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Abstract  

Polarimetric SAR data are coherent by nature of the principle of operation. However, most often incoherent ap-
proaches are chosen for the post-processing in order to apply conventional averaging and statistical methods. 
For this purpose, covariance and coherency matrices are typically formed from the complex raw data, and a va-
riety of incoherent analysis and decomposition methods have been proposed for the further information extrac-
tion. Alternatively, the complex data may be used on a pixel by pixel basis to extract information at the highest 
possible resolution. By the latter approach, absolute phases have to be taken into account, and straightforward 
averaging of the coherent quantities cannot be applied. However, it is still possible to perform averaging of indi-
vidually extracted real parameters, and as we shall show, the coherent data can indeed be averaged after proper 
phase normalization. In this work, we have considered both coherent and incoherent approaches for the purpose 
of quantitatively comparing the utility of the various approaches. The analysis procedure is based on a series of 
classification tests on many different polarimetric parameters derived after applying the different theoretical 
methods. Several classification methods have been applied, and hence, the work comprises a comparison of the 
classification potential of different polarimetric descriptors as well as a comparison of the performance of differ-
ent classifiers for the type of data under investigation. Data from the Danish EMISAR have been used. 
 

1 Summary of theories 

1.1 Coherent processing methods 

1.1.1 Scattering matrix elements 

The data directly detected by the polarimetric SAR 
sensor are represented by the well known 2x2 com-
plex Sinclair scattering matrix [S]. The most straight-
forward way to use this information is to use the three 
magnitudes HH, HV, and VV, assuming a linearly po-
larized system with horizontal and vertical antennas, 
and assuming reciprocal conditions for the typically 
used mono-static configuration. However, to use the 
full amount of information, complex values must be 
used. Transformation to any other basis, notably the 
circular basis and the basis in which the scattering 
matrix is diagonal, is easily accomplished by well 
known procedures [1]. 

1.1.2 Huynen-Euler parameters 

The target characteristic parameters associated with 
the diagonal form of the scattering matrix, known as 
the Huynen-Euler parameters [2], are the following: 
m, the maximum polarization, i.e., the maximum at-
tainable response; ψ , the orientation angle; mτ , the 

helicity angle, i.e., the ellipticity of the optimum po-
larization; ν , the skip angle, related to the concept of 
odd and even bounce reflections; γ , the characteris-
tic angle, related to the capability of the target to 
change the polarization of the incoming wave; ζ , the 
absolute phase which is usually disregarded. 
The orientation angle and the helicity angle character-
ize the optimum polarization for the target. 

1.1.3 Coherent target decompositions 

In this category, we have studied the three main co-
herent decomposition theorems, commonly referred to 
as the Pauli, the Krogager and the Cameron decompo-
sitions, respectively. 

1.1.3.1  Pauli decomposition 
The most commonly known and applied coherent de-
composition is the Pauli decomposition, whereby a 
generic [S] matrix can be written as: 
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where a, b, and c are complex quantities representing, 
respectively, single-bounce, double-bounce, and 45° 
rotated double-bounce scattering components. 



1.1.3.2 Krogager decomposition 
According to this approach, the complex, symmetric 
scattering matrix can be decomposed into three com-
ponents, as if the scattering were due to a sphere, a 
diplane and a right- or left-wound helix (SDH), 
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The values of the coefficients are easily obtained from 
the elements in the circular basis [3]. 

1.1.3.3 Cameron decomposition 
A general symmetric [S] matrix may be characterized 
by the target’s tendency of being more or less sym-
metric with respect to an axis in the plane orthogonal 
to the radar line-of-sight, and a distinction can be 
made between the most dominant and the least domi-
nant symmetric target components [4], 
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1.1.3.4 Principal components analysis 
An interesting approach to combining coherent and 
incoherent methods was suggested by Lüneburg [5], 
based on the diagonalization of the covariance matrix 
and on the subsequent derivation of a set of [S] matri-
ces related to its eigenvectors. In this way, the re-
sponse from distributed targets can be expressed as a 
coherent sum of independent scattering mechanisms. 
The important aspect is that [S] is rendered as the co-
herent sum of elementary scattering mechanisms 
weighed by coefficients derived via an incoherent 
step. Hence, random scatterers are re-expressed in 
terms of scattering matrices. 

