
Contrail observations using NOAA-AVHRR infrared dataHermann Mannstein and Richard MeyerInstitut f�ur Physik der Atmosph�areDLR Oberpfa�enhofenAbstractThe infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) onboardof the weather satellites of the NOAA series are used for the detection of contrails. A fullyautomated detection scheme is described which seems to identify contrails within the satellitedata with a skill comparable to that of the human observers.The algorithm is used to derive a climatology of contrail coverage for Central Europe. Firstresults are available for the years 1995/96 and show a well marked daily and yearly cycle as wellas strong regional di�erences of the contrail coverage. The average daytime contrail coverage ofCentral Europe was found to be 0.5%.1 IntroductionHigh and optically thin cirrus clouds and also aged contrails may increase the net radiation at thesurface. They reduce terrestrial upward radiation ux at the top of the atmosphere while albedois only slightly enhanced. Thus an increase of high thin ice clouds may lead to warmer surfacetemperatures while all other cloud types lead to surface cooling [13, 2, 9].The global mean areal coverage by contrails is not known. Bakan et al. [1] derived from visualinspection of AVHRR data a contrail coverage of the Eastern North Atlantic region and North-western Europe. They found averages around 1 % which must be related to an average coverageof natural thin cirrus clouds which reaches almost 20 % in northern midlatitudes [15].Passive remote sensing methods can be used to recognize ice clouds, mainly by their low brightnesstemperatures in the thermal infrared. Ice clouds show higher transmissivity in the AVHRR-channel4 (10.3 to 11.3 �m) than in channel 5 (11.5 to 12.5 �m). Due to smaller crystal sizes this is enhancedin young contrails [4], but in-situ measured size spectra of old widespread contrails were found toapproach those of cirrus clouds [14]. Therefore contrails cannot be clearly distinguished fromnatural cirrus using the limited spectral information of present meteorological satellites in spacewithout further information.Contrails can be distinguished in satellite images by their shape: this is what enables the humaneye to detect them. Natural linear features are rare.Unfortunately the manual-interpretations are very subjective and time-consuming. They cannot beused to deliver a longtime climatology to analyze trends in contrail cloudiness nor be used over largeareas. Therefore some attempts have been made to solve the problem by various image processingalgorithms. Most algorithms use an idea of Lee [8] who showed that contrails appear very brightin images of brightness temperature di�erence (channel 4 - channel 5).1
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Figure 1: Data ow for the contrail detection scheme.Here we describe a new algorithm that is as far as we know the �rst that is able to work operationallywithout manual interference. We present some results of the operational contrail detection. Finally,we will discuss the di�erences in recognizing contrails by man and machine and the limits of contraildetection e�ciency.2 Contrail Detection AlgorithmThe scheme presented here is the latest stage of an algorithm development aiming to detect contrailsin AVHRR data automatically. Earlier work has been described by [3] and [10]Di�erent tests are combined to avoid misdetections. Independence from the properties of a singlescene is achieved by normalizing the data on a regional scale.The logical structure of the data ow is drawn in �gure 1. Figure 2 shows an extreme case ofcontrail occurence over Denmark, southern Sweden, northern Germany and the western part ofPoland. This small part of an AVHRR scene is used in the following to illustrate the major stepsof the contrail detection algorithm. The chosen scene contains many coastlines which make thispattern recognition task much harder than over open sea.2.1 Description of AlgorithmContrails mostly are best visible for human observers in a display of the temperature di�erencebetween channels 4 and 5 (TD, �gure 3).. But also cloud edges and surface features appear



