
Journal of Scientific Computing, VoL 10, No. 2. 1995 

Parallel Solution of Tridiagonal 
Systems for the Poisson Equation 

U. Schumann I and M. Strietzel 1 

Received November 1, 1994 

A method is described to solve the systems of tridiagonal linear equations that 
result from discrete approximations of the Poisson or Helmholtz equation with 
either periodic, Dirichlet, Neumann, or shear-periodic boundary conditions. The 
problem is partitioned into a set of smaller Dirichlet problems which can 
be solved simultaneously on parallel or vector computers leaving a smaller 
tridiagonal system to be solved on one of the processors, 
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1. I N T R O D U C T I O N  

For numerical simulation of incompressible fluid flows one has to solve the 
Poisson equation for pressure once for each integration time step, see, e.g., 
Gerz et al. (1989). By means of Fourier transformation a three-dimensional 
or two-dimensional Poisson equation gets reduced to a system of one- 
dimensional Helmholtz equations 

p"-22p=q, on O<x<<.L (1.1) 

which have to be solved for each Fourier mode. The Helmholtz parameter 
22 is related to the vector sum of the wave numbers of the Fourier wave 
functions in the original multi-dimensional problem. It is either zero or 
positive, depending on the boundary conditions in the transformed direc- 
tions and on the wave-number magnitude [Schumann and Sweet (1988)] .  
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Here, we consider the one-dimensional Helmholtz equation, first with 
periodic boundary conditions 

p(0) = p(L), p'(0) = p'(L) (1.2) 

Dirichlet (p(0)=0,  p ( L ) =  0) and Neumann (p '(0)=0,  p ' ( L ) = 0 )  bound- 
ary conditions will be discussed in Section 5 of this paper, together with the 
so-called "shear-periodic" boundary conditions which we need to simulate 
sheared turbulent flows [Schumann (1985) and Gerz et al. (1989)]. 

In order to make the pressure solution consistent with the discretized 
equations of fluid motion, one has to solve the discretized form of the 
Helmholtz equation: On an equidistant grid with N grid points x~ = i A x ,  

A x  = L / N ,  i = 1, 2 ..... N ,  the discrete solutions pi_~ p ( x i )  and given sources 
q~ = q(x~) A x  2 satisfy the tridiagonal linear system of equations 

Pi_l--api+Pi+l-~qi,  i = 1 , 2  ..... N (1.3) 

with a = 2 + 22 A x  2 and periodic boundary conditions P0 = PN,  PN+ I = P l .  

The system is singular for 2 = 0 (a = 2), in which case a solution, which is 
determined up to an additive constant, exists only if the sum of all sources 
vanishes, Z ~  qi=0,  for consistency with the discrete Poisson operator. 

On a single processor, this system can be solved using Gaussian 
elimination. Such a solver requires an order 7N multiplications, 1N divi- 
sions, and 6N additions or subtractions. When the computing time per 
multiplication equals that for additions (A), and is half that for divisions, 
then the computing time increases with t~ = 15AN.  These computations 
often form a major part of the whole integration effort. 

Being an elliptical equation, the Helmholtz equation requires to relate 
the solution at one point to all other grid points within the solution 
domain. This contrasts with the remainder of the equations of motion 
which are essentially parabolic or hyperbolic and can be approximated 
by discrete systems which contain only local interactions. For parallel 
treatment of the equations of motion, methods which rely on domain 
decomposition are well suited therefore. Hence, we seek for a correspond- 
ing algorithm to solve the Poisson or Helmholtz equation. 

Methods to solve large tridiagonal linear systems on vector and 
parallel computers have been reviewed by Gallivan et al. (1990), Ortega 
(1988), van der Vorst (1987), and Bondeli (1991). The method to be 
described in this paper is similar to the partition method derived by Wang 
(1981) for diagonally dominant tridiagonal systems with variable coef- 
ficients. He divides the matrix of the linear system into blocks and first 
eliminates the unknowns from the block's interior by a suitable Gaussian 
elimination procedure. This results into a reduced set of linear equations 
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coupling the blocks. Wang's algorithm requires to perform vector opera- 
tions of different lengths which needs special coding for parallel processing 
with a fixed number of processors. Variants suitable both for MIMD (mul- 
tiple instruction-multiple data) and SIMD (single instruction-multiple 
data) computers has been deduced by Kowalik et aL (1984) and Bondeli 
(1991). These partition methods, also called "divide and conquer methods," 
have been described only for nonperiodic systems. Our method will be 
shown to be more efficient than these algorithms, mainly because we take 
advantage of the constant coefficients and of the symmetry of the given 
system. Moreover, we use a different algorithmic idea, which gives addi- 
tional insight and leads to proper treatment of systems with zero or very 
large Helmholtz parameters. 

The algorithm described in this paper is basically a discrete analogy to 
a "matching procedure" described by Israeli et al. (1993) to solve the con- 
tinuous Helmholtz equation. They solve the continuous equation with zero 
Dirichlet boundary values on subdomains and then add properly weighted 
continuous solutions for the homogeneous system with unit boundary 
values at either side of any subdomain. 

