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Abstract. Details of unsteady aerodynamics for two dimensional wing of NLR-7301 with 
flap were numerically investigated by Navier-Stokes code in transonic regime. Unsteady 
aerodynamic coefficients such as lift and pitching moment show non-linear aspects in small 
amplitude range of forced excitation mode. Pressure distribution of super sonic region on 
upper surface is very sensitive to the incidence and this brings the nonlinearity of the unsteady 
aerodynamics in small amplitude range of pitching motion. Behavior of re-attachment of the 
boundary layer aft of shock wave also affects the nonlinearity. Shock wave motions were also 
examined. Linearized unsteady lift and pitching moment coefficients for each amplitude were 
applied to the eigen value analysis for the flutter boundary. Flutter simulations were also 
carried out and the results showed that the amplitude of the limit cycle oscillation could be 
explained by the flutter boundary of the eigen value analysis. 
  
1  INTRODUCTION 

To synthesize a control law for an aero-servo-elastic system, a state equation is required first. 
It is, for example, expressed by an equation of motion for an elastic system with external 
aerodynamic force. As far as subsonic flow is considered, linear expression is available for 
aerodynamics and static deflection and amplitude of oscillation has no significant role. 
 
As for the symmetric wing profile, Davis and Malcom[1] experimentally showed the linearity 



of the unsteady lift coefficient for NACA 64A010 profile at Mach 0.80 up to one deg. of 
amplitude in pitching motion. In this case there is no strong shock wave which generate shock 
induced flow separation. Using the small disturbance code, Isogai[2] also showed that the 
unsteady coefficients of lift and pitching moment were linear in pitching motion up to 
amplitude of 0.5 deg. and 0.2 deg. at Mach 0.80 and 0.85 respectively for the same wing 
profile. It is said it is linear as far as there is no strong shock wave to generate major flow 
separation. These results mean the unsteady aerodynamics in transonic flow can be expressed 
by the linearized aerodynamics coefficients if there is no major flow separation. On the other 
hand, Bendiksen[3] showed the nonlinearity of static lift and pitching moment around zero 
degree of incidence by the Euler analysis for NACA00 series profile. This means it is 
nonlinear even with the small amplitude at least in quasi-steady condition. 
 
Supercritical wing profile which is "shock free" at design condition has been investigated, 
especially for NLR-7301 profile by Tijdeman[4] et al. Recently two dimensional flutter 
experiment has been carried out in DLR and interesting results such as Limit cycle oscillation 
(LCO) were observed[5]. In this paper it is described about the results of unsteady 
aerodynamics and LCO simulations for two dimensional wing of NLR-7301 with flap 
investigated by the numerical analysis with Navier-Stokes code. 
 
2  COMPUTAION CODE 

2.1 Code 
Computation code which is used in this paper is developed by Kheirandish, based on the 
following method. 
 

Equation  Thin layer 2D Navier-Stokes Equation 
Turbulence model  Boldwin-Lomax 
Differential method implicit TVD scheme 
Integral method ADI scheme 
Structural solver Willson's implicit θ method 
Grid system Structured C type 

 
A module for flap rotation mode was added to the original code. Flap rotates at the center in 
wing thickness direction without gap. Hinge position is at 75% chord for all calculation. Grids 
for 0 and 8 deg. flap deflection are shown in Fig.1. Although there is no special arrangement 
at the hinge point, there is no grid broken. It is defined that downward rotation at trailing edge 
is positive for the flap deflection. The grid size is 261（203 on wing）×71. The minimum grid 
space which is normalized by half chord length is 2x10-4in normal direction to the wing, and 
0.025 in tangential direction. Reynolds number is 1x106 except for the code validation 



calculation. The transition point is automatically calculated and the flow is supposed laminar 
when the turbulent viscosity satisfies ≤turμ 14. 
 
2.2 Unsteady analysis 
To evaluate the unsteady aerodynamics, sinusoidal forced excitation was given as 
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where x is a deflection or displacement of the mode, x0 is its mean value, x  is an amplitude, 
k is a reduced frequency and btU /=τ  is a nondimensional time. Unsteady aerodynamic 
coefficient y, which is a time history obtained by a simulation, is expressed in a Fourier series 
as 
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Although the nonlinearity appears in higher harmonic components, the second order 
components of Cl is 1.5% of the first order's one for the pitching mode with 0.5 deg. 
amplitude and k=0.20 at Mach 0.750. Each simulations have five periods and 8,000 time steps 
per one period for the cases of the reduced frequency is more than or equal to 0.20. The time 
step size τΔ =0.004 at k=0.20. Lower than k=0.20, time steps were used more than 8,000 to 
avoid large time step size. 
 
