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1 Introduction

In recent years discontinuous Galerkin methods have experienced a resurgence of inter-
est in multivarious disciplines of numerical mathematics including compressible flows
and aerodynamics, [6, 7, 9, 10, 16, 22, 23, 24, 36], among many others. It can be ob-
served that to an increasing extent discontinuous Galerkin methods are now applied to
problems which traditionally where solved using finite volume methods. The reason for
this trend can be identified in several advantages of the discontinuous Galerkin methods
over finite volume methods. Second order finite volume methods are achieved by em-
ploying a second order accurate reconstruction. The extension of a second order finite
volume scheme to a (theoretically) third order scheme requires a third order accurate
reconstruction which on unstructured meshes is very cumbersome and which in practice
shows deterioration of order. On unstructured meshes finite volume methods of even
higher order are virtually impossible. These difficulties bound the order of numerical
computations in industrial applications to second order. In contrast to this, the order
of discontinuous Galerkin methods, applied to problems with regular solutions, depends
on the degree of the approximating polynomials only which can easily be increased,
dramatically simplifying the use of higher order methods on unstructured meshes. Fur-
thermore, the stencil of most discontinuous Galerkin schemes is minimal in the sense that
each element communicates only with its direct neighbours. In contrast to the increas-
ing number of elements or mesh points communicating for increasing accuracy of finite
volume methods, the inter-element communication of discontinuous Galerkin methods
is the same for any order. The compactness of the discontinuous Galerkin method has
clear advantages in parallelisation, which does not require additional element layers at
partition boundaries. Also due to simple communication at element interfaces, elements
with so-called ‘hanging nodes’ can be treated just as easily as elements without hanging
nodes, a fact that simplifies local mesh refinement (h-refinement). In addition to this,
the communication at element interfaces is identical for any order of the method which
simplifies the use of methods of differing orders in adjacent elements. This allows for the
variation of the order of the numerical scheme over the computational domain, which
in combination with h-refinement leads to so-called hp-refinement, where p-refinement
denotes the variation of the polynomial degree p.

This article starts with providing the basics of discontinuous Galerkin (DG) methods
in Section 2. The DG method for hyperbolic problems is then extended to the compress-
ible Navier-Stokes equations of gasdynamics in Section 4.2. Higher order computations
for inviscid and viscous flows are shown in Section 3 and 6, respectively. Further topics
covered are: The Newton-GMRES algorithm for the solution of the nonlinear equations
including a detailed description of Jacobians in Section 5, the stabilization of the nu-
merical scheme with shock-capturing in Section 7 and finally the definition of adjoint
problems and their use in error estimation and adaptive mesh refinement in Section 8.
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2 The Discontinuous Galerkin discretization of

hyperbolic conservation equations

2.1 Hyperbolic conservation equations

Given a final time T > 0, we consider the following system of conservation equations,

∂

∂t
u +

d∑

i=1

∂

∂xi
f c
i (u) = 0 in (0, T ] × Ω,

u(0, ·) = u0(·) in Ω,

(1)

where Ω is a bounded connected domain in R
d, d ≥ 1, u = (u1, . . . , um)T , F c(u) =

(f c
1(u), . . . , f c

d(u)) and f c
i : R

m → R
m, i = 1, . . . , d, are continuously differentiable. In

particular, we will be concerned with the solution of the stationary system of conservation
equations,

∇ · F c(u) = 0 in Ω, (2)

subject to appropriate boundary conditions described below. We say that (1) is hyper-
bolic, if the matrix

B(u,ν) :=

d∑

i=1

νiAi(u) (3)

has m real eigenvalues and a complete set of linearly independent eigenvectors for all
vectors ν = (ν1, . . . , νd) ∈ R

d. Here, Ai(u) ∈ R
m×m denotes the Jacobi matrix of the

flux f c
i (u), i.e.

Ai(u) :=
∂

∂u
f c
i (u), i = 1, . . . , d. (4)

The system of conservation equations (1) must be supplemented with appropriate
boundary conditions; for example at inflow/outflow boundaries, we require that

B−(u,n) (u − g) = 0, on Γ (5)

where n denotes the unit outward normal vector to the boundary Γ = ∂Ω and g is a
(given) vector function. Here, B±(u,n) denotes the negative/positive part of B(u,n),

B±(u,n) = PΛ±P−1, (6)

where P = [r1, . . . , rm] denotes the m × m matrix of eigenvectors of B(u,n) and
Λ− = diag(min(λi, 0)) and Λ+ = diag(max(λi, 0)) the m × m diagonal matrix of the
negative/positive eigenvalues of B(u,n) with Bri = λiri, i = 1, . . . , d.

In the following, we give two examples of hyperbolic conservation equations.

2.2 Scalar hyperbolic problem

The linear advection equation is given by

β · ∇u = f in Ω,

u = g on Γ−,
(7)

where β ∈ R
d and Γ− ⊂ Γ denotes the inflow boundary defined by

Γ− = {x ∈ Γ, (β · n) (x) < 0}.
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This is the simplest example of a hyperbolic problem as given in (2). In fact, setting
F c(u) = (β1u, . . . , βdu) = βu, with a scalar function u, i.e. m = 1, we have B(u,n) =
β · n = λ ∈ R. The boundary condition (5) is given by

B−(u,n)(u− g) = λ−(u− g) = 0 on Γ,

where λ− = min(λ, 0) which reduces to u = g on Γ− and no boundary condition is
imposed on the outflow boundary Γ+ = {x ∈ Γ, (β · n) (x) ≥ 0}.

2.3 The compressible Euler equations

The Euler equations of compressible gas dynamics represent an important example of the
hyperbolic problem (1). In two space–dimensions, the vector of conservative variables u
and the convective fluxes f c

i , i = 1, 2, are defined by

u =




ρ
ρv1

ρv2

ρE


 , f c

1(u) =




ρv1

ρv2
1 + p
ρv1v2

ρHv1


 and f c

2(u) =




ρv2

ρv1v2

ρv2
2 + p
ρHv2


 , (8)

where ρ, v = (v1, v2)
T , p and E denote the density, velocity vector, pressure and specific

total energy, respectively. Additionally, H is the total enthalpy given by

H = E +
p

ρ
= e+ 1

2
v2 +

p

ρ
, (9)

where e is the specific static internal energy, and the pressure is determined by the
equation of state of an ideal gas

p = (γ − 1)ρe, (10)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure, cp, and
constant volume, cv; for dry air, γ = 1.4. The flux Jacobians Ai(u) defined in (4) are
given by

A1(u) =




0 1 0 0
−v2

1 + 1
2
(γ − 1)v2 (3 − γ)v1 −(γ − 1)v2 γ − 1

−v1v2 v2 v1 0
v1

(
1
2
(γ − 1)v2 −H

)
H − (γ − 1)v2

1 −(γ − 1)v1v2 γv1


 ,

A2(u) =




0 0 1 0
−v1v2 v2 v1 0

−v2
2 + 1

2
(γ − 1)v2 −(γ − 1)v1 (3 − γ)v2 γ − 1

v2

(
1
2
(γ − 1)v2 −H

)
−(γ − 1)v1v2 H − (γ − 1)v2

2 γv2


 .

Finally, the eigenvalues of the matrix B(u,n) =
∑2

i=1 niAi(u) are

λ1 = v · n − c, λ2 = λ3 = v · n, λ4 = v · n + c (11)

where c =
√
γp/ρ denotes the speed of sound. Considering the signs of λi, i = 1, . . . , 4,

we distinguish four cases of boundary conditions (5):

• supersonic inflow: λi < 0, i = 1, . . . , 4,

5
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Figure 1: Mapping σ of reference element κ̂ to the element κ in real space.

• subsonic inflow: λi < 0, i = 1, 2, 3, λ4 > 0,

• subsonic outflow: λ1 < 0, λi > 0, i = 2, 3, 4, and

• supersonic outflow: λi > 0, i = 1, . . . , 4.

Each eigenvalue smaller than zero corresponds to an inflow characteristic. The num-
ber of variables to be prescribed on the boundary depends on the number of inflow
characteristics.

2.4 The Discontinuous Galerkin discretization

In this section we state the discontinuous Galerkin discretization of hyperbolic conser-
vation equations (2).

First, we begin by introducing some notation. We assume that Ω can be subdivided
into shape-regular meshes Th = {κ} consisting of quadrilateral elements κ. Here, h
denotes the piecewise constant mesh function defined by h|κ ≡ hκ = diam(κ) for all
κ ∈ Th. Let us assume that each κ ∈ Th is an image of a fixed reference element κ̂, that
is, κ = σκ(κ̂) for all κ ∈ Th. Here, we shall only consider the case when κ̂ is the open unit
hypercube in R

d. Furthermore the mapping σκ of the reference element κ̂ to the element
κ in real space is assumed to be bijective and smooth, with the eigenvalues of its Jacobian
matrix being bounded from below and above. For elements in the interior of the domain,
∂κ ∩ Γ = ∅, the mapping σκ is given by a d-linear function; In order to represent curved
boundaries, see Figure 1, mappings can be used that include polynomials of higher degree
on boundary elements, see [19] for more details about curved elements.

On the reference element κ̂ we define spaces of tensor product polynomials of degree
p ≥ 0 as follows:

Qp(κ̂) = span {x̂α : 0 ≤ αi ≤ p, 0 ≤ i ≤ d} , (12)

where α denotes a multi-index and x̂α =
∏d

i=1 x̂
αi

i . Finally, we introduce the finite ele-
ment space Vp

h consisting of discontinuous vector–valued polynomial functions of degree
p ≥ 0, defined by

Vp
h = {vh ∈ [L2(Ω)]m : vh|κ ◦ σκ ∈ [Qp(κ̂)]

m}. (13)

Suppose that v|κ ∈ [H1(κ)]
m

for each κ ∈ Th. Let κ and κ′ be two adjacent elements
of Th and x be an arbitrary point on the interior edge e = ∂κ ∩ ∂κ′. By v±

κ we denote
the traces of v taken from within the interior of κ and κ′, respectively, see Figure 2. For
x ∈ ∂κ∩Γ the outer trace is set to be v−

κ := g where g denotes an appropriate boundary
function.

6
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Figure 2: Definition of the interior and outer traces v±
κ wrt. element κ.

Since below it will always be clear from the context which element κ in the subdivision
Th the quantities v+

κ and v−
κ correspond to, for the sake of notational simplicity, we shall

suppress the letter κ in the subscript and write, respectively, v+ and v−, instead.
To formulate the discontinuous Galerkin method, we first introduce a weak formula-

tion of (2). To this end, we multiply the equation (2) by an arbitrary smooth (vector-
)function v and integrate by parts over an element κ in the mesh Th; thereby, we obtain

−
∫

κ

F c(u) · ∇v dx +

∫

∂κ

F c(u) · nv ds = 0. (14)

To discretize (14), we replace the analytical solution u by the Galerkin finite element
approximation uh and the test function v by vh, where uh and vh both belong to the
finite element space Vp

h. In addition, since the numerical solution uh is discontinuous
between element interfaces, we must replace the flux F c(u)·n by a numerical flux function
H(u+

h ,u
−
h ,n), which depends on both the interior– and outer–trace of uh on ∂κ, κ ∈ Th,

and the unit outward normal n to ∂κ. Thereby, summing over the elements κ in the
mesh Th, yields the discontinuous Galerkin finite element discretization of (2) as follows:
find uh ∈ Vp

h such that

∑

κ∈Th

{
−

∫

κ

F c(uh) · ∇vh dx +

∫

∂κ

H(u+
h ,u

−
h ,n)v+

h ds

}
= 0 ∀vh ∈ Vp

h. (15)

This scheme is called discontinuous Galerkin method of degree p, or in short, “DG(p)
method”.

For elements κ ∈ Th whose boundaries intersect that of the computational domain
Ω, we replace u−

h by appropriate boundary conditions on the portion of ∂κ for which
∂κ ∩ Γ 6= ∅. For more details about boundary conditions for the compressible Euler and
Navier-Stokes equations, see Section 4.2.

