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Summary

The impact of a wavy surface on turbulent flow is investigated by direct numerical simula-
tion. By means of finite differences in terrain following coordinates, the method treats the
flow in a plane channel with wavy lower and flat top surfaces. Both surfaces are smooth.
The lower surface wave amplitude is 0.05 and the wavelength is 1 in units of the mean
channel height. The Reynolds number in terms of mean velocity and mean channel height
is 6760. Parameter studies are performed with different resolution, Reynolds number and
geometrical shape of the surface wave. If the vertical resolution is fine enough to resolve
the viscous surface layer, a recirculation zone develops as expected for this surface geom-
etry and Reynolds number. The comparison with existing experimental data shows good
agreement when the precise details of the surface wave geometry, which deviates slightly
from a sinusoidal profile, is taken into account. '

Introduction

Turbulent boundary-layer flows in complex geometries are typical for environmental and
technical low problems. Traditional research on turbulent boundary layers considers flat
plane channels and walls (Andrén et al. [2], Hartel and Kleiser [11], Schumann [24]) and
pipes (Eggels et al. [9]). In this sense considering a plane channel with one wavy wall
is a small step to more complex geometries. If one neglects friction and turbulence, i. e.
considers a potential flow with constant mean streamwise velocity, the pressure variation
at the surface is 180° out of phase with the wave and causes zero wave drag. Therefore
disturbances decay exponentially with distance from the wall (Lamb [18]). Benjamin
[3], using a curvilinear coordinate system, included friction and a mean boundary-layer
velocity profile. He showed that the shear layer causes a phase shift of the velocity
distribution that produces a drag. Thorsness et al. [26] found a quasi-laminar model
sufficient to describe the wall shear stress for wavenumbers 27v/(u,A) > 0.01, but for
smaller wavenumbers, the prediction of the phase shift is rather poor. Turbulence models
using the van Driest function produce results which agree better with experiments (Kuzan
et. al. [17]). For small amplitudes & and large wavelength A the flow responds linearly
to sinusoidal disturbances. For large enough amplitudes the positive pressure gradient
behind the wave is sufficient to cause separation. The flow over a train of waves differs
from other separated flows [6] because the separation which may occur behind each wave
crest affects the flow over the following waves.
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All these models can describe some properties of the flow but no details of the separation.
Recently, direct numerical simulations (DNS) of channel flow without separation above
mild waviness were performed [12, 14}, but in computational demains covering only oue
surface wave. Hino and Okumura [12] found stronger coherent eddy motion on the wavy
wall than on the flat wall. The shear-stress distribution showed quasi-stationary streaky
patterns corresponding to longitudinal vorticies. The waviness has little effect on the
total bottom drag. Simulations of flows over two- and three-dimensional rough hills have
been made by Wood and Mason [28] using a numerical model which employs a 13-order
turbulence closure model.

Zilker and Hanratty [30] gave an overview on experimental work, from which the bulk of
our understanding of such flows is mainly derived. The experiments concentrated on the
measurement of surface pressure, wall shear stress, and velocity components. Motzfeld
[21] pointed to the difference between roughness and waviness. Zilker et al. [29] showed
that the wall shear stress is a better measure for the linearity of the flow than the velocity.

Buckles et al. [5] found a thin turbulent boundary layer which forms behind the reattach-
ment point and extends to the next separation point. There, a free shear layer develops
away from the wall behind the nexj reattachment point, so that there are now two layers
above each other. Gong et al. [10] examined a flow above a wavy wall af two differ-
ent surface roughnesses. The measurements exhibited an approximately two-dimensional
flow with separation over the relatively rough surface. Over the smoother surface they
observed a three dimensional secondary flow. The findings can be well modeled by large-
eddy simulations (LES). The experiments of Kuzan et al. [17] with /A = 0.1 show a
decreasing separation with increasing Reynolds number.

Recently, Hudson [13] made measurements in a water channel for two different amplitudes
and several flow rates. For a case with separation in the mean flow field, he investigated
how the Reynolds stresses and turbulence production differ from what would be observed
over a flat wall.

