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Flight confrol law design is a multi-variable control pi t
requirements from multiple disciplines have to be satisfied. "Visibill r
strucgdire and design procedure is necessary to successfully handle such a complex design
task. Automated multi-objective synthesis tuning based on a visible goal-attainment strategy
§ proposed to solve the problem. Nonlinear parameter optimisation is applied to solve multi-
variable synthesis parameter tuning. Visibility of the design is based on a unified valuation of
requirements by formulation of quality functions. Comprehensible linguistic expressions and
demand verbalisation are used to normalise the various criteria making design alternatives
quantitatively comparable. This approach is illustrated by flight control law case studies.

1 Introduction

Aircraft flight control law design is a challenging task: It is intrinsically a multivariable
control problem with multiple sensors and multiple actuators to cope with strong dynamics
interaction. High dynamics performance and safety demands enforce a multitude of design
requirements to be satisfied concurrently. Typically, for autopilots such requirements refer to
mission performance (tracking error and disturbance rejection), stability robustness with
respect to key system parameters (mass, centre of gravity, computation time delay) as well as
unmodelled dynamics (e.g. gain and phase margins), ride quality (passenger and pilot comfort
by bounds on allowable acceleration and minimum damping), safety (envelope safeguards),
and control activity (power consumed by the controls, control rates). In case of piloted flight,
handling criteria such as, e.g., the CAP criterion, the C* criterion, the Neal-Smith criterion,
and Duda’s OLOP criterion for avoiding PIO design flaws, have to be considered in addition.

Model based multivariable control theory offers various kinds of synthesis methods [30] to
parameterise multivariable control laws, while intrinsically coping with multivariable
dynamics integration. Here the control engineer does not tune the multiple control law gains
and filter parameters directly as in classical control engineering, rather s/he has to tune some
synthesis parameters instead. Depending on the synthesis method, synthesis parameters may
be components of the system eigenstructure, weighting matrices in an integral criterion, or
weighting filters to shape the frequency behaviour of loop transfer singular values or
structured singular value 4.

Manual synthesis tuning, is the common practice in classical as well as advanced modemn
control engineering. But manual tuning lacks a systematic for handling multiple tuners
simultaneously. Manual tuning is inclined to favour a control law structure or synthesis
method which allows sequential or ‘add-on’ search one parameter at a row. This eventually
leads to more complex system solutions than it ought to be. In particular those methods which
use ‘add-on’ performance weighting filters tend to high order synthesis models including such
filters. This yields control laws of high dynamics order with corresponding demands on



embedded computer implementation. Examples, notably of u -synthesis D-K iteration, are
given in [30].

This paper deals with the guantitarive aspects of control law design complementing the
qualitative structural insight provided by control theory. A methodology is developed of
automated synthesis tuning of all the free tuning parameters simultaneously, with proper goai-
attainment decision visibility for the design engineer. Concurrent design assessment during
the design decision iteration loop [29] yields the necessary information to interactively
compromise for a best balanced result with respect to dynamic performance, control effort,
and robustness multi operating conditions and parameter tolerances. Based on nowadays high
desktop computing power and supported by a pertinent computer-aided control system design
environment such as described in [13] or [36], this methodology paves the way to dynamical
less complex and more robust control laws. The choice for a specific synthesis method then is
guided only by how easy the demands of low controller complexity (state dimension,
scheduling difficulty) can be satisfied by the pertaining control law structure, and how visible
this structure is with respect to practical realisation considerations, such as actuator limits,
elastic interactions, anti-windup/boundary control logic, necessary nonlinear terms, classical
stability margins, and the like.

Automated synthesis tuning, in this paper is based on multi-objective goal attainment which is
instrumented by nonlinear parameter optimisation methods under inequality constraints.
Nonlinear programming [1], [9], search methods like pattern search [17], or guided random
search techniques like evolutionary or genetic algorithms [11], are numerical algorithms
which can be used. Assessment visibility is based on a unified valuation of requirements’
satisfaction by upper bounds on positive (semi-) definite criteria. In particular, linguistic
valuation as ‘good’, ‘satisfactory’, ‘bad’ is possible by a type of semi-definite criteria
formulation. In case of conflicting requirements interactive compromise negotiation is
possible by applying moving upper bounds on a pareto-optimal set of design alternatives. For
given requirements pertinent criteria as a function of indicators in time- and frequency domain
can be formulated by the design engineer in most natural mathematical terms such as the
maximum function, approximated only internally by smooth mathematical expressions for
well behaved numerical treatment. Obviously, a pre-progammed repository of established
handling quality criteria as well as standard control stability and performance criteria can be
developed and made available for ready use as a criteria tool box [5], [36].

This approach has been successfully applied to diverse, nontrivial control design problems,
e.g. [13], and has gained quite some maturity over the last decade [14]. Especially, the
approach has been applied [21], [24] to both of the GARTEUR robust flight control
benchmark problems, the civil one and the military one, yielding results which compare most
favourably with all the other design entries documented in [30]. In the GARTEUR industrial
assessment [7] of the civil aircraft control design challenge, evaluating control performance
and industrial suitability, the approach received highest overall ranking. This is attributed to
the fact that any industrial control law structure can be used and given requirements can be
dealt with most visibly in their natural mathematical description in time and frequency
domain. The approach is especially well suited for ‘incremental design’ by re-using design
experience based on a previously developed control law structure and a comparison set of
previously achieved assessment results. Hence the approach covers the control engineering
task most often encountered in industrial practice.

