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Abstract

Current Vehicle-to-Vehicle and Vehicle-to-Roadside communication based on IEEE 802.11 cannot
guarantee a reliable dissemination of situational information which is required for Situation-Aware
Driver Assistance Systems. By using a local Knowledge Base which manages the situational infor-
mation, the drawbacks of the absence of congruous situational information for the hazard detection
can be mitigated. Our work identifies four requirements which have to be fulfilled by this Knowledge
Base.

The objective of this paper is to show the potentials and benefits of using Bayesian Networks for
the processing of uncertain and missing information. Bayesian Networks provide an optimal solution
for the management of situational information in local Knowledge Bases and thus we suggest to use
Bayesian Networks for the early and reliable hazard detection in Situation-Aware Driver Assistance
Systems.

1 Introduction

Every year about 40,000 people die on European
roads [1]. They are fatalities as a result of more
than 1.4 M accidents [1]. Countermeasures dis-
tinguish between Active and Passive Safety Ap-
plications. Passive Safety Applications react on
the incidence of an accident or the definite indica-
tion of an accident and thus reduce the number of
fatalities but not the number of accidents. In con-
trast to this an Active Safety Application is any
application that tries to prevent accidents. Active

Safety Applications intervene at the first indica-
tion of a potential accident situation (in the re-
mainder also called hazardous situation) and thus
act proactively trying to prevent the accident.

To detect these hazardous situations applica-
tions have to collect situational information and
draw conclusions using this situational informa-
tion. Currently, such applications merely use
a small subset of the available information and
therefore are very restricted to the detection of
a small number of hazardous situations. Extend-



ing the applications with broader knowledge about
their environment (e.g. overall traffic situation,
pavement conditions, etc.) will enhance their ca-
pability of recognizing hazardous situations ear-
lier, more reliably and with a higher precision.

Up to now the basis for gathering situational
information is the in-vehicle sensor system. Using
only this local information limits the detection of
hazardous situations to a restricted perspective. A
challenge is the exploitation of the sensors of other
vehicles in the surrounding as well, resulting in an
extended situational awareness. To achieve this
extended situational awareness, information pro-
duced by remote sensors has to be disseminated
to the surrounding vehicles (see fig. 1). Analyses
[2] have shown that a suitable wireless commu-
nication technology for the information dissemi-
nation is given by IEEE 802.11 [3]. For coor-
dination of multiple nodes joining one and the
same Independent Basic Service Set (IBSS) IEEE
802.11 uses Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) [4]. Although
CSMA/CA works well under some circumstances,
it cannot guarantee a reliable dissemination of sit-
uational information in all cases. This fact poses a
challenge for the detection of hazardous situations
in Active Safety Applications.

Figure 1: Traffic Jam Warning

The remainder of this paper is structured as
follows. Section 2 illustrates the problem of
CSMA/CA causing the unreliable knowledge dis-
semination. Section 3 shows the requirements for
solving the problem in a smart knowledge base.
The following section 4 presents a suitable solution
to manage uncertain information in the Knowl-

edge Base. The paper ends with a conclusion and
outlook in section 5.

2 Unreliable Knowledge Dis-
semination

To enable the cooperative awareness of Situation-
Aware Driver Assistance Systems [5], situational
information has to be disseminated between vehi-
cles by means of wireless networks. Basic infor-
mation that may be relevant for the surrounding
vehicles are for example the position, direction and
motion parameters, as well as vehicle characteris-
tics such as height and weight. But there is also
other relevant information produced by measure-
ments of several other sensors such as wheel, rain
or brightness sensors or the state of the indicator
signal or the steering wheel.

Packaging all this information into a message
leads to messages with a size up to a few hundred
bytes which have to be disseminated several times
per second [6]. Torrent-Moreno et al. [7] simu-
lated the message dissemination based on IEEE
802.11 and found that the probability of message
reception in a distance of 100 meters from the
sender may fall below 20 % under certain condi-
tions.

The message loss is based on the concurrent
medium access of different terminals and thus col-
lision and destruction of the exchanged messages.
This is caused by two or more terminals randomly
performing the medium access at the same time
or two or more terminals (not in inference/carrier
sense range) using the medium simultaneously in
order to exchange a messages with one or more
terminals inside the intersection of their interfer-
ence and transmission range (see fig. 2). The lat-
ter is known as the Hidden-Terminal-Problem [8].
In conventional IEEE 802.11 networks mainly us-
ing unicast messaging a Request-To-Send/Clear-
To-Send (RTS/CTS) approach is used to apply a
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Figure 2: Hidden-Terminal-Problem

virtual reservation of the medium [3].
For the dissemination of situational information

