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1 Abstract

Due to the high performance and degree of flexibility of microwave instruments using phased array antennas, a comprehensive charac-
terisation of the antenna is essential and a major challenge [1]. New concepts are needed to keep the costs and effort acceptable. A
new characterization technique is proposed, the so-called Weight-Estimation Method (WEM), which permits the exitation coefficients, or
weights of the array elements to be estimated from a limited number of far-field measurements. With these weights, i.e the gains and phase
settings applied to the elements of the phased array, the complete antenna pattern in the range of +/- 90 degree about the boresight can
be derived. The concept is applicable for any phased array system sensing electromagnetic signals. The paper describes the measurement
concept, the estimation method and presents simulated results for measurements in a compact range and with the antenna in motion. The
method was developed to characterize phased array antennas of synthetic aperture radars (SAR) and promises to simplify the on-board
calibration circuitry of future instruments.
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Figure 1: Diagram of the system used to describe the Weight Estimation Method with a sounding antenna S (bottom left) and the array to
be characterized A (top right)

2 Introduction

Phased arrays are antenna systems composed of radiating array el-
ements and a network that distributes the signals and adjusts the
element gain and phase. For an active phased array, each antenna
element is composed of a radiator and a transmit/receive mod-
ule (TRM) which contains the gain and phase adjustment. Active
phased arrays often allow corrections to be made to the weights
by commanding different gain and phase settings. Before being
put into service, the complete phased array has to be characterized
and its initial state defined. Because the components can alter with
time, the antenna may need to be characterized regularly in the fi-
nal configuration. If the weights actually applied by the TRMs are
different from the commanded ones, the shape of the phased array
antenna pattern will differ from the desired one. Thus, it is impor-
tant to know the actual weights in order to induce corrective actions.
Knowledge of the weights enables the complete pattern to be deter-
mined.

Figure 1 shows the WEM concept with the unknown array at top
right and the sounding antenna bottom left. If the other components
keep their initial properties, the weight wn of every array element
can be estimated provided the complex signals xi at the radiators
are known and the antenna input/output y is available as a complex
number. If it is possible to identify N (N = number of array ele-

ments) linearly independant sets of signals xj , the system of linear
equations can be inverted and the element weights estimated.

3 The WEM concept

The concept characterizes a phased array of interest A with the help
of a single calibrated sounding antenna S whose properties are well
known. At any time t, each antenna has a position, velocity and
attitude in space. With the WEM method, a series of discrete far-
field measurements is performed over an angular range sufficient to
estimate the individual array weights. As will be seen, these mea-
surements include ones taken in sidelobe regions. In the following
the necessary conditions for the WEM estimation are derived. The
concept can be used when the phased array is receiving or transmit-
ting.

Hence, the signals xn at the radiators of A must be estimated from
the measured data and the knowledge of the antenna patterns of
the phased array elements bn(k), as well as the sounding antenna
bS(k). The antenna patterns of the array elements must include
mutual coupling effects. When a collection of N ’linear indepen-
dant’ measurements is available, the weights of A can be estimated.
Applying the antenna pattern equation of a phased array with the



weights estimated, the antenna pattern of the phased array can be
determined:

bA(k) =
N∑

n=1

wn · bn(k) · exp
[
−j kT · rnC

]
(1)

We will first consider the case where the antenna of interest A is re-
ceiving a plane wave radiated by the sounding antenna S whose
properties are known. Provided that the far-field conditions are
fulfilled and the propagation path is homogeneous, the transmitted
wave can be regarded as a monochromatic, purely polarized plane
wave. The antenna S is fed with a signal s radiating a field with po-
larisation ρS ∈ R3 and modulated according to the antenna pattern
bS(k)∈ C. The wavenumber k ∈ R3 is given in a common coordi-
nate system. In the far field of S, the signal at the position in space
rC (rC is the reference coordinate of the center of the antennas), is
given by

sC =

[
exp

(
−j 2π

λ rCS

)
4πrCS

· bS(kCS)

]
· s

where rCS = ‖rC − rS‖, rS being the position of the antenna S.
kCS is the wavenumber of length 2π

λ and direction rC − rS . The
signal sC has to be considered as the one received by an isotropic
antenna with the same polarisation as S. If a receiving antenna R
with pattern bR(k) and polarisation ρR is placed at rC , the received
signal x will be

x = bR(kRS) · pRS · fCS · bS(kRS) · s

where the scalar fCS is defined as

fCS(rCS , λ) =
exp

(
−j 2π

λ rCS

)
4πrCS

and the scalar pRS takes into account the polarisation mismatch
losses.

pRS(ρR, ρS , zS) =

√
‖ρR‖2 −

(
ρT

R ·
ρS × zS

‖ρS × zS‖

)
pRS is the length of the projection of ρR on the plane spanned by
ρS and zS , zS being the normalized boresight vector of antenna S.
× is the cross product. In the next step, antenna R is replaced by a
phased array A. The signals xn at the array radiators are defined by

xn = bn(kn) · pn ·
exp

(
−j 2π

λ rnS

)
4πrnS

· bS(kn) · s

ki is the wavenumber emanating from the source S and pointing to
ri, the position of the ith element.