The paper is organised as follows:



The following Section 2 deals with the diverse aspects of design assessment, i.e. requirements
of various kind and different performance indicators. Section 3 deals with comparative
assessment by sharp and soft quality functions, visualisation of design alternatives in criteria
space as well as the denotations of ‘better’ and ‘best possible’ (pareto-optimal) designs for
requirements valuation and compromising. Section 4 addresses control law parameterisation
by synthesis methods and multi-variable synthesis tuning by means of parameter optimisation.
Examples are given for multi-objective evaluation and compromising in flight control law
design. Lastly, section 5 deals with multiple model selection and robustness assessment for
robust tuning by multi-model compromising.

2 Various aspects of control law evaluation

In flight control law design a multitude of different design requirements has to be dealt with.
A documented example for this is the RCAM (Research Civil Aircraft Model) GARTEUR
Robust Flight Control Design Challenge [28] which is specified by an extensive set of design
requirements in time domain. This benchmark problem addresses design of an autopilot for
the final approach of a transport aircraft. For simulation the six degrees of freedom
mathematical aircraft model is supplemented with models for wind, turbulence and other
external influences. The control law is required to be stability robust with respect to variations
in speed, weight, centre of gravity position (both vertical and horizontal), time delays,
nonlinearity, and engine failure. It is distinguished between performance specifications, like
rise time, settling time, overshoot and cross coupling of airspeed and altitude responses;
disturbance attenuation specifications, like path deviation in case of wind; and control
requirements, like minimum control energy and control rates. These requirements have been
deployed in [21] as quality functions (criteria and demands) shown in Table 1, The robustness
requirements have been dealt with by applying these 18 quality functions in parallel to three
design models with different worst-case parameter settings. Hence a total of 54 quality
functions has been considered concurrently.

Requirements Mathematical Criteria  |Demands
2
Altitude unit step: c=[(h()~1)*dr .
zero steady state error, settling time < 45s f i
t, =105, 1, =305
Altitude unit step: C=lh~1, 12
rise time < 12s h(z)=0.1, h(1,)=09 <
Cross coupling altitude airspeed:
for a step in commanded altitude of 30m, the
peak value of the transient of the absolute error | € = m?leA (t)| <0.5/30
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peak value of the transient of the absolute error

between # and commanded A, should be smaller
than 10m
7 Altitude unit step: ¢ = max h(t) <1.05
overshoot < 5% d
3 Airspeed unit step: c=max V(1) <1.05
overshoot < 5% d
Airspeed wind disturbance:
9 for a wind step w'ith' arn.plitude'of 13m/s there c= maXlVA(t)i <96
should be no deviation in the airspeed larger than 15
2.6m/s for more than 15s
H
10 Altitude wind disturbance: c= jhz (t) dt i
no explicit specification given 0
tz = 30S
Control activity criteria, effort minimisation for:
11 [tailplane, altitude command 5, min
12 |throttle, altitude command €= i (1) dt min
13 ltailplane, airspeed command : min
14 |throttle, airspeed command c= Iﬁz (1) dt m%n
15 |throttle, wind step 0 min
16 |throttle rate, wind step min
17 RelatiV(.a s.tabilit.y 'of e.igenvalues evi ¢ =1—minl = Re(ev)) <06
no explicit specification i ievi
18 Absolut.e _stabiliFy of F:igenvalues ev;: ¢ = exp(max(Re(ev;))) | <095
no explicit specification ;

Table 1: Requirements [28] and quality functions, i.e. mathematical criteria and demands,
used in [21] for RCAM longitudinal control law design.

The requirements and quality functions of Table 1 are typical for design demands of an
autopilot control law, expressing step response characteristics and relative and absolute
eigenvalue stability. Control laws for piloted flight in addition require avoidance of Pilot-In-
the-loop Oscillation (PIO) design flaws and proper attainment of handling quality levels. For
instance, the C * handling qualities criterion [37] requires the C(¢)* pilot stick-step response
to lie within a bounded region. Other types of criteria are defined for transfer functions, such
as the CAP criterion [3], or they are based on frequency responses, e.g. the OLOP PIO
criterion [4] and the Neal-Smith handling quality criterion [40].

Figure 1 shows the handling quality and eigenvalue stability indicators used for re-tuning the
Nz-flight control law of the ‘Aerospace Technology Demonstrator’ (ATD) aircraft of Dasa-
Airbus as modelled in [32]. These handling qualities are to be compromised quantitatively
with respect to elevator control rate. The upper left diagram shows flight path angle and pitch
angle which should follow the flight path angle induced by Nz-command. The diagram below
shows the C*-response together with its bounds for level 1. Eigenvalues indicate transient
decay and damping. The right column shows the PIO-indicators ‘Phase Rate’ and ‘Open-Loop
Onset Point’ (OLOP), as well as the ‘Neal-Smith’ handling quality indicator.
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Figure 1: Indicator functions and indicator points of stability and handling qualities.