We remark that the replacement of the flux F c(u) · n by the numerical flux function
H(u+

h ,u
−
h ,n) on the boundary of element κ, κ in Th, corresponds to the weak imposition

of the boundary data. Furthermore, we emphasize that the choice of the numerical flux
function is independent of the finite element space employed. Indeed, the numerical flux
H(·, ·, ·) may be chosen to be any two–point monotone Lipschitz function which satisfies
the following two conditions:

(i) H(·, ·, ·)|∂κ is consistent with the flux F c(·) · n for each κ in Th; i.e.

H(v,v,n)|∂κ = F c(v) · n ∀κ ∈ Th;

(ii) H(·, ·, ·) is conservative, i.e. given any two neighbouring elements κ and κ′ from the
finite element partition Th, at each point x ∈ ∂κ ∩ ∂κ′ 6= ∅, noting that nκ′ = −n,
we have that

H(v,w,n) = −H(w,v,−n).

7



There are several numerical flux functions satisfying these conditions, such as the Go-
dunov, Engquist–Osher, Lax–Friedrichs, Roe or the Vijayasundaram flux, for example;
cf. [28, 35] and the references cited therein. As examples, here we consider two different
numerical fluxes: the (local) Lax–Friedrichs flux and the Vijayasundaram flux.

The (local) Lax–Friedrichs flux HLF (·, ·, ·), is defined by

HLF (u+,u−,n)|∂κ = 1
2

(
F c(u+) · n + F c(u−) · n + α

(
u+ − u−

))
, (16)

for κ ∈ Th, where α is the maximum over u+ and u−,

α = α
(
u+,u−

)
= max

v=u
+,u−

{|λ(B(v,n))|}, (17)

of the largest eigenvalue (in absolute value) |λ(B)| of the matrix B(v,n) =
∑d

i=0 niAi(u)
defined in (3).

The Vijayasundaram flux HV (·, ·, ·), is defined by

HV (u+,u−,n)|∂κ = B+(ū,n)u+ +B−(ū,n)u− for κ ∈ Th, (18)

where B+(ū,n) and B−(ū,n) denote the positive and negative parts, cf. (6), of the
matrix B(ū,n), respectively, evaluated at an average state ū between u+ and u−.
Remark. We note that the discontinuous Galerkin discretization is similar to finite Vol-
ume schemes, in particular in the use of numerical flux functions. In fact, the basic finite
Volume scheme corresponds to the DG(0) method, i.e. to the discontinuous Galerkin
method using piecewise constant ansatz and test functions. Consequently, the DG(p)
methods with p > 0 can be considered as the “natural” generalization of finite Volume
methods to higher order methods. Indeed, simply by increasing the degree p of the dis-
crete function space Vp

h in the discretization (15) we gain discontinuous Galerkin schemes
of corresponding higher orders. This will be demonstrated by a numerical example of
the two-dimensional compressible Euler equations in Section 3.

2.5 DG for scalar hyperbolic problems

Originally, the discontinuous Galerkin method was introduced by Reed and Hill [31] and
analysed by LeSaint and Raviart [29] for following scalar hyperbolic problem used as a
simple model for neutron transport

β · ∇u+ bu = f in Ω,

u = g on Γ−,
(19)

with constant vector β ∈ R2 and a real number b > 0. The discontinuous Galerkin
discretization of this problem is given by

∑

κ∈Th

{∫

κ

(β · ∇uh + buh)vh dx −
∫

∂κ−

β · n [uh]v
+
h ds

}
=

∑

κ∈Th

{∫

κ

fvh dx

}
, (20)

with the jump [uh] = u+
h − u−h , the inflow boundary of the element,

∂κ− = {x ∈ ∂κ,β · n < 0},

the outflow boundary ∂κ+ = Γ \ ∂κ−, and inflow boundary values

u−h (x) = g(x), x ∈ Γ−,

8



see also Johnson and Pitkäranta [27], for example. At first sight, the discontinuous
Galerkin discretization given by (15) looks different to the original DG discretization
(20). However, by defining the numerical flux for the scalar hyperbolic problem to be

H(u+
h , u

−
h ,n)(x) =

{
β · n u−h , for (β · n)(x) < 0, i.e. x ∈ ∂κ−,
β · n u+

h , for (β · n)(x) ≥ 0, i.e. x ∈ ∂κ+,
(21)

we see that after integration by parts equation (15) reduces to (20) with b = 0 and f = 0.
We recall that the numerical flux replaces the flux term F c(u) · n on the boundary of
the elements. The normal flux of the scalar hyperbolic conservation equation is given
by F c(u) · n = β · n u, and the numerical flux H defined in (21), switches between the
interior and the outer traces, u+

h and u−h , respectively, depending on x ∈ ∂κ being on
the outflow or the inflow part of the boundary of the element. Furthermore, we note,
that both, the local Lax–Friedrichs flux (16) and the Vijayasundaram flux (18), reduce
to the flux given in (21) when applied to the scalar hyperbolic problem (19).

2.6 DG for scalar hyperbolic problems:

A priori error estimates

In the following we quote an a priori error estimate for the discontinuous Galerkin
method of the scalar hyperbolic problem (19):

Let b ∈ C(Ω̄), f ∈ L2(Ω), and g ∈ L2(Γ−) on the inflow boundary Γ− := {x ∈
Γ,β(x) · n(x) < 0}, then the weak formulation of (19) given by,

∫

Ω

(β · ∇u+ bu)v dx =

∫

Ω

fv dx, v ∈ L2(Ω),
∫

Γ−

β · n uw ds =

∫

Γ−

β · n gw ds, w ∈ L2(Γ−),

has a unique (weak) solution u ∈ L2(Ω) with β · ∇u ∈ L2(Ω).
We recall the discontinuous Galerkin discretization (20) to this problem and write it

as follows: find uh ∈ V p
h such that

a(uh, vh) = l(vh) ∀vh ∈ V p
h , (22)

where a(·, ·) and l(·) are given by

a(w, v) =
∑

κ∈Th

{∫

κ

(β · ∇w + bw)v dx

−
∫

∂κ−\Γ−

β · n [w]v+ ds−
∫

∂κ−∩Γ−

β · nw+v+ ds

}
, (23)

with [w] = w+ − w−, and

l(w) =
∑

κ∈Th

{∫

κ

fv dx −
∫

∂κ−∩Γ−

β · n gv+ ds

}
.

Furthermore, we define the norms ‖v‖κ ≡ ‖v‖L2(κ) =
(∫

κ
|v|2 dx

) 1
2 for κ ∈ Th, and

‖v‖e =
(∫

e
|β · n||v|2 dx

) 1
2 for e ⊂ ∂κ. Then the following lemma can be obtained by

performing integration by parts.
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Lemma 2.1 Let a(·, ·) be the bilinear form defined in (23), then the following identity

holds

a(v, v) =
∑

κ∈Th

{∫

κ

(
b− 1

2
∇ · β

)
v2 dx+ 1

2
‖v+‖2

∂κ−∩Γ−

+ 1
2
‖v+ − v−‖2

∂κ−\Γ−
+ 1

2
‖v+‖2

∂κ+∩Γ+

}
. (24)

An implication of this Lemma is a stability result quoted in the following Lemma 2.2
that is a special case of Lemma 2.4 in [25] with δ = 0, i.e. without streamline diffusion
stabilization.

Lemma 2.2 (Stability) Suppose that there exists a positive constant c0 such that

c(x) := b(x) − 1
2
∇ · β(x) ≥ c0, x ∈ Ω̄. (25)

Then the discrete solution uh ∈ V p
h of (22) obeys the bound

∑

κ∈Th

{
c0‖uh‖2

κ + ‖u+
h − u−h ‖2

∂κ−\Γ−
+ ‖u+

h ‖2
∂κ+∩Γ+

+ 1
2
‖u+

h ‖2
∂κ−∩Γ−

}

≤ 1
c0
‖f‖2

Ω + 2‖g‖2
Γ−
.

Lemma 2.2 implies the uniqueness of the solution uh of the discontinuous Galerkin
method (22); furthermore, since (22) is a linear problem over the finite-dimensional
space V p

h , the existence of the solution uh follows from its uniqueness.
Stimulated by the identity in Lemma (2.1) and definition (25), we define the DG-

Norm ||| · ||| by

|||v||| :=
∑

κ∈Th

{
‖cv‖2

κ + 1
2
‖v+‖2

∂κ−∩Γ−
+ 1

2
‖v+ − v−‖2

∂κ−\Γ−
+ 1

2
‖v+‖2

∂κ+∩Γ+

}
.

In terms of this norm the following convergence result for the discontinuous Galerkin
method applied to the scalar hyperbolic equation (19) can be shown, that is (in a sim-
plified version) quoted from [25].

Theorem 2.3 (Convergence rate of the DG method) Let Th consist of shape-regular

quadrilateral elements. For all κ ∈ Th let u|κ ∈ Hkκ+1(κ), kκ ≥ 0. Then, for the discrete

solution uh ∈ V p
h of the discontinuous Galerkin problem (22) and for 0 ≤ sκ ≤ min(p, kκ)

the following estimate holds:

|||u− uh|||2 ≤ C
∑

κ∈Th

h2sκ+1
κ |u|2sκ+1,κ, (26)

where C is independent of sκ and hκ.

This result was first proven by Johnson and Pitkaränta in [27] for general triangula-
tions. However, this result indicates half an order of convergence in the L2-norm less
than expected from a trial space V p

h of order p + 1. Also numerical results show a full
O(hp+1) order of convergence on virtually all meshes, see also Section 3. In fact, Richter
obtained in [32] the full order of convergence in the L2-norm for some structured two-
dimensional but non-Cartesian meshes. But on the other hand, Peterson confirmed in
[30] by considering so–called Peterson meshes, that O(hp+1/2) is actually the optimal
order of convergence in the L2-norm on general meshes.

10
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Figure 3: Geometry for Ringleb’s flow; M denotes the Mach number.

Figure 4: Ringleb flow problem: Meshes with 2, 8, 32 elements.

3 Higher order convergence of the DG method for

the 2d compressible Euler equations

For nonlinear hyperbolic systems like the two–dimensional compressible Euler equations
there are virtually no a priori error estimates available. Therefore, the order of conver-
gence of these problems can be obtained through numerical tests, only. In the following,
we shall show a numerical example taken from [19] indicating that the discontinuous
Galerkin method applied to the steady 2d compressible Euler equation exhibits a full
O(hp+1) order of convergence for smooth solutions.

3.1 The Ringleb flow problem

To this end, we consider the solution of the 2d compressible Euler equations to the
Ringleb flow problem, that is one of the few non-trivial problems of the 2d Euler equations
for which a (smooth) analytical solution is known. For this case the analytical solution
may be obtained using the hodograph transformation, see [14] or the appendix of [19].
This problem represents a transonic flow in a channel, see Figure 3, with inflow and
outflow boundaries given by the lower and upper boundaries of the domain, and non–
absorbing, i.e. reflective boundaries with normal velocity v ·n = 0, on the left and right
boundary.

The solution to this flow problem is smooth but it is transonic with a small supersonic
region near the lower right corner. Furthermore, this problem includes curved boundaries
and the mesh consists of arbitrary quadrilaterals; see the first three globally refined
meshes in Figure 4.
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# el. # DoFs L2-error Rate Order
2 32 8.48e-02 - -
8 128 2.39e-02 3.54 1.82

32 512 6.72e-03 3.56 1.83
128 2048 1.81e-03 3.72 1.90
512 8192 4.75e-04 3.80 1.93

2048 32768 1.23e-04 3.87 1.95
8192 131072 3.14e-05 3.92 1.97

Table 1: Ringleb flow problem: DG(1) is of order O(h2).