mainly broadcast messaging is applied because it
needs less bandwidth compared to iterative uni-
cast messaging. Furthermore the feasibility of us-
ing unicast messaging for situational information
dissemination is limited because of the anonymity
in the highly dynamic environment. Since in IEEE
802.11 there is no RTS/CTS mechanism for broad-
cast messaging, [9, 10, 11, 12] present solutions
to use the RTS/CTS approach in broadcast envi-
ronments as well. Unfortunately all of these so-
lutions increase the number of medium accesses
and are not feasible for highly dynamic networks
with anonymous terminals [13]. Furthermore, the
RTS/CTS approach cannot prevent message col-
lisions completely and hence the risk of unrecog-
nized message loss persists [14].

Summarizing, it has to be said that currently
there is no possibility to guarantee a reliable infor-
mation dissemination because of the above men-
tioned reasons. But this problem can be addressed

by actively approaching the problem on upper lay-
ers. Therefore, we propose a local information
management which does not rely on periodic reli-
able information exchange. This knowledge base
is to a certain extent autonomous and permits the
hazard detection with uncertain information.

3 Local Knowledge Bases

For the early detection of hazardous situations
every vehicle equipped with the Situation-Aware
Driver Assistance System has an integrated local
Knowledge Base. The Knowledge Base contains
situational information. On the one hand this sit-
uational information is obtained by the own vehi-
cle (e.g. measured by the local sensor system) and
on the other hand originates from other vehicles in
the vicinity. Additionally, situational information
may be gathered from an infrastructure system.
Such infrastructure-based sources of information
are for instance roadside units, satellites, local
broadcast transmitters (using e.g. DMB, DAB)
or cellular networks (e.g. GSM/UMTS).

Utility-based Knowledge ExchangePrivacy
Manager

Knowledge Broker

Network

Knowledge Base

Figure 3: Knowledge Exchange [5]

The Knowledge Base interacts with other ar-
chitectural components via the Knowledge Bro-



ker (see fig. 3). The Knowledge Broker provides
a standardized interface for retrieving and inte-
grating situational information into the Knowl-
edge Base. The dissemination or request of situa-
tional information is triggered by the Utility-based
Knowledge Exchange module [5] which has access
to the situational information via the Knowledge
Broker and may send and receive situational in-
formation over the wireless network interface. To
preserve privacy constraints a module called Pri-
vacy Manager controls the knowledge exchange
with regard to predefined or user-defined privacy
issues.

For the hazardous situation detection a rea-
soner retrieves the necessary situational informa-
tion from the Knowledge Broker and draws con-
clusions using this situational information. The
situational information has to fulfil the following
properties: it has to be up-to-date, pertain to the
appropriate position, the appropriate driver, the
appropriate vehicle, etc. In other words situa-
tional information has to correspond to the target
context. If the context matches its target context,
we call the situational information congruous.

Context that is relevant for the friction coeffi-
cient is for example:

• time

• location

• vehicle characteristics (e.g. tread depth)

• pavement condition

Currently, if the hazard detection algorithm has
no access to congruous situational information,
the algorithm has to use incongruous situational
information or the algorithm fails. According to
this, conventional reasoning processes provide no
appropriate result or they provide no result at all.
Hence hazardous situations may not be detected.

Therefore, we identified four requirements that
have to be fulfilled by the Knowledge Base in order

to enable a continuous and reliable hazard detec-
tion:

1. Provisioning of congruous situational in-
formation to current context:

A central requirement of the Knowledge Base
is the continuous capability to provide congru-
ous situational information even if only incongru-
ous or even no information updates are available.
Hence the detection of hazardous situations which
is based on availability of congruous situational
information depends not on constant updates of
situational information. The lack of updates may
for instance be the result of the unreliable wireless
information dissemination, especially the Hidden-
Terminal-Problem mentioned before. But it may
also be the effect of the malfunctioning of sen-
sor systems or privacy issues, if for example situ-
ational information must not be disseminated due
to privacy constraints.

A priori knowledge about situational informa-
tion, especially its interrelation and behaviour due
to changing context, has to be used to predict con-
gruous situational information without appropri-
ate updates. Of course it is not possible to predict
a situational information accurately in every case
but in almost every case there is the possibility
to determine a certain belief in the state of the
situational information. Thus by observing the
change in context (e.g. elapsed time) the belief
of the state transition concerning the situational
information can be determined.

2. Provisioning of situational information
to future context:

A second requirement of the Knowledge Base is
the prediction of future states of situational infor-
mation. This feature refers to the same function-
ality as for the first requirement because there is,
in general, no sensor data concerning future states
available and thus no appropriate updates for sit-



uational information lying ahead. By exploiting
the knowledge about the state change behaviour
of the situational information the belief in future
states can be determined.