As the above examples indicate, computation of design quality functions requires the
following three steps: First, analysis of the controlled system by time and frequency responses
and eigenvalue computation. Second, computation of indicator functions or indicator points
like the C* response or the Neal-Smith indicator point. Third, evaluation of a real-valued
positive criterion which normalises the pertinent indicator to given bounds. Hence control law
evaluation reguires a computation chain with various types of analysis cases to be executed on
different linear/nonlinear evaluation models with different model excitations by either
deterministic or stochastic signals.

3 Comparative Assessment of Design Alternatives

3.1 Sharp and soft quality functions

Quality Function Deployment (QFD) of all design requirements is the prime paradigm in
Concurrent Design Engineering [16] to achieve a well balanced product by a design process
which needs no major re-design loops. It is the means to assess design satisfaction, to
compare design alternatives, and to detect and negotiate design conflicts. A quality function is
a tuple of an evaluation criterion c(i) defined as a real-valued mathematical function of

system performance indicators i, together with a pertinent demand d to evaluate
performance satisfaction.

Without loss of generality, we can always formulate a quality function criterion as a real-
valued function which assumes the smaller values the better the requirement is satisfied.
Table 1 shows various examples. Then, design satisfaction can be valuated either by the
demand that criteria values are lower than given upper bounds or that they are as low as



possible. Table 1 also gives examples for such demands denoted either by ‘<’ or ‘min’. This
allows quality functions to be written as

gj=cjldj, (1a)
g;<l: requirement j is satisfied (1b)
g;>1: requirement ; is not satisfied (1c)
g, = min; requirement j has to be as good as possible, where (1d)

q; <1 is a satisfactory solution.

Besides strict stability boundaries, design requirements usually do not quantify sharp bounds
which strictly separate ‘good’ from ‘bad’ in a gradual degradation of indicator values. Rather
intervals of indicator values are addressed to qualify as ‘satisfactory (good, level 1),
‘acceptable (level 2) or ‘not acceptable (bad, level 3)’. This can be taken care of
mathematically by a suitable transformation of indicators as follows.

Any arbitrarily defined scalar indicator value i can be transformed to a quality function ¢(7)
by means of at most four ‘good/bad’ value definitions: b, < g, < g, <b,:

q(i) = max(L(7), 0, H(i})
Liy=(-g)lby-g;), b<g (2)
H(i)=(—-gp by —81), 81<8n <y

This transformation is illustrated by Figure 2.

by
bad high

8a
good low good high

Figure 2: Transformation of indicator values to interval quality functions.

The transformation parameters &, g,, g,, b, are to be chosen compliant with the following
linguistic interpretation:

An indicator value i is considered to be
‘satisfactory” or ‘good’ for values between g; and g, ,i.e. g<<1
‘acceptable’ for values between b; and g, and between g, and b, , g <1
‘not acceptable’ or ‘bad’ for values smaller than b; or greater than by, g > 1.

With this transformation, a general upper bound 4 =1 defines a scparation between
‘acceptable’ and ‘not acceptable’. An additional feature of such a transformation is that all
satisfactory indicator values are mapped to zero, i.e. to lowest possible criterion value. This is
of advantage later, where multi objectives are handled by min-max optimisation.
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Positive semi-definite interval criteria of this kind constitute ‘soft’ quality functions as
distinguished to the ‘sharp’ quality functions with positive definite criteria listed in Table 1.

Compound quality functions can be formulated by using the maximum function

gy, eeai;) = max{gq, (1), g (i, ) @ (i), ., (1)} 3
If the individual members of the maximum function (3) are soft quality functions as defined
by (2), such a compound quality function can be formulated in terms of fuzzy logic as follows

[22]:

{g has property s) if
(# has property 1) AND (i, has property 2) AND ... AND (i; has property n), 4)

where “i; has property ...".means that the indicator value i; is ‘good’ or ‘acceptable’ with

respect to its membership function.

As an example consider the stability indicator ‘eigenvalue damping’ C defined as

£, =—Rek /Re’ 4 +Im’ 4, , )

where values greater 0.7 (no matter how big) are considered as good, and values less than 0.3
are considered as bad. To transform  to a compliant criterion, the following ‘good/bad’
values are appropriate:

b,=03,g =07, g, =arbitrary, b, =,

i.e. damping values greater than b; =0.3 are ‘satisfactory’ and greater than g, =0,7 are
‘good’. Setting b, = o makes H =0, cf. (2), and the transformation looks as in Figure 3.

b=03 g=07 5
Figure 3: Example: Transformation of a damping value a to positive semi-definite
‘good-bad’ criterion.

Relation (4) can be used to take care of all eigenvalues simultaneously:
(c(§) is satisfactory) if (¢ is satisfactory) AND ... AND (¢, is satisfactory) which is
equivalent to max{ ¢y, --,c, } < 1.

The maximum function, as used in the transformation (2) or in Table 1, is often the natural
form to describe indicators and quality functions mathematically. However, the maximum



function is a non-smooth function whereas for numerical reasons often smoothness is
required. For this purpose the maximum function can be numerically approximated [27] by a
smooth function:

max{i; } = lim l/pln[Zcxp(p-ik)} (6a)
k p—r %
= max{i;}+ lim llpln[ZeXP(p(i,,f —mfx{ik})} (6b)
k p—oo %

Formula (6b) is used for numerical evaluation because there the exponent is always less or
equal zero and hence unfavourably large values are avoided in evaluating the exponential
functions. Summation is also numerically stable since all addends are positive and less than
one. For a good approximation a suitable value for p is about 20.