1.1.4 Coherent phase normalization 
 
A key point in relation to processing coherent observ-
ables is the handling of phase information. It is well 
known that coherent data cannot be meaningfully in-
tegrated and averaged due to the absolute phase asso-
ciated with each pixel. However, by applying phase 
normalization, averaging becomes possible, and in 
fact this is somehow comparable to the phase align-
ments associated with the synthetic aperture forma-
tion itself [1][6].  
In a simplified formulation, an average scattering ma-
trix can be obtained by the following operation 
(shown here only for the HH element): 
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which amounts to ensemble averaging of the N in-
volved samples,  being the normalization phase 
term. The choice of normalization phase is crucial, 
and whereas the HH element has been used for such 
purposes in the past, a number of possible choices are 
available, e.g., the phase of the off-diagonal element 
of the circular basis, which represents odd-bounce 
contributions and hence, for each individual pixel, 

defines a phase-reference related to the physical prop-
erties of the target. This corresponds to the first term 
of both (1) and (2). Similarly, phase normalization 
using the diplane component is a relevant option.  

iϕ

1.2 Incoherent processing methods 

1.2.1 Covariance and coherency matrices 

These are the well known and widely used 3×3 matri-
ces obtained from the [S] matrix elements. The co-
variance matrix is formed from a straightforward lexi-
cographic vectorization of the scattering matrix, 

2, ,hh hv vvS S S= ⎡ ⎤⎣ ⎦(3)Lk  (5) 

while the coherency matrix is formed on the basis of 
the Pauli expansion, 
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1.2.2 Incoherent target decompositions 

1.2.2.1 Freeman decomposition 
The Freeman decomposition [7] describes the scatter-
ing as due to three physical mechanisms, namely first-
order Bragg surface scatter (s), a double-bounce scat-
tering mechanism (d) and canopy (or volume) scatter 
from randomly oriented dipoles (v). According to this 
model, the measured power P may be decomposed 
into three quantities: 
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Reflection symmetry is assumed, implying: 
* * 0hh hv hv vvS S S S= =  (8) 

Moriyama et al. [8] proposed to adapt the Freeman 
decomposition to the specific case of urban areas 
where (8) does not hold. The model of Moriyama can 
be combined with the original Freeman approach by 
using the correlation coefficient between co- and 
cross-polar terms to decide which one to use. With 
cross-correlation values close to 1, the urban area for-
mulation is chosen, while the original formulation is 
chosen for values close to 0. 

1.2.2.2 Cloude-Pottier decomposition 
Several decomposition approaches are based on the 
eigenvalues and eigenvectors of the covariance and 
coherency matrices. In particular, the entropy, alpha, 
anisotropy (H,α,A) decomposition proposed by 
Cloude and Pottier [9] has been widely adopted for 
classification of terrain, crop, and other remote sensing 
applications where resolution is not a major concern. It 
should be noted that application of these techniques 
often involve up to several statistical assumptions 
which may only hold to a certain extent. 



Figure 1  SAR image of the considered scene in the 
Halsskov area with training areas marked. 