# el. # DoFs L2-error Rate Order
2 72 2.06e-02 - -
8 288 2.75e-03 7.52 2.91

32 1152 3.85e-04 7.13 2.83
128 4608 5.18e-05 7.43 2.89
512 18432 6.61e-06 7.83 2.97

2048 73728 8.22e-07 8.05 3.01

Table 2: Ringleb flow problem: DG(2) is of order O(h3).

We note that low order boundary approximations of reflective boundaries reduce the
order of convergence. To suppress this effect, here we impose the boundary condition,

B−(u,n) (u − g) = 0, on Γ, (27)

on the whole boundary Γ of the domain, where g is the boundary value function taken
from the exact solution to the Ringleb flow problem. This boundary condition represents
an inflow boundary condition for characteristic variables on inflow parts (with respect
to the corresponding characteristics) of the boundary.

In the following, we compute the numerical solutions to this problem on globally
refined meshes and evaluate the L2-error of the solutions. The results of this test are
presented in Tables 1- 4. They show the number of elements of the globally refined
meshes, the number of degrees of freedom, the L2-error of the numerical solution and
two additional columns including the rate and the order of the convergence. These tables
clearly show a O(hp+1) order of convergence of the L2-error ‖u − uh‖ of the numerical
solution uh. Finally Figure 5 shows the L2-error of the DG(p), 0 ≤ p ≤ 4 methods
plotted against the number of degrees of freedom. The resulting O(hp+1) order of
convergence is optimal for trial and test functions of polynomial degree p. This again, as
discussed in Section 2.6 for the scalar case, is half an order more than expected for the
scalar linear case on general meshes. We re-emphasise that, although the discontinuous
Galerkin method is based on ideas of upwinding, it is not restricted to convergence of first
or second order but allows arbitrarily high orders of convergence (for smooth solutions)
depending on the order of the discrete function space Vp

h employed.

12



# el. # DoFs L2-error Rate Order
2 128 5.85e-03 - -
8 512 3.58e-04 16.37 4.03

32 2048 2.84e-05 12.60 3.66
128 8192 1.92e-06 14.78 3.89
512 32768 1.23e-07 15.61 3.96

2048 131072 7.81e-09 15.75 3.98

Table 3: Ringleb flow problem: DG(3) is of order O(h4).

# el. # DoFs L2-error Rate Order
2 200 2.92e-03 - -
8 800 6.92e-05 42.13 5.40

32 3200 2.25e-06 30.81 4.95
128 12800 7.77e-08 28.94 4.86
512 51200 2.56e-09 30.32 4.92

2048 204800 8.21e-11 31.21 4.96

Table 4: Ringleb flow problem: DG(4) is of order O(h5).
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4 A Discontinuous Galerkin discretization of

the compressible Navier-Stokes equations

4.1 The compressible Navier-Stokes equations

We consider the two–dimensional steady state compressible Navier-Stokes equations.
Like in Section 2.3, ρ, v = (v1, v2)

T , p and E denote the density, velocity vector, pressure
and specific total energy, respectively. Furthermore, T denotes the temperature. The
equations of motion are given by

∇ · (F c(u) − F v(u,∇u)) ≡ ∂

∂xi
f c
i (u) − ∂

∂xi
fv
i (u,∇u) = 0 in Ω. (28)

The vector of conservative variables u and the convective fluxes f c
i , i = 1, 2, are given by

(8). Furthermore, the viscous fluxes f v
i , i = 1, 2, are defined by

fv
1 (u,∇u) =




0
τ11
τ21

τ1jvj + KTx1


 and fv

2 (u,∇u) =




0
τ12
τ22

τ2jvj + KTx2


 , (29)

respectively, where K is the thermal conductivity coefficient. Finally, the viscous stress
tensor is defined by

τ = µ
(
∇v + (∇v)T − 2

3
(∇ · v)I

)
, (30)

where µ is the dynamic viscosity coefficient, and the temperature T is given by e = cvT ;
thus

KT = µγ
Pr

(
E − 1

2
v2

)
,

where Pr = 0.72 is the Prandtl number.
For the purposes of discretization, we rewrite the compressible Navier–Stokes equa-

tions (28) in the following (equivalent) form:

∂

∂xi

(
f c
i (u) −Gij(u)

∂u

∂xj

)
= 0 in Ω. (31)

Here, the matricesGij(u) = ∂f v
i (u,∇u)/∂uxj

, for i, j = 1, 2, i.e., f v
i (u,∇u) = Gij(u)∂u/∂xj ,

i = 1, 2, where

G11 =
µ

ρ




0 0 0 0
−4

3v1
4
3 0 0

−v2 0 1 0
−

(
4
3v2

1 + v2
2 + γ

Pr

(
E − v

2
)) (

4
3 − γ

Pr

)
v1

(
1 − γ

Pr

)
v2

γ
Pr


 ,

G12 =
µ

ρ




0 0 0 0
2
3v2 0 −2

3 0
−v1 1 0 0

−1
3v1v2 v2 −2

3v1 0


 , G21 =

µ

ρ




0 0 0 0
−v2 0 1 0
2
3v1 −2

3 0 0
−1

3v1v2 −2
3v2 v1 0


 ,

G22 =
µ

ρ




0 0 0 0
−v1 1 0 0
−4

3v2 0 4
3 0

−
(
v2
1 + 4

3v2
2 + γ

Pr

(
E − v

2
)) (

1 − γ
Pr

)
v1

(
4
3 − γ

Pr

)
v2

γ
Pr


 .
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Given that Ω ⊂ R
2 is a bounded region, with boundary Γ, the system of conservation

equations (31) must be supplemented by appropriate boundary conditions. For simplicity
of presentation, we assume that Γ may be decomposed as follows

Γ = ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out ∪ ΓN ∪ ΓW,

where ΓD,sup, ΓD,sub-in, ΓD,sub-out, ΓN, and ΓW are distinct subsets of Γ representing Dirichlet
(supersonic), Dirichlet (subsonic-inflow), Dirichlet (subsonic-outflow), Neumann (supersonic-
outflow), cf. the four cases mentioned in Section 2.3, and solid wall boundaries, respec-
tively. Thereby, we may specify the following boundary conditions:

B(u) = B(gD) on ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out, (32)

where gD are given Dirichlet boundary conditions, respectively. Here, B is a boundary
operator employed to enforce appropriate Dirichlet conditions on ΓD,sup∪ΓD,sub-in∪ΓD,sub-out.
For simplicity of presentation, we assume that

B(u) =





u, on ΓD,sup,
(u1, u2, u3, 0)T , on ΓD,sub-in, and

(0, 0, 0, (γ − 1)(u4 − (u2
2 + u2

3)/(2u1)))
T
, on ΓD,sub-out

(33)

We note that the latter condition enforces a specific pressure pout = (B(gD))4 on ΓD,sub-out.
Furthermore, we specify Neumann boundary conditions

Fv(u,∇u) · n = gN on ΓN, (34)

with gN = 0 on the supersonic outflow boundary ΓN.
For solid wall boundaries and viscous flows, we consider the distinction between

isothermal and adiabatic conditions. To this end, decomposing ΓW = ΓW,iso ∪ ΓW,adia, we
set

v = 0 on ΓW, T = Twall on ΓW,iso, n · ∇T = 0 on ΓW,adia,

where Twall is a given wall temperature;
For solid wall boundaries and inviscid flows, governed by the compressible Euler

equations, see Section 2.3 or equation (28) with µ = 0, we consider reflective (or slip
wall) boundary conditions,

v · n = 0 on ΓW = Γrefl.

4.2 The Interior Penalty Discontinuous Galerkin discretization

Following the derivation in [23], in this section we introduce the discontinuous Galerkin
method with interior penalty for the discretization of the compressible Navier–Stokes
equations (28).

In addition to the notation introduced in Section 2.4, we now define average and
jump operators. To this end, let κ+ and κ− be two adjacent elements of Th and x be an
arbitrary point on the interior edge e = ∂κ+ ∩ ∂κ− ⊂ ΓI, where ΓI denotes the union of
all interior edges of Th. Moreover, let v and τ be vector- and matrix-valued functions,
respectively, that are smooth inside each element κ±. By (v±, τ±) we denote the traces
of (v, τ) on e taken from within the interior of κ±, respectively. Then, we define the
averages at x ∈ e by {{v}} = (v+ + v−)/2 and {{τ}} = (τ+ + τ−)/2. Similarly, the jump
at x ∈ e is given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ−. On a boundary edge e ⊂ Γ, we set
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{{v}} = v, {{τ}} = τ and [[v]] = v ⊗ n. For matrices σ, τ ∈ R
m×n, m,n ≥ 1, we use the

standard notation σ : τ =
∑m

k=1

∑n
l=1 σklτkl; additionally, for vectors v ∈ R

m,w ∈ R
n,

the matrix v ⊗ w ∈ R
m×n is defined by (v ⊗ w)kl = vk wl.

In order to derive the interior penalty discontinuous Galerkin discretization of equa-
tions (31), we first re-write (31) as a system of first–order partial differential equations,
by introducing appropriate auxiliary variables. To this end, we have

σ =

(
G1j(u)

∂u

∂xj
, G2j(u)

∂u

∂xj

)
, in Ω, (35)

∇ · (F c(u) − σ) = 0, in Ω, (36)

subject to appropriate boundary conditions, cf. above.
Next, we introduce the finite element space Σp

h × Vp
h, where

Σp
h = {τ ∈ [L2(Ω)]4×2 : τ |κ ◦ σκ ∈ [Qp(κ̂)]

4×2 , κ ∈ Th},
Vp

h = {v ∈ [L2(Ω)]4 : v|κ ◦ σκ ∈ [Qp(κ̂)]
4 , κ ∈ Th},

(37)

for an approximation order p ≥ 1. Here, Vp
h is defined as in (13) for m = 4 and Qp(κ̂)

denotes the space of tensor product polynomials on κ̂ of degree p in each coordinate
direction as defined in (12).

Taking the L2(κ), κ ∈ Th, inner product of (35) and (36) with smooth test functions
τ = (τ 1, τ 2) and v, respectively, and integrating by parts gives

∫

κ

σ : τ dx =

∫

∂κ

u · (GT
ijτ i)nxj

ds−
∫

κ

u · ∂

∂xj

(GT
ijτ i) dx,

−
∫

κ

F c(u) : ∇v dx +

∫

∂κ

(F c(u) · nκ) · v ds+

∫

κ

σ : ∇v dx

−
∫

∂κ\(ΓN∪ΓW,adia)

σ : v ⊗ nκ ds−
∫

∂κ∩ΓN

gN · v ds

−
∫

∂κ∩ΓW,adia

σadia : v ⊗ nκ ds = 0,

where on the adiabatic boundary ΓW,adia, we define σadia such that

σadia · n ≡ F v,adia(u,∇u) · n = (0, τ1jnxj
, τ2jnxj

, τijvjnxi
)T .

Summing over all elements κ in the computational mesh Th and introducing appro-
priate numerical flux functions, which will be defined below, we deduce the following
auxiliary formulation of the interior penalty discontinuous Galerkin discretization: find
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(σh,uh) ∈ Σp
h × Vp

h such that

∑

κ∈Th

∫

κ

σh : τh dx =
∑

κ∈Th

{∫

∂κ

ûh · (GT
ijτh,i)nxj

ds

−
∫

κ

uh ·
∂

∂xj
(GT

ijτh,i) dx

}
, (38)

∑

κ∈Th

{
−

∫

κ

F c(uh) : ∇vh dx +

∫

∂κ\Γ

H(u+
h ,u

−
h ,nκ) · v+

h ds

+

∫

∂κ∩Γ

H(u+
h ,uΓ(u+

h ),nκ) · v+
h ds+

∫

κ

σh : ∇vh dx

}
(39)

−
∫

ΓI∪Γ\(ΓN∪ΓW,adia)

σ̂h : [[vh]] ds−
∫

ΓW,adia

σ̂adia

h : [[vh]] ds−
∫

ΓN

gN · vh ds = 0

for all (τ h,vh) ∈ Σp
h × Vp

h. Here, the numerical flux function H(·, ·, ·) is defined as in
Section 2.4. Furthermore, the numerical flux functions ûh, σ̂h and σ̂adia

h may be chosen
to be any Lipschitz continuous, consistent and conservative fluxes which are discrete
approximations to traces on the boundary of the elements in the mesh.