If the maximum max{i(z)} of a continuous function i(s) has to be taken, this function may be
discretised as i(t,) and mflx{i(tk)}can be smoothly approximated by formula (6b). An

example is the C*-criterion where both the function C*(r) and the level 1 upper and lower
bounds C*, (f), C*; (t) are continuous functions of time. The function

X
Cl)y*=n (1) +4(t) gp +q(t) Ugm (N

is a linear combination of load factor n,, pitch rate g and pitch acceleration ¢; Xp is the
distance between pilot seat and centre of gravity and U, is an average velocity. Indicators for
the C* criterion can be formulated by two maximum functions with discretised time #;

ic*, =m£x{C*(tk)—C*u (tk)}+l; iC*I =mkax{C*[ (tk)—C*(tk)} +1. (8)

These indicators adopt a value greater than one for C* outside the bounds, equal to one if a C*
value reaches the bounds or they are both less than one if the C*-response is completely
inside the level 1 bounds. The C* criterion then can be formulated as

(C* islevel 1} if (icx, <1)YAND (ics; <1), cf. relation (4).

3.2 Conflicting requirements

Quality functions with positive ‘the smaller the better’ criteria and quality limiting upper

bounds yield a most visible comparative satisfaction assessment of design alternatives. Define
for all quality functions

a=max{q;}, j=1...J. 9
J



Then requirements’ satisfaction of a design alternative (II) is said to be berter than of a design

alternative (I) if a®) <o <1 for all quality functions. In particular, a best possible design
alternative is characterised by

a*=min{a} . (10)

The method of Kreisselmeier and Steinhauser [27] to achieve a best possible design
alternative by vector optimisation is based on finding a *.

Two requirements are ultimately in conflict if for the corresponding quality functions g;,qy .
q; =qr =¥, a*>1, (11)

which means that with the given upper bounds these requirements cannot be satisfied, and
hence there is no satisfactory solution possible.

If there exists a satisfactory solution a*<1, then g ,q, with the property
q; =4y =%, a*<1, (12)

belong to the set of ‘non-inferior’ alternatives within the set of all satisfactory solutions.

This is illustrated for two criteria in Figure 4 which shows the set of admissible criteria values
in 2-dimensional criteria space. Any point ¢ of this set can be achieved. Accordingly the
given criteria upper bounds d are also represented by a point in the criteria space. As defined
above a design is considered to be satisfactory if g; <1, ie c; <d;. Hence all design

alternatives in the dark subset are satisfactory. The highlighted border of the admissible
criteria space represents the set of non-inferior or pareto-optimal solutions [38]. A member of
this set characterises a compromise in the sense that an improvement in one criterion does
cause degradation in the other criterion. The design objective is to generate pareto-optimal

design alternatives and to negotiate best-possible compromise solutions based on user
priorities.

A
c g
: m - \
i set of all admissible solutions
i
e set of satisfactory solutions
i?g - mmw horder of compromise solutions
dz_ ggirﬂz« é ' d* demand value
- . . -
%g?%é - 1 €*  asatisfactory compromise point
c* .
{ »
0 d, c,

Figure 4: Quality function satisfaction in 2-dimensional criteria space



3.3 Visualisation of quality functions

Figure 4 visualises the set of two quality functions {cy/d;} and {cy/dp} in a 2-
dimensional cartesian display. Since comparative design assessment requires to consider
many quality functions simultaneously we need a high dimensional display which allows to
show different design alternatives concurretly. The means for that is a display in ‘parallel co-
ordinates’ [19], Figure 5. Each quality function is represented on one of the parallel co-
ordinate axes and a polygonal line connects all quality functions for one design alternative. In
Figure 5 each polynomial line represents one of the 5 different alternatives of the ATD control
law re-tuning case study. Satisfaction assessment is most visible: all polygonal lines below a
border line of value 1 indicate requirements satisfaction and values above this line indicate
design deficiencies. This also allows to detect satisfaction conflicts among requirements: For
conflicting criteria the polygonal lines are crossing. In Figure 5 a major satisfaction conflict
can be immediately detected between ‘clevator rate’ and satisfaction of the C*-criterion. (The
Phase-Rate criterion here is normalised to level 2 satisfaction.)

NEAL SMITH

IDEKP
DAMPING
GRMMACMD
CSTAR

PHASE RATE
QLOP

e ELEVRATE

Figure 5: Parallel co-ordinates display of five ATD control law re-tuning alternatives

assessed by seven quality functions each. (The first co-ordinate orders the design
alternatives 1...5.)

Figure 6 shows the pertaining indicators of quality functions of Figure 5.
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Figure 6: Indicators corresponding to the quality functions displayed in Parallel
Co-ordinates of Figure 5.

4 Synthesis Tuning

4.1 Various ways of control law parameterisation

Control law synthesis consists of two activities; the development of a proper control law
structure taking into account the available feedback- and actuation variables as well as
implementation issues, and tuning of the control parameters to satisfy the control
requirements as deployed by quality functions. The first activity belongs to the specific
domain of control theory. The second activity belongs to the general domain of design
engineering.