Using the Hadamard Product � which is defined as the entry wise
multiplication of the entries of two matrices Am×n and Bm×n

A�B =
[

a11 a12

a21 a22

]
�

[
b11 b12

b21 b22

]
:=

[
a11b11 a12b12

a21b21 a22b22

]
the vector x of all signals xn is

x = bA � p� f � [bS · s]

where the vector f is the field-kernel with the components

fn =
exp

(
−j 2π

λ rnS

)
4πrnS

bA(kn) and bS(kn) representing the antenna responses and p the
polarisation match vector with:

pn =

√
‖ρn‖2 −

(
ρT

n ·
ρS × zS

‖ρS × zS‖

)
(2)

In the normal case that the extents of the array are very small com-
pared to the distance between the center rC of the receiving array A
and the sounding antenna S, the waves impinging on the array can
be abstracted as plane waves. In case of narrow-band signals, each
element receives the same signal, but retarded by a phase delay φn

which depends on k and the element position rnC = rn − rC rela-
tive to the reference point rC on the array center. The element phase
delays can be put into an array manifold vector vA [2] , where each
element is defined by

vAn = exp
(
−j kT

n · rnC

)
Finally, the vector of the array element contributions is given by:

x = bA � p� vA � (bS · fCS · s)

where the field-kernel has been reformulated

f = fCS · vA

Athmospheric losses are neglected here, but could be taken into ac-
count in p.
The signal sensed by the phased array is the weighted sum of the
signals xi sensed by the individual elements:

yA = wT
A · x (3)

The actual weights wA can be estimated if it is possible to identify
N measurements yj where xj are linearly independant.

yT
A = wT

A ·X ; X =
[
x1

...x2

......
...xN

]
(4)

In this case, we have a system of linear equations which can be
inverted:

if det(X) 6= 0 then wT
A = yT ·X−1 (5)

where X−1 is the inverse of

X =
[
BA �P�VA �BS �

(
1n×1 · sT

)]
· fCS

If the array of interest is emitting signals, the above constellation
can be reversed. In this case, the signals at the radiators xi must
be estimated using the signals yS measured at the sounding antenna
output. Since the reciprocity principle applies,

[BS �P�BA �VA �X]T · 1n×1 =
yS

fCS

In other terms,∑
i

(bSnj · pnj · bAnj · vAnj) · xnj =
yj

fCS

To obtain the matrix X, a linear equation system must be solved.
This done, the weights can be estimated.



4 Optimal Locations for Measurements

We consider the unknown antenna being measured at defined points
in space. We have seen that a good estimate of the weights depends
on the degree of linear independance of the columns of X. Equa-
tion (5) can be transposed, yielding XT w = y. Thus, y is a linear
combination of the columns of XT which span the signal space un-
der consideration. The normalized columns of XT are called basis
vectors and form the matrix χ. The optimum would be when the
basis vectors are orthogonal to one another, so that det(χ) = 1.

The matrix X is composed of the signals at the radiators at the dif-
ferent measurement directions.

xnj = bn(knj) · pnj · vR(knj) · fCS · bS(knj) · sn

The wavenumbers knj at one measurement point j become paral-
lel to one another when rCS � max(rnC), i.e. the items of one
row of χ are driven by the same wavenumber kj . The challenge of
WEM is to find a set of N wavenumbers kj (base wavenumbers)
among the wavenumbers possible for the measurements, yielding
the largest possible determinant of χ.

maximize over k1, ...kN : det(χ)

The coordinates of the wavenumber k which fully characterizes a
plane wave are shown in Figure 2.
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Figure 2: The coordinates of a wavenumber k

The projection of the vector u = − 2π
λ k on the x and y achses of

the local coordinate system are ux and uy . They are used to define
the plane wave direction on a 2-D plot. The ellipse with the axes ex

and ey defines the visible region.

To demonstrate WEM, a very simple phased array is used. This ar-
ray will be referenced as “5x3”. It is a regularly spaced rectangular
array with 5 by 3 isotropic elements. The horizontal and vertical
element spacing is λ/2.