3. Integration of situational information:
Furthermore, the Knowledge Base needs the ca-

pability to integrate updates of situational infor-
mation. These updates concern congruous as well
as incongruous situational information. While
congruous situational information refers to regu-
lar updates of the Situation-aware Driver Assis-
tance System, incongruous situational information
is information that refers to different context. Up-
dates of incongruous situational information occur
if the situational information is generated in dif-
ferent context. This may be for instance a fric-
tion coefficient determination a certain time ago
and/or a certain distance away and/or concerning
a different vehicle. The Knowledge Base needs the
functionality to integrate such incongruous situa-
tional information as well.

4. Maintaining consistency:
Last the Knowledge Base has to maintain

a consistent state concerning the whole set of
situational information. Therefore, the system
has to verify consistency, every time new or
updated situational information is integrated into
the Knowledge Base.

As mentioned in the introduction the overall
objective of Active Safety Applications is to pre-
vent accidents. There is various situational in-
formation indicating hazardous situations. This
interrelation between situational information and
hazardous situations is not based on implication
but indication. There is no stringent dependency.
The dependency relies on probabilistic indication.
This indication can be used to express that a set of

situational information increases the probability
of the occurrence of a hazardous situation. There
is a probabilistic causal relationship between the
occurrence of a hazardous situation and a set of
situational information. These relations can be
modeled in a complex system consisting of situa-
tional information and their causal dependencies.
An appropriate way for the description are prob-
abilistic graphical models.

4 Bayesian Networks

Probabilistic graphical models are an implement
to understand and work with complex systems
and uncertainty by exploiting the findings of graph
theory and probability theory [15, 16]. Probabilis-
tic graphical models with directed edges are called
Bayesian Networks or Belief networks (BNs).

Observed
Situational
Information

Observed
Situational
Information

Observed
Situational
Information

…

Situation

Figure 4: Situation observation

A Bayesian Network consists of a set of nodes
which represent random variables and directed
edges representing conditional dependencies. Ev-
ery node has an associated conditional probability
distribution (CPD) (or prior distribution if there
are no parent nodes) specified in a Conditional
Probability Table (CPT) if the node represents a



discrete random variable or a conditional Proba-
bility Density Function (PDF) if the random vari-
able is continuous.

The conditional dependencies depicted as di-
rected edges may be seen as causal relationships,
whereby the strength of causal relationships is en-
coded in the CPT or PDF [17]. A conditional
probability associated with an edge from A to B
can be regarded as the probability that A causes
B. Thus, the probability of B given its Marko-
vian parents A1, ..., An is the conditional proba-
bility P (B|A1, ..., An) [18].

A simple model structure of situational infor-
mation for Active Safety Applications consists of
one or more nodes directly observed by the sensor
system being in a causal relation to the node indi-
cating the hazardous situation (see fig. 4). Here,
it has to be stressed that the information indicat-
ing the hazardous situation influences the situa-
tional information observed by the sensor system
and not vice versa.

In contrast to observable nodes, nodes that can
not be observed, e.g. by the sensor system, are
sometimes called hidden nodes [19]. A hidden
node indicates for instance the state of the haz-
ardous situation. The state of the hazardous situ-
ation influences a set of states observed by the sen-
sor system. By providing evidence to the observ-
able nodes, conclusions on the hazardous situation
can be drawn using the conditional dependency
in reverse direction. This is sometimes called di-
agnostic reasoning because conclusions are drawn
from a given effect in order to determine the un-
derlying reason. In this sense the reason corre-
sponds to the hazardous situation and the effect
refers to the data provided by the sensor system.

Figure 5 shows a Bayesian Network that addi-
tionally takes into account different perspectives
on the complex situation. A situational informa-
tion is assigned to one perspective. Each situa-
tional information can be observed by n ≥ 0 sen-
sors. So every sensor state depends on a situa-

tional information and the situational information
has a causal influence on the hazardous situation.
According to the example, the situational infor-
mation Rain has a causal influence on the ob-
servable nodes Wiper Settings (here the manual
switching of the wiper is meant) and Rain Sen-
sor. The observations of the Rain Sensor and the
Wiper Settings are effects of the situational infor-
mation Rain and thus conclusions can be drawn
to assess the probability of Rain given the obser-
vations. The belief in the situational information
Rain influences the probability of a Hazardous Sit-
uation. The introduction of further perspectives
on the situation may combine situational informa-
tion such as Temperature and Rain (among oth-
ers) to assess the friction coefficient which has a
causal influence on the Hazardous situation.