To cope with the given requirements the control law structure has to be chosen sufficiently
rich in independent tuning parameters. This may necessitate design iterations to change the
dynamics structure of an already ‘best possibly’ tuned control structure candidate. To develop
a control law structure we may distinguish three basic approaches of control theory: the
‘classical’ PID error approach, the ‘modern’ model-based analytic approach, and the rule-
based *fuzzy control’ approach.

The classical approach deals with proportional-, integral-, and derivative action on the control
error and shaping of dynamic compensation filters to cope with feedback stability. The tuning
parameters are the PID gains and filter parameters. An example is the structure and
parameterisation of the TECS control law in [6]. Another example of direct control
parameterisation is the ‘Nz-law’ of the ATD re-tuning study referred to in this paper.
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The model-based analytic approach of modern control theory provides a broad spectrum of
different synthesis methods [30]. They can be mainly classified as eigenstructure methods, as
linear quadratic Gaussian (LQG) optimal control methods and as H-inf optimal loop shaping
methods. Solvability requirements of the underlying mathematical synthesis problem induce a
specific type of control law structure e.g. full state- or observer dynamics feedback. The
synthesis formalism parameterises this control structure as a function of free synthesis-tuning
parameters such as elements of the desired eigenstructure, parameters of positive definite
weighting matrices in a quadratic form, or the parameters of weighting filters for loop
shaping. Hence in this approach the control law is parameterised not explicitly but implicitly
as a function of the synthesis tuning parameters. An example of aircraft lateral control law
design in this view is dealt with in [24] using the Target Feedback Loop/Loop Transfer
Recovery (TFL/LTR) synthesis method. Analytic methods of order reduction can be included
in synthesis tuning to cope for bandwidth restrictions in digital control implementation [23].

The fuzzy control approach yields a nonlinear-gain feedback control structure specified
linguistically by if-then rules on fuzzyfied error actuation variables. Tuning parameters are the
scaling coefficients of membership functions and the weights among the rules. An application
of this kind of tuning is described in [18] for the synthesis of a robust back-up stabilisation
control law for aerodynamically unstable longitudinal {light.

Hence if the control law parameters are denoted by K and the tuning parameters are denoted
by Tthen we may distinguish between direct control law parameterisation and indirect
parameterisation via a synthesis algorithm K = f(7):

classical control K=T
analytical model-based control K = f(T, synthesis model)
fuzzy control K = f(T, fuzzy control rules)

Direct control law parameterisation is visible with respect to the control law structure. Indirect
control law parameterisation via a synthesis algorithm is aimed to be visible with respect to
some type of system property, e.g. stability and mode observability by eigenstructure
assignment. In particular, indirect control law parameterisation via analytical model-based
synthesis algorithms shows its value in multivariable control problems where proper
dynamics integration with multiple sensors and multiple actuators must be achieved by
strongly interacting control laws. Analytical restraints on the synthesis tuning parameters
guarantee particular system properties to be satisfied intrinsically, such as system stability
with respect to the synthesis model.

4.2 Tuning by parameter optimisation

Usually there are multiple parameters to be tuned simultaneously. Also, both synthesis
parameters and additional control law parameters may have to be tuned concurrently if an
analytical control law structure is augmented for specific systems engineering demands such
as the need of additional notch filters. In view of the multitude of quality functions to be
satistied, manual sequential tuning of one parameter after another, most likely, is not very
efficient neither in engineering time nor in the result which can be achieved. Hence an
algorithmic tuning procedure is looked for, which can be used for gutomated tuning of
multiple, different-type parameters to solve the quality function inequalities satisfaction
problem. The way to proceed is to use nonlinear constrained parameter optimisation.

12



Note that the quality functions depend on the tuning parameters T, ¢(T)= c(T)/d, viathe
assessment computation chain according to Figure 7.

symthesis | o = = = = = = =

plant  [B:
model models §
l Bttty A

T o '
> controller controller > closed loop &
svnthesis model models

simulation
analvsis

criteria
computation

1 indicators T tuner parameters
c criteria K controller parameters
D demand values Q guality functions

Figure 7: Computation chain of control law assessment by quality functions,
including parameter synthesis K = f(T, synthesis model).

Requirements’ satisfaction demands to find a set of tuning parameter values T/ such that the
set of quality function inequalities is satisfied, cf. (1b):

q;T7)<1,forall j=1..1,,
while minimising the quality functions which should be as small as possible, cf. (1d):

g, (TY)=min, forall k=1,..,1, .

This feasibility problem can be solved by a constrained minimisation problem with an
auxiliary variable a > 0:

min {a ()} (13)
st. g (M <a
g, (T)<1.

Any parameter value set 7/ satisfying g ;51 is a so-called ‘feasible’ solution set which

satisfies the design requirements. Moreover, if T =T * minimises (13) then T * is a pareto-
optimal solution [38] and vice versa.

The inequality-constrained parameter optimisation problem (13) can be solved by standard

nonlinear programming methods. A well established class of algorithms to solve such
problems is Sequential Quadratic Programming (SQP) [1], [9], [25]1, [39], [41], where the

13



original optimisation problem is approximated by a sequence of quadratic programming
problems. Such algorithms usually are designed in such a way that in the first steps they try to
get a feasible solution and in the following steps they search for a minimum within the
feasible solution set [41]. Hence if one is interested just in a feasible solution, one does not
need to wait al} the computations for convergence to a minimum.