Most theoretical studies were two-dimensional and limited to cases with weak nonlin-
ear effects. Experiments were carried out for a wide set of parameters but not directly
comparable and sufficient for turbulence modelling. There is little information about the
three-dimensional structures. Considering turbulent separated flow over a wavy wall [1]
as a test case for advanced statistical turbulence models, it has been shown recently that
these models are still not able to really predict the flow [22]. There is a need for well
defined experiments as well as for results from direct numerical simulations. The data
presented here could be helpful for improving statistical models as well as LES models,
e. g. Breuer and Rod: [4]. 7

In a previous article [20], results of DNS at Re = 4780 have been shown and compared to
experimental data. There we did not reach complete agreement with the laboratory mea-
surements. In the mean time it turned out that the Reynolds number in the experiment
“was 6760 instead of 4780 as reported initially. Also the shape of the surface wave differed
slightly from the purely sinusoidal shape assumed before. In this study we investigate
the three-dimensional nonlinear flow at Re = 6760 over a wave which approximates the
" measured surface shape by means of DNS and compare the results to revised experimental
data of Hudson [13].

228



Method

The method is explained in detail by Krettenauer and Schumann [16]. In this study the
model uses grid refinement near the walls, contains different boundary conditions, and
is applied to a flow with higher requirements on the accuracy of the method because of
thinner shear layers at the surface. For these reasons it still remains to validate the code
although the present numerical method has been used for DNS and LES of turbulent
convection over wavy boundaries without [16, 23] and with mean flow {7, 8, 19].

The basic equations describe the conservation of mass and momentum for incompressible
flows,
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where u; denotes the velocity components, z; the Cartesian coordinates, ¢ the time, p the
deviation from a reference pressure pg, Pr the driving pressure gradient in z-direction and
Re = UH/v the Reynolds number for unit density. All quantities are made dimensionless
with the channel height H, with the mean streamwise velocity U, with the time scale
t/twer = H/U and density p = const. The equations of motion are formulated for the
Cartesian velocity components (u,v,w) as a function of curvilinear coordinates (Z,7,%)
which are related to the Cartesian coordinates according to the transformation T = z,
7=y, 7=15(z,y,2). Here, '

z—nh
H—-h

n=H 3)

maps the domain above the wavy surface at height h(z,y) = 6cos(27rz/A) and below
a plane top surface at z = H onto a rectangular transformed domain. The geometrical
parameters are H, the lateral lengths L, and L,, the wave amplitude é, and the wavelength
), see Figure 1. To get higher resolution at the rigid top and bottom surfaces we use an
additional hyperbolical transformation function of a coordinate ¢ which is discretized
equidistantly,

H h . ' ‘
n=-2—(l+t%;%fl), “1<E<L (4)

The parameter ¢, is choosen so that two adjacent grid spacings A7 differ by less than
11 %. '
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Figure 1: Perspective view of the computational domain in three dimensions showing the sinu-
soidal surface-wave in z-direction; the surface height is constant in y-direction. In this example;
the wavelength is A = 1, the wave-amplitude is § = 0.1, and the domain-size is H = 1, L, = 4,
and L, = 2.

The differential equations are approximated by finite differences in a spatial staggered
grid. The first discrete grid point for the horizontal velocity components is located An/2
above the wall. The momentum equation is integrated in time using the Adams-Bashforth
scheme. The mean velocity U is defined as the average velocity in the z-direction across a
y-z plane at a position with vanishing wave amplitude. After each time step At, the actual
mean velocity is tested and a mean pressure gradient P; in the axial direction is determined
such that U/ remains constant. The pressure is determined iteratively. After five iterations
the divergence in the first grid level above the bottom surface is reduced to 1072U/H.
At other grid levels it is lower by the order of 3 magnitudes. Periodicity conditions are
used at the lateral boundaries. At the bottom and top surfaces we implement the no-slip

condition.

The initial conditions prescribe uniform velocity at every grid point. Random perturba-
tions are added to the velocity field which eventually becomes turbulent. This situation
is comparable to turning on the pump in a laboratory set-up. The details of this initiali-
sation are unimportant for the final statistics at late times of the simulation.

The simulations are performed on the DLR high performance computers Cray-YMP and
NEC SX-3. All cases are at least run until the final dimensionless time trf = H/U = 70,
which required 15 h CPU time on the NEC SX-3 using 256 - 128 - 96 grid points. The
obtained perfomance on the NEC SX-3 is 20% of the peak performance and at least 7
times higher as on the Cray-YMP. The internal data management, which is carried along
although it is not needed, devides the data in vertical z-z slices. This embarrasses optimal
vectorisation for the used number of grid points. For the future, we plan to paralleliz
the code by using parallel algorithms as described in Schumann and Strietzel [25].
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' Results and Discussion