2.3 Validation 
A calculated result was compared with the experimental results of AGARD test case[7]. The 
flow condition is Mach 0.70, 2.0 deg incidence and Re=1.07x106. In this condition, the shock 
wave exist around 40%c. Fig.2 shows the unsteady pressure distribution for flap oscillation 
with k=0.71 and amplitude of 1.0 deg. The shock wave of the calculated result is aft compared 
with the experimental result and the phase seems to be delayed. 
 
3  COMPUTATIONAL RESULTS 

3.1 Steady results 

Steady Cp distributions are shown in Fig.5 to 8. At Mach 0.750 shock wave stays at the same 
location even when the incidence changes, where at Mach 0.700 it moves aft as the incidence 
increases. The shock wave location is defined where supersonic flow decelerates to be a sonic 
speed on the wing, even for a "shock free" condition. As for the flap deflection, the shock 
moves aft as the deflection increases even at Mach 0.750. 
 



Cp distribution in local supersonic region on the upper surface is very sensitive to the 
incidence between -0.4 and +0.1 deg. at Mach 0.750 (Fig.10). The Cp distribution in 
supersonic region sinks at the center if the incidence is lower than -0.1 deg. The skin frictions 
also show changes of flow pattern as shown in Fig.9. The boundary layer separated at the 
shock wave is re-attached in downstream with the incidence between -0.4 deg. and +0.1 deg. 
But the re-attachment does not appear at -0.2 deg., at which the flat part of the Cp distribution 
in the supersonic region sinks a little. These re-attachments of the flow separation are 
corresponding to the unsteady pressure distributions as described later. 
 
3.2 Unsteady results 

Unsteady lift and pitching moment coefficient are shown in Fig.11 and 12. In the figures, the 
first harmonic components of the Fourier series are plotted in its magnitude and phase. The 
pitching moment is evaluated at 25% chord position. The mean angle of attack in the unsteady 
calculations is -0.2 deg., at which a singularity is observed in the steady results. The unsteady 
coefficients in the figures are normalized by the amplitude of the excitation mode, so those 
are constant according to the amplitude, if those are linear to the amplitude. Nonlinearity of 
unsteady Cm is clearer than of Cl. Those variations are observed not only in the large 
amplitude but also very small amplitude. Peaks of unsteady pressure distributions are at 20%c 
and 60%c in Fig.13. With the small amplitude, the variations are seen at 20%c and between 
30 and 40%c in local supersonic region. At the shock wave position, the variations are small. 
With larger amplitude, the shock wave propagates from aft to the front and appears again at 
rear position. The peaks of the unsteady pressure distribution become small and the 
distributions become flat with large amplitude. 
 
The difference in unsteady pressure distribution at 65-70%c can be seen between 0.3 and 0.4 
deg. amplitude in Fig.13. Unsteady Cf distribution around this area shows more clear 
difference. With the amplitude more than 0.2 deg., reattachment of the boundary layer 
separation appears in the aft area of shock wave in Fig.14. 
  
The shock waves travel distance corresponding to the amplitude of the pitching motion is 
shown in Fig.15. Except 0.3 and 0.4 deg. amplitude, the traveling distance is proportional to 
the pitching amplitude. Effect of the reduced frequency of pitching motion on the shock wave 
travel distance is shown in Fig.16. As it is observed that the shock wave does not move at 
Mach 0.750 in steady condition even if the incidence is changed, the shock wave travel 
distance is small in lower reduced frequency than 0.20. 
 
Unsteady pressure distributions for the flap mode are the same in smaller amplitude than 0.4 
deg. and the peak at the shock becomes lower with more amplitude as shown in Fig.19. With 



0.5deg. amplitude the unsteady pressure distributions change from 0.4 deg. amplitude and the 
re-attachment of the flow separation appears. It is different from the pitching mode that the 
shock wave moves in low reduced frequency in Fig.21. 
 