The constrained minimisation problem (13) is equivalent [34] to a min-max vector
optimisation problem

min max lq, (N} (14)
st g (T)<1.

This min-max approach together with the smooth max-approximation (6), is used in [27].

The constrained minimisation problem formulation (13) has some advantage over the min-
max formulation (14) in that smoothness of quality function criteria is preserved. In addition,
constrained minimisation algorithms allow box constraints on T to be appended.

In [22] it has been shown by example of an aircraft landing control law synthesis, that the
min-max formulation (14) is the natural formulation if ‘soft’ fuzzy-type criteria (4) are used to
describe design requirements. The resulting min-max optimisation problem (14} can be solved
numerically as the equivalent constrained scalar optimisation problem (13) .

Parameter optimisation (13) or (14) serves to compute feasible or pareto-optimal tuning
parameters 7 = f(Q). It thereby closes the computation chain of Figure 7 yielding an
automated tuning loop. Parameter optimisation of the type (13) is used in both the ANDECS-
MOPS [13] and the CONDUIT [36] control design suites. The main computation effort is
required for executing the synthesis algorithm and the various simulation and analysis cases
which are needed to evaluate the quality functions for design assessment. Hence ‘cheap’
synthesis algorithms such as eigenstructure or Riccati equation algorithms should be favoured

for control law parameterisation. Compared to the synthesis and analysis computation cost the
optimiser's ‘overhead’ is only a few percent.

To handle many different quality functions in a flexible way, a Graphical User Interface
(GUI) for steering the optimisation set up is helpful.
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Figure 8: Graphical user interface to set demand values for standard criteria
in flight control.

A flight control user interface of DLR’s ANDECS-MOPS environment, which is used for the
case studies described in this paper is shown in Figure 8. This GUI serves for input of criteria
related data, like bad/good values, demand values, or the setting of a criterion as constraint.
The criteria on display are standard design objectives in flight control, including handling
qualities and PIO-criteria. In the lower left corner, the current design step (1-1-2) is indicated
referring to the hierarchical design data structure depicted in [20].

4.3 Multiobjective Compromising

While in the previous section parameter optimisation is used for satisfying quality functions
with respect to prespecified demands, in this section ‘compromising’ in criteria space is dealt
with, This means the demands d for conflicting criteria ¢ are now used as free decision
variables. They serve to get some pareto-optimal criteria values improved at the expense of
others. How much expense one is willing to pay can be specified by how much the demand
and according inequality constraint is relaxed. Doing this interactively is called ‘negotiating’.
Having the means for quantitative negotiating on a pareto-optimal compromise solution set
allows an objective design negotiation between designer and systems engineering manager, of
what is possible at all with a chosen control law structure or synthesis method, or whether a
change in control law structure becomes necessary to satisfy the given requirements,

Figure 1 shows the indicators resulting of design assessment of a given control law with

parameters T°. The C*-criterion is not satisfied and the PIO-criterion ‘Phase Rate’ is
satisfied only within level 2, whereas the indicators for ‘Neal-Smith’ and ‘OLOP’ are of level
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1. Some analysis showed that predominantly the C*-criterion is in conflict with the elevator
control rate. Hence the question is to be investigated of how efficiently the C* criterion can b_e
improved at the expense of control rate, while keeping all other quality functions to the}r
achieved level of satisfaction. A systematic procedure is as follows: First a pareto optimum 18
computed starting with the given control gains T°. Le. C* and elevator-control rate are
minimised by (13) until both quality functions become equal, cf. (11), constraining the other
criteria to their level of satisfaction attained so far. Figure 9 shows criteria values marked by
'0’ for the start value T° and marked by '’ for the achieved pareto-optimal solution. Both C*
and control rate have been reduced in value and hence both are improved.

Sensitivity amalysis C* / elevator rate

5.6
O start value

Fald

3 . . . . .
0.5 1.1 1.3 1.5 1.7 E-1

Eta rate [rad/s] —

Figure 9: Set of pareto-optimal compromise solutions in the C*/elevator-rate criteria plane.

A further compromise point ‘2’ in the pareto-optimal solution set is now sought as follows:

- C*is set to be minimised.
- The demand value for the control rate is relaxed to the value which had been required for
the original control gains T*° and this value is now used as upper bound constraint.

After only a few seconds of computation time, the optimiser increases control rate up to its
upper bound and minimises C* as much as possible.

Sequentially relaxing the upper bound for control rate and repeating this procedure 3 times
results in the compromise set of Figure 9, which depicts the border shape of Figure 4.
Actually, the five tuning alternatives correspond to the ones represented in parallel co-
ordinates in Figure 5, the according indicators and analysis function are those from Figure 6.
The shape of the pareto-optimal compromise set visualised how worthwhile it is to increase
admissible control rate as a trade off to C* . For example, an increase of elevator rate by 0.02
[rad/s] from its given level at tuning case 2 will cause an improvement of C * performance of
about 30% to achieve level 2 at point 3", whereas further increasing control rate yields no
comparable improvement of C*.
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4.4 Design iteration in control law structure

By example of the study it is now investigated whether and how a dynamically augmented
control law can improve handling performance while keeping control rate at the level attained
by a previous manual tuning. In the course of the tuning process the controller structure is
augmented by a lead-lag filter to get more tuning parameters. We start with a given control
law feedback structure

u’ = (K, + KK,/ 5) No+ (K, +k(H))q (15)

with free tuner parameters K, K,, K, and with k(H) as fixed but height dependent pitch rate
feedback gain. We augment this feedback law by a lead-lag filter with time constants T, T,

w' =u® (s +T)NTs+1) (16)

The following tuning steps have been performed, cf. the columns of Table 2: Note that all
criteria are normalised in such a way that ¢ <1 is ‘level 1’ and ¢ <2 is ‘level 2°.