We report below results obtained from a set of direct numerical simulations with different
Reynolds numbers, bottom shapes, and resolutions, see Table 1, which were performed
during the approach to an experimental set-up. In all cases the longitudinal domain size
extends over 4 surface wavelengths. The lateral domain size should be large enough ta
cover the largest turbulent structures. The wave amplitude 26/ is 0.1 in all cases. The
horizontal grid spacings are equal (Az = Ay). The Reynolds number in DNS 5 (see [20]}
is smaller by a factor of +/2 than in all other cases. The parameters of DNS 1, which
corresponds to our best knowledge to the experiment wb3 in the thesis of Hudson [13].
differ from DNS 2 only in the shape of the wavy bottom (see below). DNS 2 to 4 differ
only in resolution. DNS 4 is-the only run with equidistant vertical grid spacing. All
other cases use variable grid spacings with maximum resolution near the top and bottom
surfaces. Using the friction velocity at the wavy bottom u,wa, the finest resolution in
terms of viscous scale is (Az*t,Ant) = (10.2,1.6) for case 1. This is still at the limit
of what is required to resolve the viscous sublayer, but of the same order as in other
successfull DNS calculations {15, 27].

From the map of Zilker and Hanratty [30] one expects turbulent flow with mean separation
for all cases in Table 1.

Table 1: Model parameters of various DNS. In all cases the computational domain extends oves
4H x 2H x 1 H; Azt = Ay™ denotes the horizontal mesh size, Ant the mesh height, ¢, the

parameter in equation (4}, A(An) = (—@’%?ﬂi) the difference between two adjacent grid
“spacings, At the nondimensional time step, u,g aﬁ&xunwﬂ the nondimensional friction velocity
at the flat and wavy wall, respectively. Values marked with + are made nondimensional with
wall units. DNS 1 is performed with the experimental wave profile, all other simulations with a

sinusoidal bottom.

DNS| Re Ny N, -N. ¢ At Azt A(An) Angy Anty Urdg  Urwa
6760 256-128-96 1.7 0.003 102 0.068 1.6 124 0.070 0.097
6760 256-128-96 1.7 0.003 10.9 0.068 1.8 13.3 0.070 0.104
6760 06-48-48 1.4 0.009 30.1 0.107 54 238 0.071 0.107
6760 80-40-40 1.0 0.010 33.8 0.000 16.9 16.9 0.074 0.100
14780 160-80-64 1.4 0.006 12.4 0.079 2.7 122 0.071 0.104

o O D

By monitoring the kinetic energy Fin of the whole domain we made sure that the flow
is sufficiently stationary at the end of the simulation (Figure 2). The evolution of Fyn
for DNS 1 - 3 is very similar and distinct from DNS 4, the only case without separated
region. It can be seen already from this picture, that the mean separated flow is not
influenced very much by resolution and by details of the surface wave. Due to the random
perturbations, adjustment to the boundary conditions, and realisation of the continuity
equation, all curves start slightly above the theoretical value of 0.5. Before t/{rs = 5 @
relative maximum is passed which is caused by the growth of initial vorticies in the trough
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region. From studying instantaneous flow fields at eazly times of the simulations, we know!
that first one almost laminar vortex in spanwise direction appears at the downslope side
of the wave. While this vortex moves in upstream direction through the trough region it
gets stronger and forces the mean flow towards the center of the channel. After that, more’
but weaker vorticies appear at the downslope side of the wave while the primary vortex
disappears under the action of strong shear at the upslope side of the wave. Finally a
relatively small separated region remains which is nearly unchanged for 1/t > 4.5. The:
following time evolution is mainly caused by processes connected with the development of:
shear layers near the walls, as in a flat channel. For the coarsest grid and for equidistant’
vertical resolution (DNS 4) the results do not show a separation. The separation arises:
only in a transient initial phase but disappears at later times. For all DNS it takes abouit
50t /t.er to reach stationarity. For statistical evaluation the three-dimensional flow fields"
are averaged over the last 10t/trs with an interval of 0.5¢/trer. :
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Figure 2: Volume averaged kinetic energy Ey, versus time t. —— DNS 1, — — DNS 2,--—
DNS 3,----- DNS 4.

Of main interest for applications is the vertical flux of downstream momentum 7. It is
composed of advective contributions due to the mean flow field and frictional parts due
to turbulent fluctuations. Both contributions are modified by the wavy wall. In addition
at wavy surfaces the pressure causes a further contribution Tpres = p(0z/0z),, wher
the bar denotes the horizontal average over coordinate planes 7 = const. The pressur
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Figure 3: Mean streamline & = 0 of DNS 2 (—) and DNS§ 5 (- - -).

contribution is strongly influenced by the shape of the bottom surface and of the separated
region. Because it exceeds the sum of advectional and frictional momentum transport it
is mainly responsible for the total drag at the lower boundary. The friction velocities in
Table 1 are computed from the sum of the three contributions to the momentum flux.