2. THE DOMAIN PARTITION 

We assume that we can use m processors, I <m < N, each with 
sufficient amount of local storage. We assume that the processors are 
arranged to allow for data exchange between all "node processors" and one 
"host processor" and also locally with the nearest neighbours along a ring. 
The algorithm can also be used to perform most of the computations in 
parallel on a vector computer with shared memory. 

Let n = N/m be an integer number. The index domain 1 4 i ~< N is split 
into m equal subdomains denoted by j = 1, 2 ..... m, each containing n con- 
tiguous grid points. In each subdomain the unknowns and source values 
are 

p(J)-- , -dJ)-- ,- ,  i = 1 , 2  ..... n; j = l , 2  ..... m ( 2 . 1 )  i - - P ( j - - 1 ) n + i ,  ~li --~l(j--l)n+i~ 

They satisfy 

p(j) ( j )  ( j )  ( j )  
i _ l - - a P i  +pi+l=qs (2.2) 

with interface conditions 

ptoJ'=p(,/-l', ,_,,+,'J' 1 =p~J+~) (2.3) 
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and periodic boundary conditions 

p( 11 _ n.,,~ .,(,,,) = p~' o - ~ , ,  , ~,,+, (2.4) 

Each subdomain is assigned to a processor. 

3. C O N S T R U C T I O N  O F  T H E  S O L U T I O N  M E T H O D  

We first solve a localized problem on each subdomain j = 1, 2 ..... m: 

f i ' f = 0  (3.1) 

fi(j~ _ alS~J~ + ~ j l  = ,~(j~ i = 2, 3,..., n (3.2) i - -  1 F i +  I "1i  

No data exchange of boundary values is needed since '~(J) = /~]J+ l l=0 .  / ' n  + 1 

This intermediate solution satisfies the inhomogeneous equations 
everywhere except at the left boundaries of each subdomain. In order to 
construct the correct solution everywhere, we need the specific solution of 
the homogeneous system with unit boundary value at the left boundary  of 
a subdomain: 

rl = 1 (3.3) 

r i _ l - - a r i + r i + l = O ,  i = 2 . 3  ..... n (3.4) 

r,,+, = 0  (3.5) 

The final solution is obtained by superposition 

pl  j) = pl  j) + R j r  i + R j  +l r,, + z - i  (3.6) 

By construction, this solution satisfies the given equations at all interior 
grid points i = 2, 3,..., n of each subdomain j = 1, 2 ..... m. The amplitudes Rj 
have to be determined such that 

p l j - i i  _ . , , , i j~.  , i j l  _ r, lJl (3.7) 
n ~ F l  - - F 2  - - * 1 1  

which requires 

15~,/-'~ + R j _ , r , ,  + R J 2 - - a [ f i ~ J '  + R j r ,  + R j + l r , + , ]  

+ fi~) + RT,_ + R j  + , r,, = q(/ '  (3.8) 

Since/~]J) = 0, r,  = 1, r,, + ~ = 0, this simplifies to 

=q l f  -~-~  p~J~ r , , R j _ , - ( a - 2 r , ) R j + r , , R j + ,  - p , ,  - (3.9) 
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for j =  I, 2 ..... m. The equations with outer boundary conditions at i =  1, 
j = 1 and at i = 1l, j = m are satisfied if 

R o = R  .... ~.,,~°~ = r~"'~.,, , R,,+ l = R i  (3.10) 

We note that this is a periodic symmetric system of m tridiagonal linear 
equations with constant coefficients. The system becomes singular if 
2r,, = a - 21"2. 

The homogeneous system in Eq. (3.4) approximates r " - 2 2 r  = 0 with 
boundary conditions r (0 )=  1, r ( L / m ) =  0. The solution of this continuous 
equation is 

r(x) = 1 - -2  if 2 = 0  (3.11) 

r ( x ) -  sinh[~(1 - £)] if 22>0  (3.12) 
sinh(J.) 

with J. = 2L/m, 2 = x m / L  Also the discrete system shows a linear solution if 
2 = 0, such that r,, = l/n, r2 = 1 - r , , .  Hence, the periodic system in Eq. (3.9) 
is singular for 2 = 0. It is also a consistent system in this case, since 

, , , J , _ , v , J - ' , - f i ~ ' =  ~ q ' / , - , ~ ' J ' - , ~ ' J ' =  ~. ~ otJ' ~11 1"1, F n  1 " 2  -,t, (3.13) 
j = l  j = l  j = l  i = l  

vanishes as for the original system in Eq. (1.3). The latter relation can be 
verified by summing Eqs. (3.2) from i = 2  to i = n ,  with a = 2 ,  using .the 
boundary conditions of Eq. (3.1) at j and j +  1. 

