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Abstract—Land surface process modelling might be limited due 
to lack of reliable model input data. Key surface variables as land 
cover information or soil moisture conditions have been proven 
to be observable by remote sensing systems. The integration of 
remote sensing data into land surface process models might 
therefore help to improve their simulations results. Longer 
wavelength SAR data has a higher sensitivity to soil moisture 
content than higher frequency systems. Recent (ALOS) and 
planed (e.g. TerraSAR-L) SAR systems are therefore expected to 
provide valuable information about soil moisture dynamics. The 
present study investigates the potential to retrieve land cover 
information and geophysical parameters from L-band SAR data. 
The retrieval results are assimilated into a state-of-the-art land 
surface model to evaluate the merit of  L-band SAR data 
assimilation. 
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I.  INTRODUCTION 
Land surface models (LSM) are widely used to describe 

processes at the interface layer within the soil-vegetation-
atmosphere continuum. They provide time series of spatially 
distributed simulations of land surface variables as e.g. soil 
moisture, evapotranspiration, surface runoff, vegetation 
biomass or leaf area index. Simulations are based on a variety 
of input parameters, as soil texture, land cover, meteorological 
data, which are highly variable in space and time and are 
available with different accuracies at different scales. The 
applicability of LSMs might be limited due to the availability 
of necessary input data sets, the quality of these datasets and 
the level of complexity and accuracy of the process description 
within the model. 

Remote sensing is not only the most efficient, in many 
aspects it is also the only way to quantitatively assess spatial 
distributions of input parameters, which are needed to model 
surface dynamics. This is especially the case for regions which 
lack of regular measurements of the needed input parameters. 
Thus, the derivation of land surface parameters from remote 
sensing data might improve land surface model (LSM) results. 
LSMs have evolved from the demand of the provision of 
spatially distributed time series of geophysical parameters for 

numerous applications like e.g. weather forecasting, 
climatological studies, flood forecasting, runoff prediction and 
crop yield prediction [1] 

Data assimilation, as the science of merging observations 
and models, might help to improve LSM simulations, by the 
integration of remote sensing observations [2],[3]. In general, 
there are several options to integrate remote sensing data into a 
LSM. These comprise the determination of model parameters, 
the update of the model state during run-time, the parameter 
adjustment through model recalibration and inverse modelling 
of remote sensing observations using e.g. radiative transfer 
models [4]-[6]. For the first, land cover is the most important 
static input parameter for a LSM, as it basically determines 
how the land surface interacts with the atmosphere. Sequential 
data assimilation techniques are widely used to update the 
model state during the model simulations, when observations 
are available. These approaches comprise variational data 
assimilation schemes as well as Monte Carlo based methods 
like the Ensemble Kalman Filter [6] and have been 
successfully applied for land surface applications in the past. 
The present study investigates the potential of L-band SAR 
data to derive land cover and geophysical parameters. The 
requirements and trade-offs in terms of accuracies and system 
configuration are investigated. The impact of integrating L-
band products into a LSM are investigated. 

II. MODELS AND DATA SETS 

A. PROMET land surface model 
The Process Oriented Multiscale EvapoTranspiration model 

(PROMET) is a family of land-surface-process-models which 
describe the actual evapotranspiration and water balance at 
different scales, ranging from point scale, to microscale and 
mesoscale modelling [7]. The model consists of a kernel model 
which is based on five sub-modules (radiation balance, soil 
model, vegetation model, aerodynamic model, snow model) to 
simulate the actual water and energy fluxes and a spatial data 
modeller, which provides and organizes the spatial input data 
on the field-, micro and macroscale. For a detailed description 
of the model see [7]. PROMET is used to simulate land surface 
fluxes within the present study. 



B. Data: AGRISAR 2006 campaign 
The SAR data and ground measurements, used within this 

study were collected in the frame of the ESA AGRISAR 2006 
campaign [8]. The campaign was conducted in the period from 
18. April to 2nd of August 2006 at the DEMMIN (Durable 
Environmental Multidisciplinary Monitoring Information 
Network) test site in Northern Germany. Main crop types in the 
area are winter wheat, barley, maize, rape and sugar beet. 

