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Abstract-A straightforward linkage between rain cell dynam-
ics in terms of reflectivity Z (dBz) or its equivalent rain rate R
(mm/h) and satellite or terrestrial radiolink attenuation can be
performed. This work focuses on the presentation of an approach
for assessing and characterizing rain cell dynamics based exclu-
sively on the analysis of the radar reflectivity scans recorded in
weather radar image, and without an a priori assumption on the
structure of rain cells. This research hasbeen addressed by using
cellular automata. Rain cell dynamics are simulated by using
probabilistic cellular automata rules and tracking vectors which
indicate a global advection direction and velocity.

I.  INTRODUCTION

Spatial and temporal rain dynamics is a research topic of
great interest in several fields including, e.g.: hydrology, cli-
matology, weather nowecasting/forecasting, telecommunica-
tions. In the radio propagation context, as communication sys-
tems using frequencies above about 10 GHz are impaired by
rain then attenuation due to rain is an important effect which
must be considered. For this reason, several rain induced at-
tenuation models have been developed using meteorological
data [1]. In particular, the prediction of that attenuation from
rainfall intensity has been the subject of a major effort carried
out by many researchers. Several methods modeling space-
time rain field dynamics, as previous step to predict attenua-
tion, have been developed and tested following different ways,
e.g.: assuming regular shapes of rain cells (ellipses, circles,
Gaussian or exponential decay functions, ...), using fractal
methods, etc. Principal sources of data for studying rainfall are
represented by rain gauges, sensors on satellite and meteoro-
logical ground based radar. Here, data only from ground based
radar will be used.

A straightforward linkage between rain cell dynamics in
terms of reflectivity Z (dBz) or its equivalent rain rate R
(mm/h) and satellite or terrestrial radiolink attenuation can be
performed. In this work, extension of [2], we focus on the
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presentation of an approach for assessing and characterizing
rain cell dynamics based exclusively on the analysis of the
radar reflectivity scans recorded in weather radar image (WRI),
and without an a priori assumption on the structure of rain
cells. This research has been addressed by using cellular
automata (CA).

CA are dynamical systems in which space and time are both
discrete. CA were originally introduced by Von Neumann [3]
and Ulam [4] with the purpose of obtaining self-reproduction
biological models. Since then, CA have drawn much interest
because of their usefulness as a simple discrete model for
many dynamical processes [5-7]. CA have been used in a
number of fields including physics, chemistry, biology, eco-
nomics or information systems. However, finding the CA that
displays a desired behavior can be a hard task, especially in
complex, real world problems.

A CA consists of a D-dimensional array of sites (lattice),
each of which can be in one of a finite number of possible
states, and which is updated at discrete time steps, according
to a local interaction rule (CA rule) identical for all sites. This
rule, and therefore the CA, can be deterministic or probabilis-
tic. A probabilistic CA rule is a probabilistic histogram de-
rived from the frequency of occurrence of each input/output
pair found. The state of every site at a time step T is deter-
mined by the states of a neighborhood of sites surrounding
that site at one or more previous time steps.

In CA context, WRIs have been considered as lattices so
each pixel is a site and the operands are that pixel, where the
local rule is applied to obtain the next pixel state, together
with other pixels in its neighborhood. We show here a method
that uses a 2-D, 3-state, 25-site neighborhood probabilistic CA
to assess rain cell dynamics contained in WRIs. Rain cell dy-
namics are simulated by using probabilistic CA rules and
tracking vectors.



II. METHOD

In this work, for a given WRI sequence, the simulation of a
WRI at any time 7'will be made by means of its corresponding
probabilistic CA rule and a tracking vector: one different rule
and tracking vector for every two consecutive WRIs (a WRI
transition). The proposed method, based on [8] which is an
extension of [2], consists of 6 major steps. First the assign-
ment of WRI pixels to 3 categories, no rain (NR), light rain
(LR) and heavy rain (HR), is made for all WRIs in the se-
quence. Secondly, small rainy pixel clusters are removed us-
ing a morphological operation. After that, the probabilistic CA
rule and the tracking vector for each WRI transition are com-
puted. Then, the simulation is performed. Finally, the same
morphological operation is applied to improve the simulated
results.

Step 1. 3-categorypixel assignment

Although rainfall fields are very complex to describe and
classify, two main types of rain are relevant: convective and
stratiform. The radar reflectivity images are converted in 3-
category images based on this classification to separate NR,
LR and HR regions.