To define the symmetric interior penalty discretization of the viscous terms, these
numerical fluxes are defined as follows: for an edge e which lies inside the domain Ω, we
have

ûh = {{uh}} and σ̂h = {{F v(uh,∇uh)}} − δ[[uh]];

while for boundary edges we write

ûh = uΓ(u+
h ), σ̂h = Fv(u+

h ,∇u+
h ) − δ(u+

h − uΓ(u+
h )) ⊗ n,

and on ΓW,adia, we set

σ̂adia

h = Fv,adia(u+
h ,∇u+

h ) − δ(u+
h − uΓ(u+

h )) ⊗ n. (40)

Here, for simplicity, we set the discontinuity penalization matrix δ = diag{δi, i =
1, . . . , 4} , where

δi|e = CIP

µp2

h̃
for e ⊂ ΓI ∪ Γ, (41)

h̃ = min(meas(κ),meas(κ′))/meas(e) represents the element dimension orthogonal to
the edge e of elements κ and κ′ adjacent to e, and CIP is a positive constant, which,
for reasons of stability, must be chosen sufficiently large, cf. [2]; see also [17] for the
extension to the anisotropic case.

Finally, the boundary function uΓ(u) is given according to the type of boundary
condition imposed. To this end, we set

uΓ(u) = gD on ΓD,sup, uΓ(u) = u on ΓN,

uΓ(u) =

(
(gD)1, (gD)2, (gD)3,

p(u)

γ − 1
+

(gD)2
2 + (gD)2

3

2(gD)1

)T

on ΓD,sub-in, (42)

and

uΓ(u) =

(
u1, u2, u3,

pout

γ − 1
+
u2

2 + u2
3

2u1

)T

on ΓD,sub-out. (43)
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Here, p ≡ p(u) denotes the pressure evaluated using the equation of state (10). For
viscous flows, we set

uΓ(u) = (u1, 0, 0, u1cvTwall)
T on ΓW,iso,

and
uΓ(u) = (u1, 0, 0, u4)

T on ΓW,adia.

Finally, for inviscid flows, we set

uΓ(u) =




1 0 0 0
0 1 − 2n2

1 −2n1n2 0
0 −2n1n2 1 − 2n2

2 0
0 0 0 1


u on Γrefl,

which originates from u by inverting the sign of the normal velocity component of u, i.e.
v = (v1, v2) is replaced by v− = (v − 2(v · n)n).
Remark. We note that the flux functions σ̂h and σ̂adia

h are consistent for any choice of
δ; however, it is well known that the stability of the underlying discretization crucially
depends on the magnitude of this discontinuity–penalization parameter, cf. [2], for exam-
ple. For the choice of the corresponding numerical flux functions for the non-symmetric
interior penalty method, together with other schemes proposed in the literature, we refer
to the article [2].

It is usually desirable to eliminate the auxiliary variables σh, in order to reduce the
size of the underlying system of nonlinear equations. This can be achieved by selecting
τh = ∇vh in (38), integrating by parts, and inserting the resulting expression for the
term involving the product of σh and ∇vh into (39). Thereby, the so–called primal
formulation of the symmetric interior penalty discontinuous Galerkin discretization of
the compressible Navier–Stokes equations (31) is as follows: find uh ∈ Vp

h such that

N (uh,vh) ≡ −
∫

Ω

F c(uh) : ∇hvh dx +
∑

κ∈Th

∫

∂κ\Γ

H(u+
h ,u

−
h ,nκ) · v+

h ds

+

∫

Ω

Fv(uh,∇huh) : ∇hvh dx −
∫

ΓI

{{F v(uh,∇huh)}} : [[vh]] ds

−
∫

ΓI

{{
(
GT

i1∂hvh/∂xi, G
T
i2∂hvh/∂xi

)
}} : [[uh]] ds+

∫

ΓI

δ[[uh]] : [[vh]] ds

+

∫

Γ

H(u+
h ,uΓ(u+

h ),n) · v+
h ds+

∫

Γ\ΓN

δ
(
u+

h − uΓ(u+
h )

)
· v+

h ds,

−
∫

Γ\(ΓN∪ΓW,adia)

Fv(u+
h ,∇hu

+
h ) : [[vh]] ds−

∫

ΓN

gN · vh ds

−
∫

ΓW,adia

Fv,adia(u+
h ,∇hu

+
h ) : [[vh]] ds

−
∫

Γ\ΓN

(
GT

i1(u
+
h )∂hv

+
h /∂xi, G

T
i2(u

+
h )∂hv

+
h /∂xi

)
:
(
u+

h − uΓ(u+
h )

)
⊗ nds = 0 (44)

for all vh in Vp
h. Here, the subscript h on the operators ∇h and ∂h/∂xi, i = 1, 2, is

used to denote the discrete counterparts of ∇ and ∂/∂xi, i = 1, 2, respectively, taken
elementwise.

18



5 Newton–GMRES algorithm

To determine the numerical solution uh of the system of nonlinear equations (44), we
employ a damped Newton method. This nonlinear iteration generates a sequence of
approximations un

h, n = 0, 1, . . . , to the actual numerical solution uh, using the following
algorithm. Given an iterate un

h, the update dn
h of un

h to get to the next iterate

un+1
h = un

h + ωndn
h

is defined by: find dn
h ∈ Vp

h such that

N̂ ′
u
[un

h](dn
h,vh) = R(un

h,vh) ≡ −N (un
h,vh) ∀vh ∈ Vp

h. (45)

Here, wn denotes a damping parameter, which is dynamically chosen to guarantee that
the discrete l2-norm of the residual computed with un+1

h is less than the same quantity
computed with un

h; wn = 1 represents an undamped Newton iteration. Additionally,
N̂ ′

u
[w](·,v) denotes (an approximation to) the Fréchet derivative of u → N (u,v), for

v ∈ Vp
h fixed, at some w in V, where V is some suitable chosen function space such that

Vp
h ∈ V. N̂ ′

u
[w](·,v) is also referred to as the Jacobian of the numerical scheme. More

precisely, we approximate N ′
u
[w](·,v) by

N̂ ′
u
[w](φ,v) = −

∫

Ω

(F c
u
(w)φ) : ∇hv dx

+
∑

κ∈Th

∫

∂κ\Γ

(
Ĥ′

u
+(w+,w−,nκ)φ

+ + Ĥ′
u
−(w+,w−,nκ)φ

−
)
· v+ ds

+

∫

Ω

(Fv
u
(w,∇hw)φ) : ∇hv dx +

∫

Ω

(Fv
∇u

(w,∇hw)∇hφ) : ∇hv dx

−
∫

ΓI

{{F v
u
(w,∇hw)φ}} : [[v]] ds−

∫

ΓI

{{F v
∇u

(w,∇hw)∇hφ}} : [[v]] ds

−
∫

ΓI

{{
(((

GT
i1

)′
(w)φ

)
∂hv/∂xi,

((
GT

i2

)′
(w)φ

)
∂hv/∂xi

)
}} : [[w]]) ds

−
∫

ΓI

{{
(
GT

i1(w)∂hv/∂xi, G
T
i2(w)∂hv/∂xi

)
}} : [[φ]]) ds+

∫

ΓI

δ[[φ]] : [[v]] ds

+ N̂ ′
Γ,u[w](φ,v),

where w → Ĥ′
u

+(w+,w−,nκ) and w → Ĥ′
u
−(w+,w−,nκ) denote approximations to the

derivatives of the flux function H(·, ·, ·) with respect to its first and second arguments,
respectively; for a detailed description of these derivatives for two specific choices of
numerical fluxes, we refer to Subsection 5.2. A detailed description of the Jacobian
N̂ ′

Γ,u[w](·,v) of the boundary terms is given in the following subsection.
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5.1 Jacobians of boundary terms

N̂ ′
Γ,u[w](·,v) denotes the derivative of the boundary terms, which is given by

N̂ ′
Γ,u[w](φ,v) =∫

Γ

(
Ĥ′

u
+

(
w+,uΓ(w+),n

)
+ Ĥ′

u
−

(
w+,uΓ(w+),n

)
u′

Γ(w+)
)

φ+ · v+ ds

+

∫

Γ\ΓN

δ
(
φ+ − u′

Γ(w+)φ+
)
· v+ ds,

−
∫

Γ\(ΓN∪ΓW,adia)

(
Fv

u
(w+,∇hw

+)φ+ + Fv
∇u

(w+,∇hw
+)∇hφ

+
)

: [[v]] ds

−
∫

ΓW,adia

(
Fv,adia

u
(w+,∇hw

+)φ+ + Fv,adia

∇u
(w+,∇hw

+)∇hφ
+
)

: [[v]] ds

−
∫

Γ\ΓN

(((
GT

i1

)′
(w+)φ+

)
∂hv

+/∂xi,
((
GT

i2

)′
(w+)φ+

)
∂hv

+/∂xi

)

:
(
w+−uΓ(w+)

)
⊗nds

−
∫

Γ\ΓN

(
GT

i1(w
+)∂hv

+/∂xi, G
T
i2(w

+)∂hv
+/∂xi

)
:
(
φ+ − u′

Γ(w+)φ+
)
⊗ nds,

where u′
Γ(u) denotes the derivative of the boundary function uΓ(u) with respect to

the conservative variables (i.e. the components of) u. On the supersonic parts of the
boundary, we have

u′
Γ(u) = 0 on ΓD,sup and u′

Γ(u) = I ∈ R
4,4 on ΓN;

on the subsonic boundaries ΓD,sub-in and ΓD,sub-out, u′
Γ(u) is given by

u′
Γ(u) =




0 0 0 0
0 0 0 0
0 0 0 0

1
2
|v|2 −v1 −v2 1


 and u′

Γ(u) =




1 0 0 0
0 1 0 0
0 0 1 0

−1
2
|v|2 v1 v2 0


 ,

respectively. For viscous flows, we have

u′
Γ(u) =




1 0 0 0
0 0 0 0
0 0 0 0

cvTwall 0 0 0


 and u′

Γ(u) =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




on the isothermal and adiabatic no-slip boundaries, respectively. Finally, for inviscid
flows on the reflective (slip wall) boundaries, we have

u′
Γ(u) =




1 0 0 0
0 1 − 2n2

1 −2n1n2 0
0 −2n1n2 1 − 2n2

2 0
0 0 0 1


 .
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5.2 Jacobians of numerical flux functions

It remains to give an expression for the derivatives H′
u

+ and H′
u
− of the numerical flux

function H. Clearly, they depend on the specific choice of the flux function and do –
strictly speaking – not exist for many flux functions, as they typically include some non-
differentiable terms such as ‘min’ and ‘max’ or absolute value functions, for example.
Nevertheless, they can be approximated in practice, and, provided the approximation is
sufficiently good, the resulting Jacobian is still capable of delivering an optimal conver-
gence of the Newton iteration as demonstrated in Section 5.3.

First, we consider the local Lax-Friedrichs flux. According to (16) its ith component
is defined by

Hi(u
+,u−,n) =

1

2

(
f c

ki(u
+)nk + f c

ki(u
−)nk + α

(
u+,u−

)
(u+

i − u−i )
)
.

Its derivative with respect to its first argument is then given by

(
H′

u
+(u+,u−,n)

)
ij

= ∂u+
j
Hi(u

+,u−,n)

=
1

2

(
∂uj

f c
ki(u

+)nk + αδij +
(
α′

u
+

(
u+,u−

))
j

(
u+

i − u−i
))
,

where α = α (u+,u−) and α′
u

+ (u+,u−) might be approximated by

α′
u

+

(
u+,u−

)
=

{
sign (vn(u+)) v′n(u+) + c′(u+) for α̃(u+) ≥ α̃(u−),
0 else,

(46)

with vn(u) = v · n and ã(u) = |vn(u)| + c(u), see also (17) and (11). Similarly, we
compute the derivative H′

u
−(u+,u−,n) with respect to the second argument.