3.3 Flutter/LCO analysis 

The unsteady coefficients of lift and pitching moment are linearized and applied to the p-k 
method for a flutter analysis. Experimental model carried out in DLR was used for structural 
model[5]. The flutter boundary is obtained according to the amplitude of the pitching mode. 
(Fig. 22). Flow condition is Mach 0.750 and mean angle of attack is -0.2 deg. For the 
amplitude ratio )//( bhΔΔα , 1.3 is used which is the results observed in the simulation. The 
unsteady coefficients are calculated for the reduced frequency of 0.10 and 0.15 and 
interpolated, while the reduced frequency in the LCOs are 0.122. The boundary is constant 
between 0.5 and 2.0 deg. of pitching amplitude, and it is "stabilized" beyond 2.0 deg. It is also 
stabilized in the amplitude smaller than 0.5 deg. LCO simulations were conducted to evaluate 
the boundary. By the p-k analysis the amplitude of the pitching mode in the LCO is estimated 
3.0 and 2.7 deg. for Fi=0.20 and 0.18 respectively. The results of the LCO simulations show 
that the amplitude is 3.2 and 3.0 deg. respectively and those are reasonable compared with the 
p-k analysis. When the initial values of α , h, α&  and h  are zero, the deviation from the 
equivalent condition becomes an initial disturbance because the simulation starts from the 
steady results in fixed condition. In this case the response converges as shown in Fig.25 at 
F

&

i=0.17. In the case that the initial values are α&  =0.317 and  =0.00728, the response got 
into the LCO condition and it means the initial condition determines the stability of the 
response. Although the boundary also insists on the existence of the LCO with small 
amplitude, it has not been observed in the simulation. 

h&

 
4  CONCLUDING REMARKS 

The numerical analysis with Navier-Stokes code shows the unsteady transonic aerodynamics 
has nonlinear characteristics in very small amplitude for the NLR-7301 super critical wing. 
Re-attachment of the flow separation enlarges the nonlinearity. But flutter analysis based on 
the eigen value analysis with linearlized unsteady aerodynamics gives a insight of LCO 
condition. It is thought that a linear controller for aero-servo-elastic system in transonic region 
can be synthesized with considering the nonlinearity caused by the amplitude of vibration 
mode as a system error. 
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Fig.2 Unsteady pressure distribution for flap 

mode  (Mach 0.70, α=2.0deg, 

k=0.071, Δβ=1.0deg, Re=1.07x106) 

Fig.1 Grid (β=0.0 & 8.0 deg.) 
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Fig.3 Steady shock wave location (pitching) Fig.4 Steady shock wave location (flap) 
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Fig. 5  Steady pressure disributions (α=-1 to 

+1deg.) 

Fig. 6  Steady pressure disributions (α=0 to 

+3deg.) 
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Fig.7  Steady pressure disributions (β=-2 to 

+2deg.) 
Fig. 8  Steady pressure disributions (β=-2 to 

+2deg.) 
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Fig. 9  Steady skin friction distributions Fig. 10  Steady pressure disributions (α=-0.4 

to +0.1deg.) 
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Fig.11  Unsteady Cl for pitch motion (first 

harmonic component) 

Fig.12  Unsteady Cm for pitch motion (first 

harmonic component) 
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Fig.13  Unsteady pressure distributions for 

pitching motion 
Fig.14  Unsteady skin friction distributions 

for pitching motion 
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Fig.16  Frequency response of shock 
motion for pitch (Δα=0.5deg.) 

Fig.15  Shock traveling distance for pitching 

mode 
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       Fig.17  Unsteady Cl for flap motion (first 

harmonic component) 

 

Fig.18  Unsteady Cm for flap motion (first 

harmonic component) 
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Fig.19  Unsteady pressure distributions for 

flap motion 
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Fig.21  Frequency response of shock 

motion for flap (Δβ=0.5deg.) 
Fig.20  Shock traveling distance for flap 

mode 
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Fig.23  Time history of pitching (Fi=0.200) Fig.22  Flutter boundary by eigen value 

analysis 
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Fig.24 Time history of pitching (Fi=0.180) 

 
Fig.25 Time history of pitching (Fi=0.170) 

 

       Fig.26  Time history of pitching (Fi=0.170) 

 
Fig.27  Time history of pitching (Fi=0.162) 

  