Comprehensive ground data was collected during the 
AGRISAR campaign, comprising vegetation, soil and 
atmospheric characteristics [8]. The energy and water fluxes 
were measured, using micrometeorological stations, a Bowen-
Ratio Energy balance station (BRS) as well as a Large Area 
Scintillometer (LAS). Soil water fluxes were measured at 
different depths using TDR probes. SAR data was collected at 
the Demmin test site in the period from April to July 2006 by 
the E-SAR system of the German Aerospace Center (DLR) [8], 
which is a polarimatric, multifrequency SAR system. Only the 
L-band (quad-pol) data is used for the investigations within this 
study. 

PROMET was used to simulate the soil moisture evolution 
and evapotranspiration during the investigation period. The 
model simulations show considerable agreement with the 
measurements. The rms error is 1.7 vol.% and 2.0 vol.% for the 
first and second soil layer (0-10cm,10-30cm) respectively. 

III. LAND COVER CLASSIFICATION 
Versatile, robust and computational efficient methods for 

radar image segmentation, which preserve the full polarimetric 
information content, are of importance as research tools as well 
as for practical applications in land surface monitoring. The 
method introduced in [12] consists of six steps. The first step is 
a transform of the full polarimetric information into nine 
intensities per band [13]. The next steps relate to unsupervised 
clustering (i.e. deriving class statistics) encompassing a simple 
region-growing segmentation (incomplete and over-segmented) 
followed by model-based agglomerative clustering and 
expectation-maximization on the pixels of these segments. 
Classification is achieved by Markov Random Field filtering 
on the original data. The result is a series of segmented maps, 
which mainly differ in the number of (unsupervised) classes. 
Results for the DEMMIN agricultural area is shown. The 
applications include the use of groundtruth for legend 
development, the check for groundtruth completeness and the 
construction of a bottom-up hierarchy of the characteristics that 
can be distinguished in the radar data. The latter gives 
important insights in physics of radar backscattering 
mechanisms. Moreover, the relative importance of crop 
differences, (full-polarimetric) incidence angle effects and sub-
classes (related to factors such as crop varieties or row 
direction) may be assessed. Fig. 1 shows the multi-temporal 
supervised classification result for DEMMIN. The total error in 
this classification is low. The main error sources are the class 
urban, which is not a homogeneous class, and which is often 
misclassified as forest. The main errors in the vegetated areas 
are found for the classes field grass, cutting pasture and 
grassland. All these grass classes are classified as wheat. 
Apparently they are very similar in this period of observation 

when using these 3 polarizations. The results in Fig. 2 shows 
an unsupervised classification (a model with 20 classes) with 
several classes associated with rapeseed: class 0 (red), class 4 
(purple), class 10 (orchid), class 14 (coral) and class 17 
(yellow). Class 5 (cyan) is associated with set-aside rape. Since 
the different sub-classes of rapeseed mostly follow field 
boundaries it may be concluded there are differences between 
these fields which could be associated with differences such as 
growth stage, biomass, crop phenology or crop varieties. 

 

 
Figure 1.  Demmin test site supervised classification of multi-temporal ESAR 

images using 3 dates with 3 polarizations (HH, VV and PL) 

 
Figure 2.  Demmin test site unsupervised classification of multi-temporal 

ESAR images using 3 dates and 3 polarizations (HH, VV and PR). 

IV. GEOPHYSICAL PARAMETER RETRIEVAL 
Different approaches for the retrieval of geophysical 

parameters have are reviewed within the scope of the present 
study. As L-band SAR data has a better penetration into the 
surface soil layer and through the canopy as higher frequency 
systems, the study will focus on the retrieval of soil moisture 
information for bare soil as well as vegetated surfaces. The 
microwave signatures from the AGRISAR data set have been 
analysed and the sensitivity of different parameter retrieval 
techniques have been investigated [8]. The impact of different 
sensor configurations on the accuracy of the soil moisture 
retrievals from L-band SAR data will be assessed. The impact 
of the uncertainties in the SAR derived soil moisture on land 
surface model simulations will be investigated in section VI. 