The friction velocity at the flat wall varies only by about 1.5% for all cases with recircu-
lation, so the influence of resolution, Reynolds number, and bottom surface on the upper
boundary is very small. On the contrary, comparing the friction velocity at the lower
boundary from DNS 1 and 3 we find a difference of about 10%. Comparing DNS 1 and
2 the difference of about 7% is due to the small differences in the shape of the bottom
surface. This shows for the considered flows, that the shape of the surface wave has
relatively large influence. Mainly because of the additional pressure forces, the effective
friction velocity is up to 50% (DNS 3) larger at the wavy surface than at the flat surface.

Hino & Okumura [12] found for flow without recirculation that the total shear stress on
the upper flat wall decreases a little compared with that over the flat parallel bottom.
In all of our simulations the total shear stress at the flat wall is significantly higher as
proposed e.g. from Blasius’ law.

The mean streamline ® = 0 bounds the separated region. In Figure 3 the separated region
is shown for two simulations with different Reynolds numbers. For Re = 6760 and 4780
the influence of Reynolds number is small. Corresponding to other observations [17) the
size of the separated region decreases slightly with increasing Reynolds number.

As already shown for the lower Reynolds number [20], the flow structure near the wavy
surface shows a streaky pattern with downstream elongated vortices at the upstream slope
but less regular patterns on the downstream side. The spanwise spacing of the regular
patterns is about 0.3 H.

Now we compare the results of DNS 1 with experimental data from Hudson [13]). The
parameters of the DNS correspond to a water channel with channel hei ght H = 50.8 mm,
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Table 2: Profile of Hudson’s wave. Accﬁra,c& of loca,tiﬁgwglﬁaéghéigﬁf h: 6.2-107%H.

z/A |00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
h/H 0.1 0.089 0.066 0.036 0.0095 0.0015 0.0185 0.0505 0.0785 0.095

Table 3: Fourier coefficients a; and b; of the harmonic analysis of Hudson’s wave model.

Mode ! ay b Y L
0 109E 4+ 00 0005 +00 .418FE 01
1 A84FE — Q01 —.702F —02 .846FE — 04
2 —391FE —-02 996F —-03 .312E —05
3 JT136F — 03 A31F —-03 .329F — 06

wave amplitude 26/ A = 5.08 mm, wave length A = H , the mean velocity U/ = 122.2 mm/s,
and Re = UH/v = 6760. In the simulation we used the Fourier series

: 3 lz . Iz
z/H = Z (a; cos (27r—:\u) + by sin (27TT)) R ’ (5)

=1

with the coefficients shown in Table 3 to represent the experimental bottom surface from
Table 2. Note that in equation (5) ap/2 is neglegted in order to obtain vanishing mean
wave height. This curve mainly differs at the upslope side from the ideal cosine profile with
wave amplitude § = 0.05 H and wavelength A = 1 H which has been used for the other
simulations. To our best knowledge the only difference to Hudson’s case wb3 concerns the
mean velocity. In the simulation we used the mean over the whole channel U to build the
Reynolds number while Hudson used the mean velocity Uper, which is an average solely
in the lower half of the channel. Because of the asymmetric mean profile U is smaller
than the bulk velocity U of the whole channel. For DNS 1 we get Upr = 0.912U, so
the Reynolds number may be in effect about 9 % smaller in the computation than in the .
experiment. For the purpose of comparing simulation and experiment, the velocities are
made dimensionless with Us. From the picture in Figure 3 we assume that the influence
from changing the Reynolds number by 10% should be negligible.

Figure 4 depicts profiles of the computed and measured velocities and turbulence quan-
tities. The numerical results are ytp-mean values, i. e. averages over the y coordinate,
time (60 < t/trer < 70), and over the four surface positions of equal phase angle. The
streamwise velocity profiles (Figure 4 a) are characterised by very strong vertical gradi-
ents at the upslope side of the wave. Even with that high resolution of DNS 1 the largest
differences between simulation and experiment occur in this region. In the simulation
the u-velocity averaged over planes n = const. has a maximum of 1.2450 . at a height
n/H = 0.639, so the maximum is shifted by more than 26 /H in upward direction. The
position of the experimental maximum is unknown. The separated region, bounded by
the streamline ¥ = 0, extends from z/A = 0.15 to z/A = 0.59 in the DNS compared to
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z/) = 0.3 and z/A = 0.5 in the experiment. One has to remind the coarse experimental
streamwise resolution of Az /A <0.1.