as bright lines. This does not happen in the temperature images (�gure 2). Because of bettercontrasts we take the equivalent blackbody temperature derived from channel 5 (T5) additionallyto the temperature di�erence (TD) as input data for the detection algorithm. To avoid interferencewith artifacts produced by remapping we use the data in the original satellite projection.To be able to use constant thresholds for all data, a local standard deviation de�ned over arotational symmetric gauss �ltered region given by: SDT5 = q(T5i � T5)2 (�gure 4) andSDTD = q(TD � TD)2is used to normalize the data: N5 = (T5i� T5)(SDT5 + 0:1K) ; (1)ND = (TD � TD)(SDTD + 0:1K) : (2)Furtheron, we use the sum of the normalized images N = N5 + ND to avoid the interpretationof boundary layer cloud streets as contrails. These opaque clouds are usually colder then thesurrounding, while the interstitial often semi-transparent regions then show high values of TD.Adding the normalized images cancels these e�ects.N is then convolved with a line �lter of 19 x 19 pixels in 16 di�erent directions (similar to [6]).Some �lter-kernels are displayed in �gure 11. The result of the line �ltering for an angle of 45�isshown in �gure 8.Because of the normalization of the input data, a single threshold is su�cient to isolate connectedregions. These are now treated as separate objects which might be contrails. Each of these objectsis now checked against the mask derived as follows:In a 15 x 15 pixel vicinity we calculate the large scale maximum gradient for T5 (G5, �gure 6).From G5, N5, ND and TD we derive a mask (check) shown in �gure 7 which marks all pixelsful�lling each of the following requirements:N > 1:5; (3)G5 < 2 � SDT5 + 1K; (4)TD > 0:2K: (5)The threshold of 1.5 in condition (3) depends on the type of normalization. It selects pixels whichare brighter then the surrounding. Cloud edges and sometimes also shorelines show a high TDsignal. Condition (4) applies an upper limit to the large scale gradient of the temperature imagedepending on the regional standard deviation to eliminate such lines before further processing.To be regarded as a contrail, the objects have to ful�ll the following criteria:number of pixels > 10; (6)length > 15 pixels; (7)correlation of the pixel coordinates to a straight line > 0:975: (8)Figure 7 displays the mask after applying conditions (6), (7) and (8) to the 45��lter direction.



Figure 2: NOAA-12, Temper-ature Channel 5 (T5), May4th, 1995, 07:43 UT. Figure 3: NOAA-12, Temper-ature di�erence (TD), May4th, 1995, 07:43 UT. Figure 4: Regional standarddeviation (SDT5) of T5.

Figure 5: Normalized temper-ature N5 (channel 5). Figure 6: Large scale maxi-mum gradient of T5 (G5). Figure 7: First guess mask fordetection of contrails at fullresolution (no wide objects).

Figure 8: Sum of normalizedimages N convolved with linedetection kernel for 45�. Figure 9: Contrails derivedfrom direction 45�at full res-olution. Figure 10: Result of the con-trail detection scheme (con-trail clusters grey).



Figure 11: Example of the �rst four kernels for line �ltering.This �ltering and testing procedures are repeated for all 16 directions. The results for each direction(e.g. �gure 9) are added to the binary contrail array.This scheme mainly marks contrails of a width of 1 or 2 pixels. To detect wider contrails the wholealgorithm is then applied to an image reduced by factor 2 using neighborhood averaging. Theresults of this step are again added to the �nal binary contrail mask (�gure 10).The parameters in the requirements above were �xed by an evolutionary algorithm which maximizedthe correlation of the resulting mask with the visual analysis of some test cases.3 Results3.1 Actual AVHRR-detected Contrail CoverageThe contrail detection algorithm is applied to AVHRR-data preprocessed by the APOLLO scheme[5, 7] for a 1440 x 2048 pixel area covering Central Europe (�gure 12). The processing time forsuch a scene is less than 30 min on an Ultra Sparc 2 machine.In �gure 12 all derived noon (12:30 UT � 70 min) contrail masks for 1996 are superimposed. Itcan be seen that the observed contrails accumulate mainly close to and in direction of the majoright routes.Figure 12 indicates that the algorithm is robust to misdetections. Counts of more than 10 we getfor only 25 pixels in the whole image. To derive the regional AVHRR-derived contrail coverage ccwe take into account the local contrail coverages in a 100 x 100 pixel surrounding. We calculate ccby �ltering with a circular gauss-kernel of 50 pixels FWHM (full width half mean). This shouldrepresent the average proportion of the sky where contrails can be seen from a ground-basedobserver and weight it in a simple way according to their potential inuence on net radiation.Comparing the frequency of AVHRR-derived contrail coverage cc to the pattern of the standarddeviation of temperatures in channel 5 for a 5 x 5 pixel kernel 14 we recognize a strong relationship.Above sea we mostly detect higher contrail coverages than above land. A correlation coe�cient of-0.55 for both images shows that thermal heterogeneity caused by ground features and lower cloudsinuences contrail detection rate as expected from the normalization within the algorithm.Viewing contrail coverages cc above the Alps we recognize that obviously above a certain value of