Figure 2  Map of scene with training areas marked.  
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2 Experimental approach 

The experimental data used for the tests are from the 
Danish Great Belt area, acquired by the EMISAR air-
borne sensor operated by the Department for Electro-
magnetic Systems (EMI) of the Technical University 
of Denmark (DTU). The measurement campaign was 
held in June 1998 and the data consist of C-band scat-
tering matrices measured in the hv-basis. The location 
is about 100 km southwest of Copenhagen at the west 
coast of Zealand. It includes the Halsskov area at the 
city of Korsør, its port, the beginning part of the Great 
Belt East Bridge, several cultivated fields, small tree 
stands and other general classes of land cover, see 
Figure 1 and Figure 2.  
An averaging window of 3×15 pixel (in range and 
azimuth, respectively) has been used in order to refer 
to areas on the ground approximately squared. Noise 
removal and speckle reduction have been obtained by 
means of simple boxcar filtering. 
A common classification procedure was adopted for 
all the polarimetric parameters. A set of ground cover 
classes was defined, and for each of them separated 
areas of training and test samples with a comparable 
number of pixels have been identified. Supporting 
information like airborne pictures, digital maps and 
ground truth data have also been used in this process. 
The following set of seven classes has been defined: 
“water”, “houses”, “clover”, “trees”, “grass”, “barley” 
and “pasture”. The class “grass” has been defined re-
ferring mainly to a golf course clearly delimited in a 
digital map. Likewise, the class “houses” is associated 
with areas of strong backscattering corresponding to 
city area in this map. 

3 Classification algorithms 

The primary classifiers considered here are the mini-
mum distance (MD) and the maximum likelihood 
(ML) classifiers as implemented in the ENVI soft-
ware package. For the MD classifier no knowledge of 
the statistics of the data is needed (only the calculated 
mean value of each class is used), while for the ML 
classifier this is necessary because the algorithm must 
be implemented according to the distribution of the 
data to be classified. Nevertheless, for this study we 
used the same basic implementation of the ML to 
classify all the parameters, including the incoherent 
ones, based on the assumption of Gaussian distribu-
tion of the data.  

4 Results and discussion 

A summary of obtained results is shown in Figure 3. 
In general, as is well known, the ML yields the best 
performance, but nevertheless, the MD classifier in 
many cases gives almost exactly the same overall re-
sult. Another main finding is that the best results 
based on coherent formulations are similar to the best 
results based on the incoherent formulations. 
As can be seen, the H,α,A results are rather poor, 
which is due to the fact that this set of parameters is 
derived from eigenvalues only, while the information 
associated with the corresponding eigenvectors is not 
used. In this sense, the results shown here represent 
the performance (information content) of the pure 
H,α,A representation.  
As a further comparison, we include two additional 
results based on a neural net and a Wishart classifier. 
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Figure 3  Classification accuracies using MD and ML classifiers. In brackets the phase term used for phase 
normalization: hh: Shh; sph: sphere component; dip: diplane component; mag: only three magnitudes used. 

Using a neural network for the ‘hv basis (hh)’ resulted 
in 69.7 % vs. 68.2 % using ML. Using the Wishart 
classifier of PolSARpro for the ‘Cov. mat.’ case re-
sulted in 77.9 % vs. 77.7 % using ML.  
We note that in [10] the overall results for ‘hv basis 
(mag)’, ‘Krogager (mag)’, and ‘Pauli (mag)’ were 
57.0 %, 87.4 %, and 57.6 %, respectively. As a partial 
explanation, the results in [10] were obtained using L-
band data from the German E-SAR with a resolution 
of 1.5 m in range and 0.89 m in cross-range, while the 
EMISAR data used here are C-band data with respec-
tive resolutions of 3.0 m and 0.75 m.  

5 Conclusions 

We have presented a summary of results from a study 
aiming at a quantitative comparison of coherent and 
incoherent polarimetric parameters. A key issue is the 
necessity of averaging in order to optimize the per-
formance. For the coherent methods, a new method 
for phase normalization was applied, keeping in mind 
the well known fact that the raw coherent data cannot 
be meaningfully averaged. Overall, we found quite 
comparable classification results for the coherent and 
incoherent formulations. A particularly significant 
finding is the fact that the applied phase normalization 
of the coherent parameters yields meaningful results 
comparable with results of conventional incoherent 
approaches. The general preference for the conven-
tional methods should therefore be further challenged 
by follow-on studies, and the use of coherent formu-
lations for classification purposes deserves further at-
tention.  
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