The WRIs, where reflectivity is expressed in dBz, are con-
verted to 3-category images. Each dBz pixel value is classified
as NR, LR or HR: 0, 1 and 2 respectively. Here, we map in-
tensities below 1mm/h to NR category, from 1 to 10 mm/h to
LR category, and intensities exceeding 10 mm/h to HR cate-
gory [9, 10].

The radar rainfall-reflectivity (R-Z2) conversion is computed
based on the Z-R power law relationships of the form Z= a-R’,
which is probably the most widely used one in the literature
for a quick and straightforward conversion of a certain radar
reflectivity Z (mm®%m®) to radar rain rate R (mm/h). The rela-
tionships

Z=200-R"* (1)

has been used in this study [11]. WRIs were converted to 3-
category images by using the Z thresholds of 23 dBz and 39
dBz that correspond to 1 mm/h and 10 mm/h rain rate respec-
tively.

Step 2. Removing of small rainy pixel clusters

After WRI discretization, small rainy pixel clusters are re-
moved by means of a morphological operation in order to sim-
plify the images to be process. Such operation, named area
thresholding, consists of 3 stages. First LR and HR pixels are
converted to a single rainy category. Then the resulting rainy
clusters of area smaller than 5 pixels are removed (converted
to NR category). Finally, the pixels of the remaining rainy
pixels are restored to their original categories. The area
threshold value of 5 has been chosen after a tradeoff study.

Step 3. Computation ofprobabilistic CA rule
Currently a different probabilistic CA rule for every WRI
transition in the sequence is computed. In this paper, we con-

sider that the CA rule for a given transition is the probabilistic
table (ptable) of that transition, and where the ptable is the
probabilistic histogram derived from the frequency of occur-
rence of each input/output pair found for that transition.

The ptable for a given 77-72 transition, where 72 is any
time and 77 is the immediately previous time (77 = 72-10
min), is obtained in two stages. First, the ptable input states
are computed from the input states of WRI pixels at time 77.
Then the matching between pixel input states at time 77 to
pixel category values at time 72 is based on the highest mutual
information criterion.

Stage 3.1. Computing of ptable input states: The input state
for each WRI pixel at time 77 P(x,y,71) is determined by a
neighborhood of 27x27 pixels surrounding and including
P(x,y,T1). This input neighborhood (INH) is arranged in a
pyramid structure with three levels of detail (Fig. 1) in such a
way that rain cell dynamic effects in the 77-72 transition can
be captured with it. The INH consists of 25 sites, organised in
these 3 pyramid levels, and where the 1% site is P(xy,77).
Each site of the first level takes a category value of 0, 1 or 2 as
a function of its rain type. Then, the category value of a site
belonging to the second pyramid level is computed as the first
pyramid level site amount of each category that forms that site
plus a thresholding algorithm (Table I). Finally, the category
value of a third pyramid level site is computed as the second
pyramid level site amount of each category that forms that
third level site plus that thresholding algorithm.

In that thresholding algorithm, a; denotes the category value
at the j-th site of m-th pyramid level, while a; indicates the
category value of the 9 sites with (72-1)-th pyramid level that
make up the j-th site. K thresis a vector of 2 elements (num-
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Fig. 1. Pyramid structure with 3 levels.



TABLE I
THRESHOLDING ALGORITHM

Y j e {10,...,25}

a;=0

m = Number_of Sites( a;==1)

1, = Number _of Sites( a;==2)

if m>K thres(1) and m <= K thres(2) then a;=1
if m>K thres(2) then a;=2

ber of categories minus one), where each element can be an
integer value between 0 and 9 (maximum possible amount of
sites). The choice criterion of the K thres vector values for a
particular 77-72 transition will be explained later on. The in-
put state for each P(x,y, 77)is computed as

25
Input state value= Zl aj-3le (2)

where 2, e {0, 1, 2}.

Finally, the ptable input states are the unique pixel input
states at time 77/ computed.

Stage 3.2. Matching: The input state of each WRI pixel at
time 77 P(x,y,T1)1s matched to the category value of the pixel
at time 72 belonging to the 9x9 pixel box centred at P(x,y; 72)
which yields the ptable with the highest mutual information
(Fig. 2).

The K thres vector values chosen in the thresholding algo-
rithm to compute the input states are those which give the
ptable with the highest mutual information, the ptable is de-
rived from the frequency of occurrence of each input/output
pair, and the mutual information (MI) is a measure of the
amount of information that one random variable contains
about another random variable [12, 13]. Ml is defined by

MI(xy) = ¥ P(x.y,)log .

—_— 3
i P(x;)- P(y;) )

where P(x;) is the probability of the state variable x being in
the discrete state 7, and P(x; y;) is the joint probability. In this
case it can be seen as a measure of the correlation between the
pixel input state and its corresponding pixel category value.