Finally, we consider the Vijayasundaram flux. According to (18) the ith component
of this flux is given by

Hi(u
+,u−,n) = B+

ij(û,n)u+
j + B−

ij(û,n)u−j ,

where the derivative with respect to the first argument is given by

(
H′

u
+(u+,u−,n)

)
ij

= B+
ij (û,n) + ∂u+

j
B+

ik(û,n)u+
k + ∂u+

j
B−

ik(û,n)u−k .

Due to the involved dependence of B±(û,n) on u+ and u−, see the definition in (6), its
derivative ∂u+

j
B±

ik may be very complicated if computed explicitly. Instead, we approxi-

mate it by difference quotients, i.e.

∂u+
k
B±

ij(ū,n) = ∂u+
k
B±

ij

(
1
2

(
u+ + u−

)
,n

)

= 1
2ε

(
B±

ij (
1
2

(
u+ + u− + εek

)
,n)

−B±
ij(

1
2

(
u+ + u− − εek

)
,n)

)
+ O

(
ε2

)
,

(47)

where ek, i = 1, 2, are the unit vectors and 0 < ε << 1. Again, H′
u
−(u+,u−,n) is

computed accordingly.
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Figure 6: Mach isolines of the flow around the NACA0012 airfoil: (a) Ma = i
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Figure 7: Mesh: (a) Full view; (b) Zoom of coarse grid with 3072 elements.

5.3 Numerical performance of the Newton iteration

In this section we illustrate the performance of the Newton algorithm. To this end, we
consider a subsonic viscous flow around a NACA0012 airfoil; here, the upper and lower
surfaces of the airfoil geometry are specified by the function g±, respectively, where

g±(s) = ±5 × 0.12 × (0.2969s1/2 − 0.126s− 0.3516s2 + 0.2843s3 − 0.1015s4).

As the chord length l of the airfoil is l ≈ 1.00893 we use a rescaling of g in order
to yield an airfoil of unit (chord) length. The computational domain Ω is subdivided
into quadrilateral elements; cf. the C-type grid depicted in Figures 7(a) and (b). Curved
boundaries are approximated by piecewise quadratic polynomials. At the farfield (inflow)
boundary we specify a Mach 0.5 flow at a zero angle of attack, with Reynolds number
Re = 5000; on the walls of the airfoil geometry, we impose a zero heat flux (adiabatic) no-
slip boundary condition. This is a standard laminar test case which has been investigated
by many other authors, cf. [6], for example. The solution to this problem consists of a
strictly subsonic flow which is symmetric about the x-axis, see Figures 6(a) and (b).
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mesh DG(1) DG(2) DG(3)
1 9 4∗ 4∗

2 4 2 2
3 2 2

Table 5: Number of Newton steps on each global refinement level for DG(p), 1 ≤ p ≤ 3.
(? pre-iteration on DG(1))

In the following we illustrate the performance of the Newton algorithm. on succes-
sively (globally) refined meshes for p = 1, 2, 3. The initial coarsest mesh consists of
3072 elements, cf. Figure 7; the two subsequently refined meshes have 12288 and 49152
elements, respectively. The starting guess on the coarsest mesh are taken to be the free-
stream conditions. The linear problems arising in each Newton step are solved using
GMRES and an ILU preconditioner included in the PETSc library, [3]. The `2-norm of
the linear residual in each Newton step is reduced by a factor of 10−4.

In Figure 8 we show the convergence history of the `2–norm of the non-linear residuals
for p = 1. After seven damped Newton steps on the coarsest mesh the computed
(approximate) solution is sufficiently close to the actual numerical solution so that the
Newton algorithm proceeds without any damping, i.e. the damping parameter ωn = 1
and we observe quadratic-like Newton convergence. Once the `2–norm of the non-linear
residual is below the prescribed tolerance (10−6), the mesh is globally refined, and the
solution is interpolated to the refined mesh. On the second and third meshes only
four and two, respectively, undamped Newton steps are required until the convergence
criterion is reached.

In Table 5 we summarize the number of Newton steps required to satisfy the nonlinear
stopping criterion for both bilinear elements, as well as for higher–order elements with
p = 2, 3. For higher–order elements, we use the numerical solution computed with
bilinear elements on the coarsest mesh as the starting guess for the Newton algorithm.
This then results in only 4 iterations being needed for both p = 2, 3 on the coarsest mesh;
on the finer two meshes only two steps are required for both biquadratic and bicubic
elements.
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6 Higher order convergence of the DG method for

the 2d compressible Navier-Stokes equations

In this section we demonstrate the computational accuracy of the higher order DG
method derived in Section 4.2 for the 2d compressible Navier-Stokes equations. Con-
cerning the availability of appropriate test cases, the situation for the 2d compressible
Navier-Stokes is far more difficult than for the 2d compressible Euler equations. Whereas
only few non-trivial problems governed by the compressible Euler equations with smooth
solution are known, like e.g. the Ringleb flow problem shown in Section 3, there are virtu-
ally no exact (smooth) solutions known for the 2d compressible Navier-Stokes equations.

Given this, we will not be able to demonstrate the convergence of the higher order DG
method for viscous flow with respect to the L2 norm like in Section 3 for inviscid flows.
Instead, in the following subsection, we consider the convergence of force coefficients for
the case of a subsonic viscous flow around an airfoil. In the subsection thereafter, we
concentrate on the higher order approximation of viscous boundary layers.

6.1 Subsonic flow around an airfoil: Convergence of force co-
efficients

In this section, we demonstrate the accuracy of the higher order DG method described
in Section 4.2 for the computation of force coefficients. In particular, we consider the
estimation of the drag and lift coefficients, cd and cl, respectively, which, in the case of
a viscous flow, are defined by

Jcd(u) = Jcdp
(u) + Jcdf

(u),

Jcl(u) = Jclp(u) + Jclf(u),

respectively, where cdp and clp are the pressure induced force coefficients given by

Jcdp
(u) =

2

l̄ρ̄|v̄|2
∫

S

p (n · ψd) ds, Jclp(u) =
2

l̄ρ̄|v̄|2
∫

S

p (n · ψl) ds,

respectively, and cdf and clf are the viscous force coefficients, defined by

Jcdf
(u) =

2

l̄ρ̄|v̄|2
∫

S

(τ n) · ψd ds, Jclf (u) =
2

l̄ρ̄|v̄|2
∫

S

(τ n) · ψl ds,

respectively. Here, S denotes the surface of the airfoil, l̄ its chord length (equal to one),
v̄ and ρ̄ are the reference (or free-stream) velocity and density, respectively, (τ n) · ψ =
τijnjψi, where τ is the viscous stress tensor defined in (30) and

ψd =

(
cos(α) − sin(α)
sin(α) cos(α)

) (
1
0

)
, ψl =

(
cos(α) − sin(α)
sin(α) cos(α)

) (
0
1

)
.

In this section, we consider the same test case as in Section 5.3, i.e. a Mach 0.5 flow
at a zero angle of attack, with Reynolds number Re = 5000, around the NACA0012
airfoil with adiabatic no-slip boundary condition.

Given that this flow is symmetric about the x-axis the lift coefficients clp and clf are
both zero. On the basis of fine grid computations, reference values of the drag coefficients
are given by Jcdp

(u) ≈ 0.0222875 and Jcdf
(u) ≈ 0.032535.
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ments.
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Figure 11: Convergence of cdf under global refinement for DG(p), p = 1, 2, 3: (a) cdf

versus number of elements; (b) Error in cdf (cdf− reference cdf) versus number of elements.

In Figure 9 we plot the Mach isolines of the computed numerical approximation using
the interior penalty discontinuous Galerkin discretization on both the coarsest mesh and
the mesh once refined for p = 1, 2, 3. Here, we clearly see that as the mesh is refined
and the polynomial degree is increased, the quality of the numerical approximation
significantly improves. Indeed, from Figures 10 and 11, we observe that the error in
the approximation to both cdp and cdf , respectively, decreases when either the mesh is
globally refined, or the polynomial degree is uniformly increased.

Finally, in Figure 12 we compare the error in the approximations to cdp using global
mesh refinement with an adaptive mesh refinement strategy employing residual-based
error indicators together with the fixed fraction strategy (with refinement and derefine-
ment fractions set to 20% and 10%, respectively), cf. [24], for details. We see from
Figure 12 that the gain in accuracy in the approximation of cdp using local refinement
versus global refinement significantly increases as the polynomial degree is increased,
which is expected for this smooth problem. Indeed, by employing local variation of the
polynomial degree, depending on the local smoothness of the solution, in addition to
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Figure 12: Convergence of cdp under global mesh refinement and local mesh refinement
using residual-based indicators.

local mesh refinement, i.e., hp-refinement, should be extremely efficient for this problem;
this will be investigated as part of future research.

6.2 Flow over a flat plate

As we saw in the previous subsection, an increase in the polynomial degree leads to a
dramatic improvement in the accuracy of the computed force coefficients cdp and (even
more pronounced for) cdf , cf. Figures 10 and 11, respectively. To a large extent this
improvement in accuracy for these force coefficients can be attributed to the discretiza-
tion’s ability to accurately resolve the viscous boundary layer in the vicinity of the airfoil
profile.

Thereby, in order to gain additional insight into how well the DG method can approx-
imate boundary layers as the polynomial degree is increased, in this example we consider
the flow over a flat plate. To this end, we consider a Mach 0.01 flow with Reynolds num-
ber 10000 horizontally passing over a flat plate of length l = 2. The boundary layer
solution to this problem can be approximated using Blasius’ solution, see [33], for exam-
ple. In Figure 13, we compare the numerical solution computed with the DG method for
1 ≤ p ≤ 3, at x = l

2
= 1 and a local Reynolds number Rex = 5000, with the Blasius so-

lution (η = y
√
u∞/(νx) = y

x

√
Rex versus u/u∞, cf. [33]) on a sequence of rather coarse

computational meshes. On the coarsest mesh, which has about one or two elements
within the boundary layer, we see that the DG solution computed with p = 1, 2 are
not very close to the Blasius solution; increasing the polynomial order to p = 3 clearly
yields a dramatic improvement in the underlying computed numerical solution. On the
next finer mesh, where three elements are placed within the boundary layer, the bilinear
approximation is still not very accurate, though now both the computed solution with
p = 2, 3 are in excellent agreement with the Blasius solution. On the subsequent two
meshes we clearly observe that the DG approximation with bilinear elements (p = 1)
finally starts to coincide with the Blasius solution, at least on a macroscopic level. A
more detailed view of the numerical solution on these latter two finer meshes is shown
in the zoom depicted in Figure 14. Here, we see that there is still a significant difference
between the Blasius solution and the computed discontinuous Galerkin solution with
p = 1. Indeed, these figures clearly highlight the substantial gains in accuracy attained
when higher–order polynomial degrees are employed with the DG method. This is fur-
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DG(1) DG(2) DG(3)
elements 36 5 3

DoFs 72 15 12

Table 6: Number of elements and degrees of freedom in the boundary layer required by
DG(p), 1 ≤ p ≤ 3, discretizations for approximating the viscous force up to 5%.
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ther highlighted in Table 6, where we summarize the number of elements and the number
of degrees of freedom, orthogonal to the wall, which are required by the DG method for
each polynomial degree in order to resolve the boundary layer to a sufficient accuracy
that the error in computed viscous stress forces exerted on the wall are within 5% of
that computed with the Blasius solution.