Figure 12: Stacked contrail masks of 1996 indicate frequency and predominant bearing of air-tra�c(derived from 357 AVHRR noon-passages).

Figure 13: Annual AVHRR-derived heterogeneity-corrected contrail coverage ccc at noon for 1996.



Figure 14: 2D-histogram of the standard deviation of temperatures in channel 5 for a 5 x 5 sur-rounding against AVHRR-derived uncorrected regional contrail coverage cc.

Figure 15: Average AVHRR-derived corrected contrail coverage for the box 0�E to 20�E, 48�N to55�N. Asterisks are noon passages, diamonds nighttime passages. The solid line shows the 30d-oating average, the dotted line marks the annual average for daytime. (Plotted are all valueswhere data coverage was higher than 70 %. The absolute maximum of 5.6 % at January 14th isnot shown.)SDT5 we hardly can detect any contrails. To avoid this e�ect we cut o� all pixels where SDT5exceeds 0.85 K (�gure 14). Because we can assume that airtra�c and atmospheric conditions whichallow formation of persistent contrails are not correlated to SDT5, we may correct cc by SDT5.Applying a linear regression we raise all values of regional contrail coverage according toccc = 11�0:397=0:489�SDT5 � cc(SDT5 < 0:85K) (9)



to the heterogeneity-corrected AVHRR-derived regional contrail coverage ccc where SDT5 is Gauss-�ltered like cc. This widely removes inuence of SDT5 (SDT5 to ccc correlation coe�cient: -0.01)as can be seen in �gure 13 but strongly enhances average contrail cloudiness by extrapolation to a�ctitious value of SDT5 = 0 K where the algorithm would work best. This correction results in anaverage ccc of 0.5 % for the observed area which approximately doubles cc in average.The average for the corrected daytime contrail coverage ccc in the whole image (�gure 13) amountsto 0.5 % � 0.25 % in the year 1996. The spatial pattern of the algorithm-derived contrail coverageagrees with the contrail observations by Bakan et al. [1]. They also obtained the maxima in theNorth-Atlantic ight corridor with declining contrail cloudiness to the Eastern and Southern partsof Europe.Some heavily own routes can still be recognized in �gure 13. Maxima of contrail coverage of 1.0% and higher are found over Wales, The Channel and in the Balaton region.Figure 15 shows the daily variation of the average contrail coverage in the box 0�E to 20�E, 48�Nto 55�N. To derive values comparable to �gure 13 we applied the heterogeneity-correction by theannual average of SDT5 in this box. Thereafter the daily contrail coverage ccc varied from 0.0 %up to 5.7 % at a standard deviation of 0.6 %.For the absolute values of daily contrail coverage ccc we estimate an error in the order of a factor 2.As the 30d-oating average in �gure 15 suggests, there are noticeable annual variations with a ccc-minimum below 0.2 % during summer and a ccc-maximum close to 0.9 % during winter and spring.But temporal varying detection e�ciency might have inuenced this results. E.g. higher surfacetemperature contrasts in summer may have led to reduced ccc. In winter a higher fog-frequencyleading to a more homogeneous background may increase the number of AVHRR-detected contrailsin certain regions.For January and April 1996 we additionally processed night-passes of NOAA 14 (01:45 UTC pm 50min). To regard higher detection e�ciency during night we used the corresponding SDT5-imagesfor the heterogeneity correction. We found a mean nighttime contrail coverage ccc of 0.24 % , whileccc for the same period on daytime was 0.70 % (�gure 15) Thus contrail coverage at night is aboutone third of the daytime noon coverage. Bakan et al. [1] reported halving of contrail cloudinessduring night, which seems reasonable when not regarding di�erent detection e�ciency.3.2 Limitations of the SchemeIf air-tra�c is intensive in an area and at an altitude which is suitable for the formation of persistentcontrails, many contrails appear which spread and merge. This rare but relevant situation where aconsiderable proportion of the sky is completely covered by contrails cannot be recognized by ourpattern recognition scheme that is adapted to elongated structures. Therefore in regions with verydense tra�c the contrail coverage might be underestimated.We also do not recognize widespread fuzzy patches of old contrails which no longer show theirtypical shape. Minnis and Young [11] observed arti�cial cirrus clouds developing out of contrails,which lasted for 5 to 19 hours. The observations indicate that in some critical situations air-tra�ctriggers cirrus formation by adding condensation nuclei. More generally the regular addition ofcondensation nuclei by aircraft emissions favors cirrus formation and persistence [12]. Wang et al.[15] show that the occurance of high sub-visible clouds in northern midlatitudes is almost a factorof 2 higher than that in southern midlatitudes. The tendency for an increase in cirrus coverage will