1. Analysis of given design, which yields the start values for re-tuning.

2. The 3 parameter control law structure (15) are optimised to improve C*, and possibly
‘Phase Rate’ while all other quality functions are kept within their attained level of
satisfaction. The result is that keeping control rate at the same level allows only
improvement in C* while ‘Phase Rate’ is in conflict and degrades. The chosen setting of
demand values and the resulting criteria values are listed in Table 2.

3. Since no major improvement is possible with control rate restricted to its given level, now
the controller structure is augmented by a lead-lag filter, providing more design freedom
by two additional gains. By the augmented structure now level 2 can be achieved for both
C* and ‘Phase Rate’.

4. Negotiating C* and ‘Phase Rate’ by allowing C* to attain the upper bound of level 2
allows ‘Phase Rate’ to attain level 1, while all other criteria are kept satisfied, in

particular, and control rate is not increased with respect to design step 1 we have started
with,

1. Analyse 2. Optimise 3. Augment 4. Negotiate
to get to improve by lead lag C* level 2 versus
start values T° C#*, phase rate dynamics to phase rate level 1
improve
C*, phase rate
3 gains 5 gains 5 gains
Damping satisfied d=1, constraint d=1, constraint d=1, constraint
c<l, satisfied c<], satisfied c<1, satisfied
G ) d=1, constraint d=1, constraint d=1, constraint
amma command | satisfied - — -
c<1, satisfied c<1, satisfied c<1, satisfied
Elevator rate =039 d=c, cm?straint d=c, cor.nstraint d=c, constraint
c=d, satlsijsd c=d, satisfied c=d, satisfied

‘ c=0.80 d=1, constraint d=1, constraint ¢ =1, constraint
Neal Smith Level 1 satisfied c=1 o c=0.72 o c=0.66
level 1 satisfied level 1 satisfied level 1 satisfied
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. d=1, constraint d=1, constraint d=1, constraint
satisfied satisfied satisfied satisfied
K, =433 K, =545
K =13 K, =513 K, =121 K,=101
Tuners K,=25 K,=127 K,=0 K,=017
K,=0 K,=0 1, =093 7, =078
7,=0.16 7, =008
Computational effort 9 iterations, 30 sec | 10 iteration, 43 sec | 4 iterations, 15 sec

Table 2: ATD re-tuning with equal controller effort but alternative controller
structures.

The resulting control gain tuning history is also shown in Table 2. Manually tuning of the
three or five control law parameters would have been quite a cumbersome and time
consuming trial-and-error task since the appropriate parameter changes behave nonlinearly.

Computation times are measured on a Pentium 266 MHz PC and include dynamic online
visualisation like Figure 5 and Figure 6 after each optimisation step to monitor the search
iterations. The overall computational effort of these tuning experiments is small. Hence
interactive compromise negotiation is possible.

5 Robust Control Laws by Multi-Model Tuning

Multi-quality functions’ control law tuning by parameter optimisation is not restrained to a
specified type of system model and disturbance description. A linear or nonlinear synthesis
model for control law parameterisation can be used together with a set of linear/nonlinear
assessment cases, i.e. evaluation models and disturbances. Different assessment cases can be
dealt with concurrently and this can be used for ‘multi-model robust’ control law tuning.
Especially, multi operating conditions and parameter tolerances can be coped with in this
way. A main issue here is negotiating among different models' control performance.

5.1 Robustness to multi operating conditions

Systematic ‘multi-model robust’ flight control design, for the first time, was applied by
Kreisselmeier and Steinhauser, with published results in [26]. By taking into account a
number of extreme flight conditions simultaneously, as e.g. in Figure 10, a robust command-
and stability augmentation control law without gain scheduling for an F4-c aircraft had been
designed. Later in [12] a feasibility study of robust back-up stabilisation for the JAS 39
aircraft has been reported on. There, ten extreme flight conditions were taken care of
concurrently, characterising the entire flight envelope from high aerodynamic instability in
the landing phase up to well-behaved stable supersonic flight. A stability-robust CAP level 1
command- and stability augmentation has been achieved over the entire flight envelope by a
fixed-gain, properly tuned, third order dynamics feedback filter from pitch rate to elevator.
This was an astonishing result for flight control experts at that time, discovered only by
systematic, quantitative compromising using the instrumental approach of multi-
objective/multi-model vector optimisation [27].
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Usually it turns out that besides a medium nominal’ flight condition only these flight
conditions in the concerned flight envelope have to be taken as ’active’ in the multi model
negotiating process which show ‘worst’ dynamic behaviour. In case of Figure 9 these might be
conditions Nc * * ~=7 9,

Flight Envelope C/Elevator step (-2.00000E-92)

>
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—
]
1
A

ey

Tkm)

h
[=~3
l
o
¢ [rad]

.0 4.8 E-1 0.0

Hach —» t (8] >

Figure 10: Extreme flight conditions over the flight envelope used in
multi-model robust control tuning.