7 Shock-capturing

7.1 Introduction

Discontinuous Galerkin schemes exhibit an inherent stability at discontinuities as can be
seen, for example, when solving a linear advection equation with discontinuous bound-
ary values imposed, or when solving compressible Navier-Stokes equations for problems
including weak shocks on sufficiently coarse meshes. Indeed, these problems can be dis-
cretized and solved without any stabilization applied, although the resulting discrete
solutions might suffer from spurious oscillations near the discontinuities. When these os-
cillations are to be suppressed, when nonlinear discontinuities as e.g. shocks are strong
enough or when computing on sufficiently fine meshes, the discontinuous Galerkin dis-
cretizations must be stabilized.

Several stabilization techniques have been proposed: two of the most frequently used
are i) (generalized) limiters as e.g. proposed by Cockburn and Shu, e.g. [15], in the
framework of Runge-Kutta discontinuous Galerkin schemes, and ii) the addition of ar-
tificial viscosity terms, also referred to as shock-capturing (or discontinuity-capturing)
terms.

As discussed in [36], local projection or slope limiters, such as the one proposed by
Cockburn and Shu [15] have some disadvantages: one is attributed to serious problems
which might occur when iterating a stationary solution to steady state. As the limited
solution does not satisfy the steady-state discontinuous Galerkin equations, it is not
possible to reduce the residual to machine accuracy, see [36]. Instead, the scheme tries
to converge to the unlimited solution, which suffers from numerical oscillations and the
limiter must remain active to prevent this.

An alternative stabilization approach is the use of artificial viscosity terms which
were originally introduced by Hughes and Johnson in the context of SUPG and SD
finite element methods and later also in DG methods for scalar hyperbolic conservation
equations, see [26]. This approach adds an artificial viscosity term of the form

∑

κ

∫

κ

ε∇uh : ∇vhdx, (48)

to the discretization scheme, where κ are the elements which cover the domain Ω and uh

and vh are discrete ansatz- and test functions taken from the finite element space Vp
h.

Most of these approaches differ in the specific choice of the coefficient ε, only. Several
examples which have been employed for stabilizing discontinuous Galerkin discretizations
of the stationary compressible Euler equations,

∇ · F c(u) = 0, (49)

near shocks will be given in the following.
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Already in [5], Bassi and Rebay employed an artificial viscosity term of the form (48),
where the scalar coefficient ε depends on the residual of the finite element solution uh

and on the diameter hκ of the element κ, namely,

ε|κ = Cεh
2
κ

{
∑

i

(
(|ui

h| + c)−1 [∇ · F c(uh)]i
)2

}− 1
2

, (50)

where Cε and c are positive parameters and i runs over all components of u. Later, Bassi
and Rebay, [8], used a viscosity term which depends on the face residuals instead of on
the element residuals with the scalar coefficient ε given by

ε|κ = Cε





∑

i

[∫
∂κ

Hi − F c
i (uh) · nκ ds(∫

κ
ui

h dx
)
/|κ|

]2




− 1
2

, (51)

where nκ denotes the unit outward normal vector to the boundary ∂κ and H is a nu-
merical flux function approximating the flux, F c(uh) · nκ, at element interfaces taking
into account possible discontinuities of uh across the interfaces, see Section 2.4 for more
detail.

Also, Baumann and Oden, [10], employed an artificial viscosity term like in (48), with
a scalar coefficient given by

ε|κ = hκλκ(uh), (52)

on elements κ close to sharp gradients, only, and zero elsewhere. Here, λκ(uh) is the
maximum characteristic speed, taken as c+ |v|, where c is the speed of sound and v the
velocity vector.

Finally, also in the framework of space-time discontinuous Galerkin schemes, [36],
artificial viscosity stabilization terms have been used, one of which is closely related to
(50).

In the current publication we employ an artificial viscosity term, (48), with a coeffi-
cient similar to

ε|κ = Cε h
2−β
κ |R(uh)|, (53)

with C and β positive constants and R(u) = −∇ · F c(u). This is a slight simplification
of the artificial viscosity term proposed in [26] and has already been successfully applied
in [22] to the adaptive discontinuous Galerkin discretization for the solution of the com-
pressible Euler equations. In fact, in the current publication not the isotropic version
(53) is proposed, but a generalization of it for anisotropic meshes.

Like all artificial viscosity terms of the form (48) this stabilization leaves the conser-
vativity property of the discontinuous Galerkin method unchanged. The coefficient ε in
(53) is relatively simple in comparison to the coefficients in (50) and (51), which is useful
when the scheme is to be treated implicitely. Furthermore, the coefficient ε = ε(u) in
(53) is continuous with respect to its argument which helps in the nonlinear solution
iteration procedure. In particular, it does not include a switch which locally enables or
disables the shock-capturing due to e.g. sharp gradients as does the method proposed
in [9]. Finally, the artificial viscosity term (48) with the specific choice of the ε in (53)
is consistent in the sense that it vanishes when evaluated for the exact and sufficiently
regular solution u of equation (49). This results in an artificial viscosity acting only in
non-smooth parts of the solution where the residuals are large, and almost vanishing in
smooth parts of the solution where the residuals are significantly smaller. Finally, the
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consistency of the artificial viscosity term ensures that the (local and global) Galerkin
orthogonality of the discontinuous Galerkin scheme still holds after its addition. This is
particularly important in the framework of a posteriori error estimation and adaptivity,
see Section 8.

7.2 Shock-capturing for the compressible Navier-Stokes equa-

tions

In this section we define a shock-capturing term Nsc(uh,vh) which is added to the DG
discretization (44) of the compressible Navier-Stokes equations.

As already indicated in Section 7.1, the discontinuous Galerkin discretization (44)
for the compressible Navier-Stokes equations is supplemented with an artificial viscosity
term given by

Nsc(uh,vh) ≡
∑

κ

∫

κ

ε(uh)∇uh : ∇vhdx ≡
∑

κ

∫

κ

εki(uh)∂xi
uk

h ∂xi
vk

h dx. (54)

In particular, we choose the coefficient matrix εki to be

εki(uh) = Cε h
2−β
i Rk(uh), i = 1, 2, k = 1, . . . , 4, (55)

where Cε and β are positive constants and hi represents the dimension of element κ in
the ith coordinate direction, i = 1, 2. Finally, Rk(uh), k = 1, . . . , 4, is defined by

Rk(u) =
4∑

q=1

|Rq(u)|, k = 1, . . . , 4, (56)

where R(uh) = (Rq(uh), q = 1, . . . , 4) denotes the residual of equations (28), i.e.

R(u) = −∇ · (F c(u) −F v(u,∇u)) . (57)

Remarks.

(i) Due to the specific choice of the artificial viscosity term Nsc(uh,vh) depending
on the residual R(u), see (57), this term vanishes when evaluated for the exact
and sufficiently regular solution u to the problem (28). This ensures that the
discretization remains consistent in the sense that the Galerkin orthogonality,

N (u,vh) −N (uh,vh) = 0 vh ∈ Vp
h (58)

with u and uh denoting the solutions of (28) and (44), respectively, which is
valid for the discretization without shock-capturing, is still valid when the shock-
capturing term Nsc(·, ·) is included.

(ii) Furthermore, we note that in (56), Rk(u) is the same constant for all components
k, k = 1, . . . , 4. A simpler choice,

Rk(u) = Rk(u), k = 1, . . . , 4,

is cheaper in terms of assembling time of the Jacobian, cf. Section 5, but turned
out to be unstable for various numerical test cases.
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(iii) The choice of the coefficient matrix in (55) represents an extension of the shock-
capturing term, already employed in [22] for the compressible Euler equations, to
the compressible Navier-Stokes equations. Furthermore, it represents a general-
ization to anisotropic meshes. In fact, its isotropic version, i.e. setting hi = hκ,
i = 1, 2, where hκ represents the diameter of the element κ, was found to not work
on meshes with anisotropic elements.

7.3 The Jacobian of the shock-capturing term

As described in Section 5 the system of nonlinear equations is solved using a Newton–
GMRES algorithm. Key ingredient of this iteration method is the linear system (45)
which includes the derivative (or Jacobian) N ′

u
[w](φ,v) of the discretization scheme

u → N (u,v). A detailed description of how N ′
u
[w](·,v) is approximated for the DG

discretization (44) is given in Section 5. In addition to this, the Jacobian N ′
sc,u[w](φ,v) of

the shock-capturing term Nsc(·,v) described in the previous section can be approximated
as follows

N̂ ′
sc,u[w](φ,v) =

∑

κ

∫

κ

ε(w)∇φ · ∇vdx +
∑

κ

∫

κ

ε̂′
u
[w](φ)∇w · ∇vdx, (59)

where ε̂′
u
[w](φ) is given by

ε̂′ik,u[w](φ) = Cε h
2−β

k R′
i,u[w](φ), i = 1, . . . , 4, k = 1, 2,

and

R′
i,u[w](φ) =

4∑

q=1

sgn(Rq(w))R′
q,u[w](φ), i = 1, . . . , 4.

Recalling the definition of Rq(u) in (57),

Rq(u) = −∂xp
f c

pq(u) + ∂xp
f v

pq(u,∇u)

= −∂urf c
pq(u)∂xp

ur + ∂ur (G(u)pl)qs ∂xp
ur∂xl

us + (G(u)pl)qs ∂xp
∂xl
us,

we obtain the following expression for R′
q,u[w](φ),

R′
q,u[w](ϕ) = − ∂ujf c

pq(w)∂xp
ϕj − ∂uj∂urf c

pq(w)ϕj∂xp
wr

+ ∂uj∂ur (G(w)pl)qs ϕ
j∂xp

wr∂xl
ws

+ ∂uj (G(w)pl)qs ∂xp
ϕj∂xl

ws

+ ∂ur (G(w)pl)qj ∂xp
wr∂xl

ϕj

+ ∂uj (G(w)pl)qs ϕ
j∂xp

∂xl
ws

+ (G(w)pl)qj ∂xp
∂xl
ϕj.

(60)

Remark. Evaluating the term including the second derivatives of G in the second line of
(60) is extremely time consuming. In [20] it has been demonstrated that neglecting this
term in the assembly of the Jacobian matrix does not deteriorate the convergence of the
Newton algorithm. In fact, the same number of Newton steps are required than when
this term is included. But, the time savings in the matrix assembly when neglecting this
term, finally lead to a significant decrease of the overall computing time.
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Figure 15: Supersonic flow past a wedge: (left) without and (right) with shock-capturing.

7.4 Numerical results

7.4.1 Supersonic flow past a wedge

In the following, we demonstrate the effect of the shock–capturing method. To this end,
we consider a supersonic flow past a wedge (compression corner problem), see Section
8.6.2 for more details.

The solution to this problem develops an oblique shock originating at the corner.
In Figure 15, the shock at the outflow boundary is shown in detail for the numerical
solution with and without shock–capturing. We note that in both cases the shock is
resolved by 3-4 elements. Hence, the shock is not smeared by the shock-capturing but
it is resolved by at most as many elements as for the case when no shock–capturing is
employed.

7.4.2 Supersonic flow around an airfoil

In this second example we consider a laminar flow at M = 2, Re = 106 and α = 10◦ with
constant temperature on the profile, a test case previously being considered in [6, 13],
for example.