Because the vertical velocity component (Figure 4 b) is approximately coupled with the
streamwise velocity component the greatest differences between DNS and experiment
occur at the same positions, namely at the upslope side of the wave.

The component —u'w’ of the Reynolds stress tensor is shown in Figure 4 c). At the
upslope side —u’w’ becomes negative near the wall. This is an artefact of calculating tihe
Reynolds stress in Cartesian coordinates. Here the measurements are in good agreement
with the numerical results. At the downslope surface —u'w’ should be positive inside as
well as outside the separated region, but the experiment has negative values at the first
measurement points from the wall.

The rms-value of u (Figure 4 d) in the DNS develops a relative maximum near the surface
at z/A ~ 0.8 and reaches an absolute maximum over the next trough. If one defines a
shear layer through an intensity maximum of the turbulent velocity fluctuations [5], two
shear layers can be discerned for positions 0.8 < z/A < 1.3. The agreement with the
experiment is very good. The intensity of the v-velocity (Figure 4 e) reaches a maximum
of \/v__a/ Ut = 0.2 at a streamwise position z/A = 0.69 which is about 0.1/} behind
the reattachment point. In this region the v-component gives a large contribution to the
turbulence energy near the surface. The rms-value of the w-velocity (Figure 4 f) has its
absolute maximum near /) = 0.55. The agreement with the experiment is very good at
the upslope side of the wave whereas at the downslope side the experiment shows higher
intensities near the bottom at 0.1 < z/A <04.

In general the experimental values seem to deviate systematically from the expected and
computed results near the center of the channel. Because the spreading near the surfaces
is very high we assume that the measurements suffer from some disturbing influences
from the wall. Although the number of experimental samples is three times the number
of DNS samples the measurements show individual data points far outside the expected
statistical spread.

The pressure field is responsible for the form drag of the wavy wall. The figure assumed
from a potential flow is disturbed by the separated region and the stagnation point at the
location of reattachment (Figure 5). In the simulation the isolines p/(pU?) = 0.0 and 0.1
show the effect of the recirculation, decreasing the pressure gradient in z-direction along
¥ = 0. In the experimental pressure field, which was obtained indirectly by calculating
it from the measured velocity field using a reference pressure measured near the channel
center, such effect is not seen. The location of the absolute maximum of the surface
pressure is located at z/A = 0.65 for the DNS which is 0.05z /A behind the reattachment
point. In the experiment this shift is 0.1z/A. The values of the surface pressure maxima
are 2(p— prer)/(p UZ;) = 0.38 and 0.81 for the experiment and the simulation, respectively.
Because the numerical results agree very well with values from similar experiments [5, 10]
we assume that the experimental results from Hudson are too high by a factor of 2.
- The maximum of pressure intensities (not shown) coincides with the surface pressure
maximum. From this comparison the indirect experimental determination of the pressure
field from the measured velocity field seems not to be able to substitute direct pressure
measurements.
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Continuation.

Figure 4

237



*
'
1
i
1
For
1
1
]
1Y
]

TR TI FTTT Hﬂ TT _—_.w—ﬂ_ﬂ_—__"____—_____q_n____
Lo . . [} 1 v ]

[y ' .
. [ [

1.0

) .

t 1
+ H ' ) .
NSRRI NEN NS NRCRTEIEIT)

CX/A

o
ot

F

)
™~

0.50 0.75 1.00

025

0.00

X/A

, - - - negative values). a) ytp-averaged pressure

Figure 5: Mean pressure field (— positive values

d, increment 0.01), b) time averaged

field /(pU?) of DNS 1 (mean pressure gradient P subtracte

} deduced from velocity measurements of the experiment [13].

2

T,Wa

pressure field B/(pu

238



Conclusion

In this study, direct numerical simulations of turbulent flow over a wavy boundary have

been carried out and compared to measurements by Hudson [13]. Our method is able

to predict the main features of separated flow and the flow structure can be described.

In particular we find that a recirculation zone develops. At Re = 6760 this recirculation

zone could be simulated with a rather coarse grid but only if a variable vertical grid

spacing is used with finer resolution of the order of v/u, near the walls. Mainly because

of the additional pressure drag, the effective friction velocity is about 50% larger at the
 wavy lower surface than at the flat upper surface. The computed local mean velocity |
profiles and mean turbulence profiles agree rather well with the measurements. The size '
of the separation zone in the simulation is larger than in the experiment, which yields a

smaller pressure drag. We have shown that the influence of the Reynolds number at such

low turbulence levels is rather small whereas the shape of the bottom surface is of great

importance.

From this comparison between simulation and experiment we conclude that our method
is at least as precise as laboratory measurements.
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