V. L-BAND DATA ASSIMILATION 
Assimilating external observations into a model might 

either result in a different (better) parameterization of the 
model static parameters (e.g. land cover, soil parameters) or 
might improve the model simulations during the model 
evolution (e.g. update of soil moisture) to improve the model 
predictions. Within the present study, we deal with both cases. 
The SAR derived land cover information is used to evaluate the 
potential of L-band SAR land cover classification for 
hydrological simulations on the one hand side and the potential 
of integrating geophysical parameters as e.g. soil moisture is 
assessed on the other hand. 



A. Integration of SAR based land cover data 
To assess the impact of SAR based land cover classification 

on PROMET model simulations, a sensitivity analysis was 
conducted. As the land cover type is a very important 
parameter for the SVAT model, a misclassified land cover will 
directly reflect on the estimated soil moisture fluxes and 
evapotranspiration rates. 

PROMET is used to simulate land surface processes in the 
period from 1st January 2006 to 31th July 2006 using a 
reference land cover map. This open-loop run is then compared 
against the results obtained using the SAR based land cover 
classification as input to the SVAT model. The difference 
between both simulations is estimated for each grid node, 
comparing the soil moisture for three soil layers and the 
evapotranspiration rate. The rms error is estimated for each 
grid cell, whereas the open loop run is considered as the 
reference. 

As the land cover is correct classified for large parts of the 
image data set, no impact on the PROMET simulations can be 
observed. Only for ~5% of the image pixels, a difference in the 
evaporation is observed. The cumulated evaporation difference 
is estimated from the entire period for each grid cell. The 
observed deviations in ET range between 18 mm and 20mm, 
which corresponds to ~25 % of the precipitation within the 
observation period. Fig. 3 shows the frequency distribution of 
the cumulated ET difference. Soil moisture rms error is 
between 1 and 4 vol.% for those pixels, where the SAR based 
land cover was wrong. 
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Figure 3.  Difference in evapotranspiration 

B. Assimilation of geophysical parameters 
Various studies have investigated the potential to assimilate 

hydrological variables into land surface process models, 
including the assimilation of soil moisture and crop properties 
[9]. Given a time variant (physical) model t∂∂ψ , it is the 
objective of a data assimilation technique to make “best” use of 
the observation td  (e.g. soil moisture, vegetation biomass, 
reflectance, backscattering coefficient) to improve the model 
simulation. The model state vector ψ  comprises the entire 
physical state of the model (e.g. soil moisture, canopy 
temperature, snow depth …) at a given time. As both, model 
simulations and observations might be prone to uncertainties, 
the model results and observations have to be weighted in a 
certain way. Different data assimilation techniques have been 

developed, ranging from statistical rescaling methods to Monte 
Carlo based methods as e.g. the Ensemble Kalman Filter 
(EnKF). The EnKF approach was implemented for the present 
study. It’s theoretical foundation is described in detail in e.g. 
[10]. It allows to estimate a best update of a model forecast, 
given an observation d , whereas uncertainties of the 
observations as well as of the model forecast are considered 
appropriately. The model simulation uncertainties are derived 
from it’s error covariance matrix which is estimated from 
perturbed model trajectories which form a distribution of 
different model predictions. All members of this ensemble are 
updated when an observation is available. 

VI. SYNTHETIC EXPERIMENT 
Assimilating surface soil moisture into a land surface model 

(LSM) is expected to improve the simulation of soil moisture 
fluxes and latent and sensible heat fluxes. A synthetic study 
was conducted to evaluate the potential to assimilate surface 
soil moisture information into the PROMET model and to 
assess impact of uncertain soil moisture observations as well as 
the need for the temporal repetition frequency of the 
observations. 