We note, that the discontinuous Galerkin discretization applied to this problem can
be solved without any shock capturing employed as long as the numerical dissipation is
sufficiently large, like on very coarse meshes, for example. In fact, in [6] this problem
has been solved without any stabilization on a rather coarse mesh (O-grid with 1024
elements). Also on the mesh, see Figure 7, with 3072 elements, the unstabilized DG
discretization can be solved, see Figure 16 for a comparison of the numerical solutions
both with and without shock-capturing. But, when this mesh is once globally refined,
the unstabilized version cannot be solved any more. In contrast to this, the stabilized
version can be solved, see Figure 17(a) and (b) for the discrete solutions on the mesh
depicted in Figure 7 being once and twice globally refined, respectively.
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Figure 16: M = 2,Re = 106, α = 10◦ flow around the NACA0012 airfoil: Mach isolines
of the discrete solution (a) without and (b) with shock capturing on the mesh of 3072
elements shown in Figure 7.
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Figure 17: M = 2,Re = 106, α = 10◦ flow around the NACA0012 airfoil: Mach isolines
of the discrete solution with shock-capturing on mesh Figure 7, which is (a) once and
(b) twice globally refined.
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8 Error estimation and adaptivity

8.1 Introduction

In aerodynamical computations like compressible flows around airfoils, much emphasis
is placed on the accurate approximation of specific target quantities J(·), in particular,
the force coefficients, see Section 6.1, like the pressure induced as well as the viscous
stress induced drag, lift and moment coefficients, respectively. While local mesh refine-
ment is required for obtaining reasonably accurate results in applications, the goal of
the adaptive refinement is either to compute these coefficients as accurate as possible
within given computing resources or to compute these coefficients up to a given tolerance
with the minimum computing resources required. In both cases a goal-oriented refine-
ment is needed, i.e. an adaptive refinement strategy specifically targeted to the efficient
computation of the quantities of interest. Futhermore, in the latter case, an estimate
is required of how accurate the force coefficients are approximated, i.e. an a posteriori

error estimate is required of the error of the numerical solution measured in terms of the
quantity of interest.

This error can be represented by the element and face residuals of the primal (flow)
solution multiplied by the solution of a dual (adjoint) problem with data coupling to
the specific target quantity. By approximating the solution to the dual problem numeri-
cally, the resulting approximate error representation gives an estimate of the true error.
Furthermore, the approximate error representation can be decomposed as a sum over
all elements of adjoint-based (also called dual-weighted residual) indicators which can
be used for goal-oriented (adjoint-based) refinement specifically tailored to the efficient
computation of the quantities of interest.

The approach of a posteriori error estimation and adaptivity in finite element meth-
ods has been developed in [11] and applied to various kinds of problems, see the survey
article [12].

In [18], this approach has been developed for the discontinuous Galerkin discretiza-
tion of scalar hyperbolic problems. Then, in the series of publications, [19, 21, 22], it
has been extended to the two–dimensional compressible Euler equations, where a variety
of problems have been considered, including the Ringleb flow problem, supersonic flow
past a wedge, inviscid flows through a nozzle, and inviscid sub-, trans- and supersonic
flows around different airfoil geometries; finally, in [23] and [24], this approach has been
extended to the two–dimensional compressible Navier-Stokes equations and applied to
subsonic viscous compressible flows around simple airfoil geometries. [20] gives the ex-
tension of this approach to viscous compressible flows including shocks, like supersonic
flows, for example.

In the following subsection we will define the dual problem, also called adjoint prob-
lem, which is required in the a posteriori error estimation and the related adaptive mesh
refinement algorithm. For scalar hyperbolic problems and various target quantities we
explicitely give the adjoint equations in Section 8.3. After deriving the a posteriori error
estimation in Section 8.4 and describing the adaptive algorithm in Section 8.5, we give
several numerical examples in Section 8.6. In particular, we show the adjoint solutions
for various problems, we demonstrate the accuracy of the error estimation as well as the
performance of the adaptive refinement algorithm.
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8.2 The dual (adjoint) problem

Assuming that the functional of interest J(·) is differentiable, we write J̄(·; ·) to denote
the mean value linearization of J(·) defined by

J̄(u,uh;u − uh) = J(u) − J(uh) =

∫ 1

0

J ′[θu + (1 − θ)uh](u − uh) dθ, (61)

where J ′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V. Anal-
ogously, we write M(u,uh; ·, ·) to denote the mean–value linearization of N (·, ·) given
by

M(u,uh;u − uh,v) = N (u,v) −N (uh,v)

=

∫ 1

0

N ′
u
[θu + (1 − θ)uh](u − uh,v) dθ (62)

for all v in V. Here, N ′
u
[w](·,v) denotes the Fréchet derivative of u 7→ N (u,v), as

defined in Section 5. We now introduce the following dual or adjoint problem: find
z ∈ V such that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V. (63)

We assume that (63) possesses a unique solution. Clearly, the validity of this assumption
depends on both the definition of M(u,uh; ·, ·) and the choice of the target functional
under consideration. In the following we must therefore assume that the dual problem
(63) is well–posed, see the following subsection for cases where well-posedness is known.

As in most cases the exact solution z to the dual problem (63) is not known, it is
approximated numerically. However, (63) includes the unkown exact solution u to the
primal problem. Thus, in order to approximate the dual solution z, we must replace
u in (63) by a suitable approximations. The linearizations leading to M(u,uh; ·, ·) and
J̄(u,uh; ·) are performed about uh, resulting in N ′[uh](·, ·) and J ′[uh](·), respectively.
The linearized dual problem: find ẑ ∈ V such that

N ′[uh](w, ẑ) = J ′[uh](w) ∀w ∈ V, (64)

is then discretized using the discontinuous Galerkin method, to yield following approxi-

mate dual problem: find ẑh ∈ Vp̂
h such that

N̂ ′[uh](wh, ẑh) = J ′[uh](wh) ∀wh ∈ Vp̂
h. (65)

In common with each Newton iteration step (45), the linearized and discretized dual
problem (65) includes the Jacobian of the scheme. In fact, (65) represents a linear
problem with a matrix which is the transpose of the matrix of a Newton iteration step,
though assembled on Vp̂

h which might be different from Vp
h, see (70).

Remark. Equation (65) represents the so-called discrete adjoint problem. The discrete

adjoint approach starts with the discretization of the nonlinear primal equations, takes
its linearization and forms its transpose. In contrast to that, the continuous adjoint

approach takes the adjoint equations of the nonlinear primal equations, which are then
discretized.

The following subsection gives several adjoint problems for a scalar hyperbolic prob-
lem. For these linear examples the adjoint problems based on the discrete and continuous
adjoint approach coincide.
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8.3 Adjoint problems for scalar hyperbolic problems

We consider the case of the scalar linear hyperbolic equation (19)

β · ∇u+ bu = f in Ω,

u = g on Γ−.
(66)

In the following we collect some linear target functionals J(·) for that the dual (adjoint)
problem defined in (63) is known to be well–posed:

1. Outflow normal flux: Given a weight function ψ ∈ L2(Γ+) we consider the weighted
normal flux through the outflow boundary Γ+ that is defined by

J(w) =

∫

Γ+

β · nwψ ds.

Then, z is the unique solution to the following boundary value problem: find z ∈ V
such that

−∇ · (βz) + bz = 0 in Ω,

z = ψ on Γ+.

2. Mean value: Here, let ψ be a weight function in L2(Ω). Then a weighted mean
value is given by

J(w) =

∫

Ω

wψ ds.

In this case, z is the solution to following dual problem: find z ∈ V such that

−∇ · (βz) + bz = ψ in Ω,

z = 0 on Γ+.

3. Point value: Finally we consider a point value

J(w) = w(x0)

at a given point x0 ∈ Ω. The existence and uniqueness of a dual solution corre-
sponding to this non–regular target functional can be shown by first considering
regularized target functionals Jε(w) =

∫
Ω
wψx0,ε ds with ψx0,ε = ε−dφ((x − x0)/ε)

where φ denotes a nonnegative function that is zero outside the unit ball. For
ε→ 0 this results in a unique solution z to the following dual problem

−∇ · (βz) + bz = δx0
in Ω,

z = 0 on Γ+,

where here, δx0
denotes a δ-distribution at point x0 with the property

∫

Ω

δx0
w ds = w(x0).
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8.4 Error estimation

Assuming that the dual problem (63) is well–posed, we have the following result.

Theorem 8.1 Let u and uh denote the solutions of (28) and (44), respectively, and

suppose that the dual problem (63) is well–posed. Then,

J(u) − J(uh) = −N (uh, z − zh), (67)

for all zh in Vp
h.

Proof: Choosing w = u − uh in (63), recalling the linearization performed in (61),
and exploiting the Galerkin orthogonality property (58) for all vh in Vp

h, we get

J(u) − J(uh) = J̄(u,uh;u − uh) = M(u,uh;u − uh, z)

= M(u,uh;u − uh, z − zh) = −N (uh, z − zh)

for all zh in Vp
h.

Based on the general error representation formula derived in Theorem 8.1, which can
be written as follows,

J(u) − J(uh) = −N (uh, z− zh) ≡
∑

κ∈Th

ηκ, (68)

where ηκ includes the face and element residuals multiplied by the dual solution, see [24],
a posteriori error estimates bounding the error in the computed functional J(·) may be
deduced. Under the assumptions of Theorem 8.1, we have

|J(u) − J(uh)| ≤
∑

κ∈Th

|ηκ| . (69)

This bound follows from (68) by application of the triangle inequality.
We end this section by noting that both the error representation formula (67) and the

a posteriori error bound (69) depend on the unknown analytical solution z to the dual
problem (63). Thus, in order to render these quantities computable, z is replaced by the
solution ẑh to the approximate dual problem (65). Here, the approximate dual solution
ẑh is computed on the same mesh Th used for uh, but with a higher degree polynomial,
i.e., ẑ ∈ Vp̂

h with

Vp̂
h = {v ∈ [L2(Ω)]m : v|κ ◦ σκ ∈ [Qp̂(κ̂)]

m , κ ∈ Th}, (70)

and p̂ > p. Replacing the dual solution z in (67) by its approximation ẑh results in
following approximate error representation formula

J(u) − J(uh) ≈ −N (uh, ẑh − zh) ≡
∑

κ∈Th

η̂κ, (71)

and an analogous formula for the approximate error bound. We note that the error intro-
duced into the error representation through this replacement consists of the linearization
and the discretization error of the dual problem, see [20] for a more detailed discussion.
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8.5 Adaptive mesh refinement

In this section we consider the design of an adaptive algorithm to ensure the efficient
computation of the given target functional J(·) of practical interest. To this end, we
employ the approximate error bound

∑
κ∈Th

|η̂κ| to determine when the desired level of
accuracy has been achieved. For example, suppose that the aim of the computation is to
compute J(·) such that the error |J(u)− J(uh)| is less than some user-defined tolerance
TOL, i.e.,

|J(u) − J(uh)| ≤ TOL;

then, in practice we may enforce the stopping criterion

∑

κ∈Th

|η̂κ| ≤ TOL.

If this condition is not satisfied on the current finite element mesh Th, then the ele-
mentwise terms η̂κ are employed as local error indicators to guide mesh refinement and
coarsening. The cycle of the adaptive mesh refinement is outlined as follows:

1. Construct an initial mesh Th.

2. Compute uh ∈ Vp
h on the current mesh Th.

3. Compute ẑh ∈ Vp̂
h, where Vp̂

h is a finite element space based on the (same) compu-
tational mesh Th, but consisting of piecewise (discontinuous) polynomials of degree
p̂ > p, see (70).

4. Evaluate the approximate a posteriori error bound
∑

κ∈Th
|η̂κ|.

5. If
∑

κ∈Th
|η̂κ| ≤ TOL, where TOL is a given tolerance, then STOP.

6. Otherwise, refine and coarsen a fixed fraction of the total number of elements
according to the size of |η̂κ| and generate a new mesh Th; GOTO 2.

8.6 Numerical examples

In this section we give several examples which shall illustrate and explain the structure
of dual (adjoint) solutions. In particular, we explain the dual solution’s role associated
with information transport, error transport as well as error accumulation in numerical
simulations, which is a key ingredient of error estimation and goal-oriented adaptive
mesh refinement. We show the adjoint solutions for various problems, we demonstrate
the accuracy of the error estimation as well as the performance of the adaptive refinement
algorithm.

In the first two examples we revisit standard test cases of inviscid flows, the Ringleb
flow problem and the supersonic flow past a wedge. In order to track paths of information
and error transport in these flows and to understand the structure of the dual solution
and the resulting adaptive mesh refinement, here, we choose a particularly simple target
quantity, namely the solution (one component of it only) at one specific point in the
computational domain.