In general there exists no theory that guarantees stability or performance robustness across the
range of operation, if only a finite number of operating points is considered simultaneously. It
depends on the physical properties of the system to be designed, whether deficiencies can
exist. If they exist, they have to be added to the set of worst-case operating points treated
simultaneously by the multi-model approach. Of course, robustness of the controller ‘around’
an operating point can be enforced by appending suited robustness criterta (e.g. gain/phase
margins) to the set of otherwise specified performance criteria. This has been demonstrated in
a case study of the Eurofighter aircraft.

5.2 Robustness to parameter tolerances

Robustness to system parameter tolerances, so called structured parameter uncertainties is
achieved by applying a common controller to a set of worst-case parameters system models
out of the parameter tolerance band pe P.

The worst-case parameter model approach can be formalised as follows. Assume the design
problem is completely determined by means of criteria ¢; together with demands d; , the tuners
T and parameters p known to lie within the parameter range P. Then the robust design
problem is equivalent to an infinite min-max problem:

min max{c,(T, p)/d,}
T i,peP

The multi-model approach now consists in a finite discretisation of this infinite problem to get
an ordinary multi-objective optimisation problem:

mmmax{c,(T,p;)/d;}, p;eP.
T ij 4

To find appropriate multi-model parameter sets p j» one can proceed as follows [2]:

1. Examine the system properties for T =T° (e.g. the open-loop behaviour) with respect to
parameter variations. This can be done by maximising quality functions over pe P.

2. Select nominal parameters and some parameter combinations for extreme "worst-case"
system behaviour, e.g., the slowest and fastest dynamic response.
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3. Perform a multi-model/multi-criteria tuning with the selected parameter combinations.
4, Perform a parametric assessment of the controlled system with optimised tuners to detect
possible deficiencies within the parameter set p€ P. If severe deficiencies are detected,

add a model with this particular parameter set to the multi-model set and re-tune the
augmented synthesis problem.

This method has been successfully applied [21] in the GARTEUR RCAM-Robust Flight
Control Design Challenge with large parameter tolerances in mass, center of gravity, and
control implementation time delay. The resulting flight control law turned out to be the most
robust one [15] of all design entries [30] if robustness is judged by the structured singular
value 4.

5.3 Robust gain scheduling

Gain scheduling is common practice in flight control. The multi-model approach can help to
reduce the number of controllers to be designed for gain scheduling. One way is to combine
the multi-model approach of section 5.1 and 5.2:

If control scheduling is to be made with respect to, e.g., air speed, tune a set of controllers for
different speed, while all other operating conditions like height, mass, center of gravity, and
parameter tolerances in aerodynamic derivatives are robustly covered by the multi-model
approach as described above.

Another scheduling approach is similar to [31], where the controller K is set up as a function
of a scheduling parameter ¢ like

K=K,+6K,+6%K,.

The nominal controller is given for 6 =0. Again the multi-model approach is applied to tune
this controller for multiple values of & covering the range of variation.

6 Conclusions and Qutlook

This paper describes quality function deployment and its use in multi-objective control
synthesis tuning, with application to flight control design. The main feature of this
methodology is that the various kinds of design objectives can be taken into account in their
most natural form and design alternatives can be assessed most visibly with respect to given
requirements. Multi-objective synthesis tuning by min-max parameter optimisation allows

interactive compromising in the set of what can be best-possibly achieved with a chosen
control law structure.

The same kind of quality functions can be used for parametric robustness assessment to find
deficiencies in stability and performance. By applying quality functions in a worst-case sense

the same optimisation tools as for synthesis tuning can be used for detecting hidden design
deficiencies.

The aim of the multi-objective tuning approach is to achieve solutions that satisfy all
requirements concurrently. The achieved solutions are compromises between competing
requirements. Design-tuning ends when the optimiser finds a satisfactory solution with agreed
upon trade-offs. Local parameter optimisation techniques only find local pareto-optima. To
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find a global optimum optimisation of non-convex functions has to be applied. Guided
random search like response surface techniques or evolutionary genetic algorithms have to be
investigated to their usability for flight control synthesis tuning.

The fact that low-complexity controller structures can be chosen as basis for synthesis tuning
is especially important in flight control, to avoid nowadays ‘add-on’ control systems
complexity. The example of the ATD case study shows how optimal tuning can disclose a
simple control law structure (with 3 tuning parameters) to be insufficient whereas a
dynamically augmented structure (with 5 tuning parameters) can be tuned to satisfy all
requirements. Hence multi-objective, multi-parameter optimisation may provide the
quantitative clues for a design iteration in control law structure, as well.

Multi-objective synthesis tuning, for good reasons, is kept an iterative design technique, since
in practice no single, ideal ‘optimal’ solution exists. Rather there is an infinite set of pareto-
optimal compromise solutions. Systematic techniques to support the designer in finding these
solutions and to support him in deciding to prefer between different design outcomes are
described. Simultaneous visualisation of linked information in different displays which should
be accessible via different assignment principles are very much assistant for the design
process itself.
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