require analysis using a cirrus cloud climatology.Also, single contrails smaller than half a pixel in width are very unlikely to be recognized especiallyif they are also optically thin. On the other hand such contrails will have a low impact on the netradiation and are also usually short lived.As noted in section 3.1, misdetection of other linear structures does not seem to be a problem, butdecreased detection sensitivity over extremely heterogeneous surfaces like the Alps are signi�cant.Knowledge about actual aircraft movements and atmospheric conditions will help to interpret thesesituations.The detection e�ciency of contrails over mid and highlevel clouds may also be less than over warmerlow clouds due to a lower temperature contrast with the background. However the higher thesenatural clouds are, and the less the temperature contrast, the less e�ect the presence of contrailshas on radiation budget and the climate. Therefore the bias in the results from this limitationin the contrail detection scheme will not be as signi�cant as an underestimate of occurance overuncovered land or sea.4 ConclusionsThe algorithm presented here is capable of the fast operational detection of persistent and roughlylinearly-shaped contrails from the AVHRR-channels 4 and 5. The pattern recognition approachmakes it easy to be adapted to other sensor types and to compare results. The scheme is relativelyrobust to misdetections of other linear structures in thermal images such as coastlines, moun-tain ridges and valleys or sensor line failures. The parameter settings derived are a conservativeadjustment resulting in a low false alarm rate but also a low detection e�ciency.Sensitivity of the algorithm depends on the thermal homogeneity of the background. Intense tem-perature contrasts as can be found in high mountains strongly a�ect detection e�ciency. Whenderiving the climatological parameter regional contrail coverage, it is advisable to omit those re-gions. To level di�erences in detection e�ciency we adapt the derived contrail coverage by theannual average of the temperature deviation in channel 5.The annual mean of the heterogeneity-corrected AVHRR-derived contrail coverage reached 0.5 %� 0.25 % in 1996. We recognize strong temporal and spatial variations in contrail coverage whichmatch those derived by Bakan et al. [1].The scheme is not able to detect atypical contrails such as very wide spread and fuzzy ones, whichare hard to distinguish from natural cirrus. The approach used also cannot recognize cases wherecontrails cover a large proportion of the sky destroying their individual line pattern.The temporal variability of contrail cloudiness is known to be strong. We have presented here theresults of analysis of one year's data. Work is going on to analyze a longer time-series for morerobust statements on seasonal averages and trends.Acknowledgments: This work was supported by the BMBF (German Federal Ministry for Ed-ucation, Science, Research and Technology) within the DLR-BMBF project \Schadsto�e in derLuftfahrt".
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