Hazardous
Situation

Temperature Rain Situational
Information

…

Thermometer
Rain

Sensor

Observed
Situational
Information

Wipers
Settings

…

Figure 5: Hazard detection

In order to draw conclusions for the estimation
of the hazardous situation, congruous situational
information observed by the sensor system has to
be available. If all situational information is con-
gruous, that means all required situational infor-
mation is available and observed in the required
context, the diagnostic inference provides a real-
istic situation assessment. If some situational in-
formation is not congruous, but there is already



some situational information with varying context
available, a belief in the congruous situational in-
formation can be obtained by probabilistic infer-
ence. This inference is based on the state change
behaviour of the situational information due to
varying context. The behaviour is either gathered
by Bayesian learning mechanisms or given by do-
main experts [17]. The state change behaviour is
expressed by a CPD. Fig. 6 shows an extract of
a Bayesian Network illustrating the state change
behaviour due to varying temporal context of a
specific situational information.

Observed
Situational Information

oSIt

t t+1

Observed
Situational Information

oSIt+1

P(hSIt+1 | hSIt)

Situational Information
hSIt

Situational Information
hSIt+1

Figure 6: State change behaviour

This type of Bayesian network is also called dy-
namic Bayesian Network. Dynamic Bayesian Net-
works represent time-discrete stochastic processes
[19]. They consist of collections of random vari-
ables partitioned into input, hidden and output
variables. The random variables are separated
into different time slices.

Dynamic Bayesian Networks may also be used
to express the dynamic of other contextual as-
pects. Instead of specifying different slices sep-
arated by point in time, the slices may also be
separated by their position, type of vehicle or char-
acteristics of driver.

The usage of dynamic Bayesian Networks is
not limited to the case when incongruous situa-
tional information is available. By exploiting prior
knowledge given by Bayesian learning mechanism
or domain experts, probabilistic inference will de-
liver a situation assessment even if no situational
information is available. Thus conclusions can be
drawn even without updates of situational infor-
mation.

This functionality also enables the prediction of
future states of situational information which is
required for an early detection of hazardous situ-
ations (see second requirement of the Knowledge
Base).

Otherwise, if updates of situational information
are received, this information has to be integrated
into the Bayesian Network. This can be done by
bringing evidence into the Bayesian Network. The
new evidence propagates its updated information
through the network. Like that it is irrelevant
whether the situational information is congruous
or incongruous regarding the target context be-
cause the situational information received by the
update always provides evidence to the appropri-
ate observed node. That means the evidence ob-
served under certain context is integrated into the
observed node concerning exactly this context. If
for example an update of situational information
observed in time slot t is received at t + 1, the ev-
idence is integrated into the appropriate observed
node oSIt at time slot t + 1 (see fig. 6).

By using Bayesian Networks inconsistencies
generated by new or updated situational informa-
tion can be prevented. The propagation of ev-
idence assigns an implausible or impossible oc-
currence probability to inconsistent states. To
achieve this, inconsistencies have to be identified
and integrated into the CPD. This can be ex-
pressed for instance by assigning a low probability
to the occurrence of Rain in combination with a
Temperature of -20 degree Celsius.



Summarizing, Bayesian Networks are a suitable
mechanism satisfying the requirements of local
Knowledge Bases (see sec. 3). They provide
the possibility to determine situational informa-
tion without appropriate updates, to predict fu-
ture states, to integrate updates of situational in-
formation and to maintain consistency.

5 Conclusions

This paper has identified a serious problem of
Vehicle-to-Vehicle and Vehicle-to-Roadside com-
munication, namely the unreliable information
dissemination. Among others this is caused by
the Hidden-Terminal-Problem. Using a Knowl-
edge Base that manages congruous as well as in-
congruous situational information without neces-
sity of regular updates improves the operation of a
Situation-Aware Driver Assistance System. This
enables the hazard detection in environments ex-
posed to unreliable communication. Furthermore,
the Knowledge Base has to provide the capabil-
ity to predict situational information concerning
future states, to integrate updates of situational
information and to maintain consistency.

We found that these requirements can be re-
alised by Bayesian Networks. The exploitation of
the probabilistic causal dependencies of Bayesian
Networks facilitates the transition of incongruous
to congruous situational information. Reasoning
on the Bayesian Network hence remains opera-
tional and permits an assessment of the situa-
tion. This improves reliability of the Situation-
Aware Driver Assistance System, although the sit-
uational information dissemination is exposed to
the unreliable information exchange.

Our next steps are to implement such Bayesian
networks and analyse their performance in a sim-
ulation of communications network behaviour and
real traffic situations.
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