4.1 Measurements in anechoic chambers

An orthogonal set of basis vectors can be obtained when the whole
visible region can be exploited. This is possible, for instance, in an
anechoic compact range where the antenna can be oriented at will
in azimuth and elevation under far-field conditions. Figure 3 shows
the coordinates of the direction cosines of a set of plane waves pro-
viding a set of orthogonal basis vectors for the "5x3" array.

(a) Dir. cosines of the base wavenumbers (b) Simulated antenna pattern

Figure 3: Set of wavenumbers providing a set of orthogonal basis
vectors for the “5x3” array.

The pattern of the wavenumber direction cosines depend on the ar-
ray geometry. Note, the array response also depends on the weights
applied, refer to (3). In order to achieve a good estimate, all N mea-
surements have to be above the noise level. Only incoherent thermal
noise need be considered. Starting with an a priori knowledge of the
weights commanded, an adequate selection of measurement points
can be made. Probably, the columns of χ will no longer be orthog-
onal, but χ will be sufficiently conditioned to obtain satisfactory
estimates. We will now compare the basis vector sets of two array
configurations "5x3" and “5x3-5a”. The latter is similar to "5x3",
but the element spacing in azimuth is 5 times the wavelength. The
plane waves for the basis vectors for "5x3" are depicted in the first
row, and for “5x3-5a” in the second one.

For the selection of the basis vectors, only measurements with ar-
ray outputs in the range 0 dB to −30 dB of the maximum response
are considered to eliminate noisy contributions. As seen in Figure
5, one basis vector can result from several wavenumbers due to the
grating lobes. Depending on the weights applied, a dedicated set of
basis vectors is needed to optimize the estimation.

(a) Dir. cosines of the base wavenumbers (b) Simulated antenna pattern

Figure 4: Simulation of the “5x3” array for the unweighted bore-
sight beam. It can be seen that some base wavenumber fall within a
null in the pattern and need to be rejected.



(a) Dir. cosines of the base wavenumbers (b) Simulated antenna pattern

Figure 5: Simulation of the "5x3-5a" array for the unweighted
boresight beam. It can be seen that several wavenumbers can trigger
one basis vector.

4.2 Measurements of array antennas on spaceborne
and airborne platforms

The situation is different when the measurement points can only
be on the tracks of a satellite or aircraft carrying the phased array.
With the knowledge of the scheduled ephemeris data of the satel-
lite and the commanded antenna weights, a satisfactory selection is
possible, but the risk to get an ill conditioned χ is high. Therefore,
several measurements should be taken in addition to the scheduled
measurement points. We thus obtain an over determined system.
The pseudo-inverse χ+ can be calculated with singular value de-
composition, and a principal component analysis is recommended
for noise discrimination. A least squares type estimation will be
obtained.

Figure 6: Measurement for the chosen set of basis vectors for the
"5x3" array. The projection of the measurement points on the bot-
tom plane show the associated base wavenumbers.

The weights of the ’5x3’ array and the ’5x3-5a’ array were adjusted
to steer the beam to 10◦ elevation and 0.5◦ azimuth and were esti-
mated using WEM in a simulation. One element has the weight 0
in amplitude to simulate a total element failure. The phased array
flies on a sun synchroneous orbit. The measurements are taken on
the pass where the center of the array footprint comes closest to the
position of antenna S.

Figure 7: Measurement for the chosen set of basis vectors for the
“5x3-5a” array.

The results show that the estimated weights have no systematic bias
and the variance of the estimated weight amplitudes and phases are
less than −45 dB and 0.5◦, respectively. In addition to the inco-
herent thermal noise of the phased array components, coherent ter-
restral noise received by the radiators must be considered. A better
signal to noise ratio can be obtained with matched filtering. But
the remaining disturbances degrade of course the estimation results.
Additionally, the Doppler effect has to be taken into account.
For airborne array antennas, the distances are not so large with the
consequence that the signals are higher, leading to a better signal to
noise ratio. But the positioning of the phased array for the measure-
ments isn’t so precise.

5 Conclusion

The simulations show that the WEM method allows accurate char-
acterisation of phased arrays in their operational configuration with
a limited number of measurements. The measurement can take
place with the sounding antenna outside the main beam of the
phased array, although for signal-to-noise reasons the main should
be used if possible. It is only important that the sounding antenna
is within the pattern of the array’s radiating elements. Hence, a
single ground station housing the sounding antenna and its equip-
ment could be used to fully characterise array antennas on moving
platforms. Using a high-gain sounding antenna tracking the phased
array, the field produced in the vincinity of the phased array can be
very strong, so that measurements can be made even in low sidelobe
regions.
If a full characterisation of a phased array can be performed exter-
nally in this way, the circuitry for characterising the antenna on-
board can be greatly simplified or even dispensed with altogether.
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