In the last example we show the application of this approach to aerodynamics. Here,
we consider the accurate approximation of the aerodynamical force coefficients of a su-
personic viscous flow around an airfoil.
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Figure 18: Ringleb flow problem, J(u) = ρ(−0.4, 2). z1 component of dual solution.

Figure 19: Ringleb flow problem, J(u) = ρ(−0.4, 2). Mesh constructed using the indica-
tors η̂κ.

8.6.1 Ringleb flow problem

As first example we consider the Ringleb flow problem already introduced in Section 3.1.
We choose the target functional to be

J(u) = ρ(−0.4, 2).

We note that this target functional is singular in the sense that it leads to a considerably
rough dual solution that mainly consists of a single spike transported in reverse direction
of the flow, see Figure 18.

The mesh produced using the indicators η̂κ is shown in Figure 19. Here, we see that
the mesh is mostly concentrated in the neighbourhood of the characteristic upstream
of the point of interest. However, due to the elliptic nature of the flow in the subsonic
region, a circular region containing the point of interest is also refined, together with a
strip of cells in the vicinity of the wall on the right–hand side of the domain enclosing
the supersonic region of the flow.
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Figure 20: Geometry for the supersonic compression corner.

8.6.2 Supersonic flow past a wedge

In this example we study the formation of an oblique shock when a supersonic flow
is deflected by a sharp object or wedge (also called supersonic compression corner).
Here, we consider a Mach 3 flow, over a compression corner of angle α which results in
the development of a shock at an angle β, cf. Figure 20. By employing the Rankine–
Hugoniot jump conditions, the analytical solution to this problem for a given α may be
determined, see [1, 34] among others. Here, we select the wedge angle α = 9.5◦; thereby,
the angle of the shock is given by β = 26.9308◦. Furthermore, the true solution on the
left– and right–hand side of the shock, in terms of conservative variables (ρ, ρv1, ρv2, ρE),
are given by

uleft ≈




1
3.5496

0
8.8


 and uright ≈




1.6180
5.2933
0.8858
13.8692


 ,

respectively.
Again, for simplicity, we consider a point evaluation; In particular, the point value

J(u) = ρ(5, 2.05)

of the density just in front of the shock. In Figure 21(a) we show the z1 component
of the corresponding dual solution. It consists of three ‘spikes’, labelled 1, 2 and 3
in Figure 21(a), originating from the point of interest. These spikes are transported
upstream along the characteristics corresponding to the three eigenvalues v and v ± c,
with v = |v| =

√
v2

1 + v2
2 denoting the velocity of the gas and c =

√
γp/ρ the speed of

sound. We note that the support of this dual solution does not intersect the region of
the computational domain where the shock in the primal solution is located.

In the following, we consider the more interesting case of a point evaluation of the
density

J(u) = ρ(5, 2.01)

just behind the shock. Here, the support of the dual solution, see Figure 21(b), now
intersects the region containing the shock and has a rather complicated structure. The
two upper spikes of the dual solution both cross the shock in the neighbourhood of the
point of evaluation. At their crossing points they again each split into a further three
spikes. These six spikes correspond to the three pairs of spikes, labelled spikes 4, 5 and
6 in Figure 21(b); the two spikes in each pair cannot be distinguished on the resolution
shown, as they are extremely close together. Spike 3, corresponding to the same spike in
Figure 21(a), is reflected off the inclined wall and crosses the shock at its bottom part.

A comparison of the dual solution in Figure 21(b) and the mesh in Figure 22(a), pro-
duced by the indicators η̂κ, shows that the mesh has only been refined along the support
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Figure 21: Supersonic flow past a wedge: z1 component of dual solution for the supersonic
compression corner for point evaluation of the density (a) in front of shock (b) behind
shock.

(a) (b)

Figure 22: Supersonic flow past a wedge: point evaluation of the density behind the
shock (a) Mesh constructed using ad hoc error indicators with 3821 elements (|J(u) −
J(uh)| = 8.938× 10−3) (b) Mesh constructed using the indicators η̂κ with 3395 elements
(|J(u) − J(uh)| = 2.888 × 10−4);

of spikes 3 and 6 in the vicinity of the top part of the shock, and in the neighbourhood of
the point where spike 3 crosses the bottom part of the shock. Comparing this mesh with
the mesh in Figure 22(b) produced using traditional (or so-called ad hoc) indicators,
we see that the adaptively refined meshes generated by employing the indicators η̂κ are
significantly more efficient than those produced using the traditional error indicators.
Indeed, the true error in the computed functional is over an order of magnitude smaller
when the indicators η̂κ are employed.

This demonstrates that it is not necessary to refine the entire shock in this example
to gain an accurate value of the target quantity under consideration, but only those
parts that influence the target quantity either by material transport (eigenvalue v), or
by information transported by the sound waves (eigenvalues v ± c).
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(a) (b)

Figure 23: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) Mach
isolines and (b) density isolines.

8.6.3 Supersonic flow around an airfoil

In this subsection we present a numerical example demonstrating that the approximate
error representation −N (uh, ẑh − zh) =

∑
κ∈Th

η̂κ, cf. (71), which was derived from the
(exact) error representation (68) by replacing the dual solution z by an approximate
dual solution ẑh, gives a good approximation to the true error meassured in terms of
the specific target quantity J(u). Furthermore, we highlight the advantages of designing
an adaptive finite element algorithm as outlined in Section 8.5, based on adjoint-based

(or dual-weighted residual) indicators η̂κ, in comparison to residual-based indicators, cf.
[24], which do not require the solution of an auxiliary (dual) problem.

To this end, we consider a horizontal viscous flow at M = 1.2 and Re = 1000, with
an adiabatic no-slip boundary condition imposed on the profile. Due to the Reynold’s
number which is higher than in the test case in Section 7.4.2 the bow shock of the flow,
see Figure 23, is sharper and, due to the lower Mach number, it is located at a larger
distance in front of the airfoil than in Section 7.4.2. Furthermore, there are two weak
shocks emanating from the trailing edge of the airfoil, see Figure 24.

In this example, the target quantity J(u) is chosen to be an aerodynamical force
coefficient, see Section 6.1. As this flow is symmetric about the x-axis, both lift coeffi-
cients, clp and clf , vanish. On the basis of fine grid computations the reference values of
the pressure induced drag, cdp, and the viscous drag, cdf , are given by Jcdp

(u) ≈ 0.10109
and Jcdf

(u) ≈ 0.10773, respectively.
In the following, we consider the approximation of the pressure induced drag, cdp,

i.e. the target quantity is J(·) = Jcdp
(·). In Table 7, we collect the data of the adaptive

algorithm based on employing the adjoint-based indicators η̂κ. Here, we show the number
of elements and degrees of freedom (DoF) for p = 1 (bilinear elements), the true error in
the target quantity, J(u)−J(uh), the approximate error representation formula

∑
κ∈Th

η̂κ

and the effectivity index θ =
∑

κ∈Th
η̂κ/(J(u) − J(uh)) of the error estimation. First,

we note that on all meshes the right sign of the error is predicted, which is always
negative in this computation, i.e. the computed cdp values converge to the reference
value from above. Furthermore, from the second mesh onwards, the approximate error
representations represent a very good approximation to the true errors, also indicated
by the effectivity indices θ being very close to one.
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Figure 24: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: Zoom of
density isolines at trailing edge.

# el. # DoFs J(u) − J(uh)
∑

κ η̂κ θ

768 12288 -1.363e-02 -6.312e-03 0.46
1260 20160 -3.203e-03 -2.995e-03 0.94
2154 34464 -4.844e-04 -5.368e-04 1.11
3570 57120 -3.474e-04 -3.333e-04 0.96
6021 96336 -1.835e-04 -1.856e-04 1.01

10038 160608 -1.644e-04 -1.653e-04 1.01

Table 7: Viscous M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil:
Adaptive algorithm for the accurate approximation of cdp.
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Figure 25: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) Jcdp
(u)

values on adaptive refined meshes using indicator η
(II)
κ , Jcdp

(u) and the improved values,

J̃cdp
(u) = Jcdp

(u)+
∑

κ η̂κ, on adaptive refined meshes using indicator η̂
(I)
κ versus number

of elements; (b) Error of these values versus number of elements.
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In Figure 25 we compare the true error in the target quantity for the two mesh re-
finement strategies based on the adjoint-based indicator η̂κ and on the residual-based
indicator, respectively. We see, that on the first three refinement steps when employing
the residual-based indicator the accuracy in the target quantity is hardly improved. In
contrast to that, when using adjoint-based indicators, the error decreases significantly
faster, being a factor of more than three smaller already after the second refinement
step than the error on the finest residual-based refined mesh. Furthermore, the com-
puted values of the target quantity J(uh) can be enhanced by employing the approx-
imate error representation

∑
κ∈Th

η̂κ to yield an improved value of the target quantity,

J̃(uh) = J(uh) +
∑

κ∈Th
η̂κ. In Figure 25 we see, that the improved values, J̃(uh), are

significantly more accurate than the (baseline) J(uh) values, and even show a higher rate
of convergence. In fact, it can be shown, see [24], that this value has a higher order of
convergence than J(uh), provided the primal and the dual solutions are smooth and the
dual solution is approximated using higher-order polynomials. Furthermore, the approx-
imate error representation is close to the true error even in cases of smooth dual solutions
but possibly non-smooth primal solutions, see [20] for a more detailed discussion.

The large difference in the performance, see Figure 25, of the adjoint-based indica-
tors and the residual-based indicators in producing adaptively refined meshes for the
accurate approximation of the target quantity cdp, is due to the very different parts of
the computational meshes being marked for refinement by the two types of indicators.
Figures 26 (a) & (b) show the finest mesh produced by employing the residual-based
indicator. We see, that this refinement criterion aims at resolving all flow features: the
extensive bow shock, the wake of the flow behind the airfoil as well as the weak shocks
emanating from the trailing edge of the airfoil. In contrast to that, the refinement of the
mesh produced by employing the adjoint-based indicator, see Figures 26 (c) & (d), is
very concentrated close to the airfoil. In particular, the bow shock is mainly resolved in a
small region upstream of the profile only, and there is no refinement at all at the position
of the bow shock beyond six chord lengths above and below the profile. Furthermore,
the weak shocks emanating from the trailing edge are not resolved and there is no re-
finement in the wake of the flow beyond three chord lengths behind the profile. Instead,
the refinement of the mesh is concentrated near the leading edge of the profile and in
the boundary layer of the flow. All other parts of the computational domain are recog-
nized by the adjoint-based indicator to be of minor importance for the accuracy of the
cdp target quantity. In fact, the dual (adjoint) solution, see Figures 27 and 28, includes
the crucial information concerning which local residuals contribute to the error in the
target quantity and to what extent. Herewith, it offers all necessary information of error
transport and accumulation. Finally, the adjoint-based indicators mark only those parts
of the domain for refinement where residuals of the flow solution significantly contribute
to the error of the target quantity, i.e. all parts which are important for the accurate
approximation of the target quantity.
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Figure 26: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) &
(b) residual-based refined mesh of 17670 elements with 282720 degrees of freedom and
|Jcdp

(u) − Jcdp
(uh)| = 1.9 · 10−3 ; (c) & (d) adjoint-based refined mesh for cdp: mesh of

10038 elements with 160608 degrees of freedom and |Jcdp
(u) − Jcdp

(uh)| = 1.6 · 10−4.
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Figure 27: Viscous flow at M = 1.2,Re = 1000, α = 0◦ around the NACA0012 airfoil:
(a) Sonic isolines of the flow solution; (b) isolines of the ẑ1 component of the computed
adjoint solution ẑ.
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Figure 28: Viscous flow at M = 1.2,Re = 1000, α = 0◦ around the NACA0012 airfoil:
Zoom of (a) sonic (M = 1) isolines of the flow solution; (b) together with ẑ1 isolines.
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