Step 4. Computing ofthe tracking vector

In the previous step, it is worth noting that all input/output
pairs computed for a ptable have the same displacement rela-
tion between their pixel input state and their corresponding
pixel category value, i.e., the input state at any P(x,y;77) is
matched with the category value at P(x+dxy+dy,72). The
later being the pixel belonging to the 9x9 pixel box centred at
P(x,y,T2) which gives the ptable with the highest mutual in-
formation (Fig. 2).

This displacement relation is represented by [dx,dy], which
indicates the average movement vector (tracking vector) of the
T1-72 transition. In general different 77/-72 transitions have
different tracking vectors.

Step 5. Simulation

The simulation of a WRI at any time 7'will be made by first
computing the input state for each pixel of WRI at time 7-10
min P(x,y,7-10). Then the simulated category value of each
pixel of WRI at time 7 P(x,y,7) is worked out from the prob-
abilistic CA rule, and finally the P(x,y,7) category value is
assigned to P(x+dxy+dy,T)using the corresponding tracking
vector.

Step 6. Final improvement

Finally, the same morphological operation as in step 2 is
applied to the resulting simulated image to remove isolated
small rainy pixel clusters.

III. RESULTS AND ANALYSIS

The data source used in this study is the radar reflectivity
scan recorded to a WRI every 10 minutes by the weather radar
of the Spanish Meteorological Office, which is located at Cer-
ceda, A Corufla, in the North-West of Spain, at latitude 43°
10’ 16"’ N, longitude -8° 31° 26”” E/W, and height 621 m asl.
The results presented in this work are obtained from one
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Fig. 2. Schematic showing the tracking vector of the 77-72transition.



hundred different examples containing heavy rain regions and
each example consists of 18 WRIs (3 hours). The simulated
WRI area consists of a 135x135 pixel area with a spatial reso-
lution of 1x1 km? per pixel.

To quantify or rate the performance of the simulations, ac-
tual data and simulated results have to be compared. For this
purpose the K-category correlation coefficient Rk [14] which
is an extended Matthews’s correlation coefficient [15] has
been used. Here, the focus is in particular on a three-category
problem (types of rain: NR, LR, HR). Due to the intrinsic
variability of Rk we have performed 100 realizations per ex-
ample, and the average of the 100 Rkcomputed is taken as the
Rk of that example. Results are summarized in Table II. K-
category correlation coefficient values of the best example, the
worst one and the averaged value are shown. Table II also
reflects the slight increase in Rk when a final improvement

o
2
=
El
£
@

simulated

simulated

(morphological operation in the step 6) is applied to remove
isolated small rainy pixel clusters.

It is worth noting that the method proposed not only pro-
vides simulation capability but it also allows extracting a
common motion vector for entire rain cells of WRI (tracking
vector). This vector expresses the advection trend, i.e., the
movement of the rain cells caused by the wind.

TABLE II
RESULTS
Rk
best average worst
including final no 0.942 0.839 0.739
improvement | yes | 0.949 0.865 0.786
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Fig. 3. Real and simulated WRIs occurring on 18 February 2006 between 12:14 and 15:04.



Fig. 3 illustrates both measured and simulated WRIs for one
example. Note that the measured WRI at time 7has been used
to produce the simulated WRI corresponding to time 7+1. NR,
LR, and HR areas in each WRI are shown in white, grey, and
black respectively.

IV. CONCLUSIONS

This work focuses on the presentation of an approach for
assessing and characterizing rain cell dynamics based exclu-
sively on the analysis of the radar reflectivity images, and
without an a priori assumption on the structure of rain cells.
This research has been addressed by using cellular automata.
Rain cell dynamics are simulated by using probabilistic CA
rules and tracking vectors, which indicate a global advection
direction and velocity. The proposed method seems to capture
with fairly good accuracy the dynamical behavior of rain cells
in the studied examples. Moreover, this method offers a global
approach to determine the motion for rain cells of WRIs. A
straightforward linkage between rain cell dynamics in terms of
reflectivity Z (dBz) or its equivalent rain rate R (mm/h) and
satellite or terrestrial radiolink attenuation can be performed.

Future work includes expanding the study to other cases,
and finding out whether extracting a limited number of general
CA rules that capture the rain dynamics in most cases is possi-
ble.

Foreseen applications include short time forecasting or now-
casting, e.g., for taking decisions driving fade countermea-
sures, FCMs, in reconfigurable radio networks, and simulation,
e.g., generation of synthetic sequences or ensembles of rain
cells for testing radio network performance.
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