into the system paves the way for the prediction of 

maneuvers prior to their execution. 
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