A. Generation of reference conditions 
Two baseline simulations are generated using the PROMET 

model. The first is an open-loop run where the SVAT model 
results rely on the meteorological forcing and model 
parameterisation only. This open-loop is considered as a first 
guess, compared to a true surface condition. 

As it is assumed that the open-loop results will typically 
deviate from real conditions due to uncertainties in the model 
parameterisation and limitations in model physics, a synthetic 
true surface condition data set, which deviates from the open-
loop simulation is generated based on the open loop results. 
Random model error (gaussian white noise) are added to the 
model state during the simulations to perturbate the model 
simulations. The resulting model trajectory is considered as the 
true surface condition in the following and will be the 
reference benchmark for the evaluation of the merit of 
assimilating surface soil moisture information into the process 
model. The rms error between the open loop run and the true 
state is 3.5 vol.%. 

B. Generation of sensor observations 
Synthetic sensor observations are simulated based on the 

true surface state. Remote sensing derived surface soil moisture 
is expected to have uncertainties in the order of 2.0 – 7.0 vol.% 
(rms error) [11]. Random gaussian error of 1, 2.5 and 4 vol.% 
is therefore added to the true surface soil moisture state, to 
cope observations, like they are available from remote sensing 
systems. 

C. Surface soil moisture assimilation 
The synthetic surface soil moisture observations are then 

assimilated into the PROMET model. The model is used in it’s 
generic mode, which is comparable to the open loop case. 
Surface soil moisture is assimilated using different temporal 
frequencies: daily, 7-days, 14-days. Fig. 4 shows the 



comparison between the true soil moisture and the assimilation 
results obtained for the observations with an rms error of 
2.5 vol.%, using daily and 7-day assimilation steps. It is 
obvious, that the data assimilation improves the model 
simulations compared to the open-loop simulation. The rms 
error between the reference data set and the assimilation data 
set is 1.7, 3.1 and 3.4 vol.% for the daily, 7day and 14day soil 
moisture assimilations respectively. Thus, the rms error is 
improved especially for daily and weekly observations, 
compared to the rms error of 3.5 vol.% for the open-loop run. 
Similar results were also obtained for the observations with 1 
and 4 vol.% rms error. Table 1 summarizes the rms error and 
coefficient of determination (R²), calculated between the 
reference data set and the assimilation data sets. In all cases, 
the performance of the assimilation results is better than that of 
the open loop run. Thus, assimilating surface soil moisture 
provides an additional merit to the LSM. Nevertheless, the 
results indicate, that an accuracy of 4 vol.% and nearly weekly 
observations might be required to improve LSM simulations 
significantly. The results from the 14-day assimilations and 
4 vol.% error do not add an additional value to the LSM. 

VII. SUMMARY AND CONCLUSIONS 
Low frequency SAR systems as e.g. L-band have high 

potential in the retrieval of geophysical parameters as e.g. soil 
moisture and derivation of land cover information. The 
preliminary results of the present study show a good land cover 
classification performance for supervised and unsupervised 
approaches. Assimilating surface soil moisture information into 
LSMs has potential to improve the estimation of land surface 
energy and water fluxes. The SAR based soil moisture 
observations are expected to have accuracies better than 
4 vol.% (rms error) and a temporal frequency better than a 
week to improve the LSM results. 

TABLE I.  ASSIMILATION ERROR STATISTIC 

1-day 7-day 14-day Obs. error 
[vol.%] rms R² rms R² rms R² 
Open-loop 3.49 0.58 3.49 0.58 3.49 0.58 

1.0 1.21 0.95 2.83 0.73 3.20 0.64 
2.5 1.72 0.89 3.14 0.65 3.40 0.60 
4.0 2.20 0.81 3.20 0.62 3.47 0.57 
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Figure 4.  Comparison of true soil moisture vs. assimilation results obtained 
for different observation frequencies and an observation error of 2.5 vol.% 
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