For  large Helmholtz parameters 2 >> 1/L, the off-diagonal coefficients 
become small relative to the diagonal ones, i.e., 2r, ~ a -  2r,_ ~-.~2 3 x  2, in 
which case the solutions Rj may be obtained locally ignoring the coupling 
with the neighboring solutions Rj_+~. The approximations r2~-r(1/n), 
r,, ~r(1 -- 1/n), with r(x) given in Eq. (3.12), may be used to estimate when 
r,, ~ a/2 - r 2. 

4. THE ALGORITHM FOR PERIODIC BOUNDARY CONDITIONS 

The solutions p~J~ are obtained in three steps: 

1. The i",. are determined according to Eqs. (3.4) together with the/~ j~ 
from Eqs. (3.2) for given q~,J~: 

For each processor j : =  1 to m DO 
b,, := 1/a;/~[J} := -b, ,  v ,~ljl. r l l  " ' Y n  ~ 

F o r i : = n - - I  down t o 2 D O  
bi:= I / (a_b i+i ) ;#~ i~  := t ,~tJ~ alJ~'~ x h • r i  t F i +  1 - - F i  1 v i ~  

end DO 
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. 

r= :=b2; 
For i := 3 to n DO 

r i : :  b i x r i _  1 ; ff~J) : =  f i l  j)  -{- b i ×ff¢i~ 1 ; 
end DO 

end DO 

Here it is assumed that the sources q~J) are stored initially in place 
of the variables fi~). Note that/~]J~ still contains the original source 
value q~/), as required for the second step. The b;, i =  1 ..... n are 
used as temporary array. 

For large n this step requires about 3n multiplications, n divi- 
sions and 3n additions/subtractions or a computing time ta = 8An, 
if A is the computing time per addition or multiplication, and 2A 
is the computing time per division. In principle, the r; could be 
precomputed on one processor and then distributed to all pro- 
cessors, but this would not pay off (except on shared memory 
machines) because the local computation requires just n multi- 
plications which commonly consume less computing time than the 
communication to all processors. 

If the off-diagonal components of Eq. (3.9) are not small, i.e., if 
2r,, /(a-2r2)>e, where 0~<e~ I is a given error bound, then a 
global solution is required. In this case the results/~j~, fi~,/), and the 
sources q~/) have to be transformed to the host processor where 
Eq. (3.9) is then to be solved for the RJ and from where Rj and 
Rj+I is transferred back to the individual processors. The algo- 
rithm for this part works as follows: 

c:=l/r,,; Rl :=(fi~l l) .-¢m~ .~l)~X~. - - k ' n  - - / Y 2  ] t.~ 

For j := 2 to m DO R~'-(fi~/~.- -e,,a~J-l)-~J~xc;rz j end DO 
6 : = ( a - - 2 x r 2 ) x e ;  d 1 := l/d; el : = d l ;  RI := - R I  x d l ;  f : =  - d ;  
c : = l ;  
F o r j : = 2 t o m - I  DO 

z : = l / ( a - d g _ , ) ;  d j :=z ;  e j : = e j _ l  xz;  R j : = ( R j _ , - R j ) x z ;  
R m :=R, , , -R j_  I x e ; f : = f + c x e j _ l ;  c := c x dj-_l; 

end DO 
d.,_l :=d.,_1 +e .... 1; c := 1 +c ;  
IF (2z=0)  then Rm :=0;  else R . , : = ( R , . - c x R . , _ I ) /  
( f - c x d . , _ l ) ;  end IF 
R, , - I  := R,,_I + d,,_l x R,,,; 
F o r j : = m - - 2  down to 1 DO R i : = R j + d j x R j + l + e j x R , , , ;  end 
DO 
R,.+l  : = R I ;  
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Here, dj, e j, j = 1 ..... m; c, f ,  z, and ff are temporary variables. This 
step requires about  8m multiplications, m divisions, and 8m addi- 
tions, or th = 18Am as computing time on the host. In addition 5m 
words have to be transferred between the host and its node pro- 
cessors causing a communication time of order tc  = 5Cm, where C 
is the time needed per communicated word. 

If 2 r ~ / ( a - 2 r  2) <~, the R i can be determined locally on each 
processor. For  this purpose, the r e s u l t / ~ -  1~ has to be transferred 
from processor ( j -  1 ) to (j). The solution Rj has to be transferred 
backwards from processor (j)  to ( j - 1 ) .  This requires com- 
munication of two data values between each pair of nearest 
neighbors only. 

3. Finally, we obtain the solution p~/> from Eq. (3.6): 
For  each processor j := 1 to rn DO 

p' / '  := Rj; 
For  i : = 2  to n DO p~J~ : = f f l J ) + R j x r i + R j + l  x r,,+2_i; end 

DO 
end DO 

The p~i j) can be stored in the same places as ffl j) and ql,/). This part 
requires 2n multiplications and 2n additions per processor, i.e., a 
computing time tp = 4An. 

In the standard case, with small t, the total computat ion time t,, per solu- 
tion of the Helmholtz equation with m parallel processors equals t,, = tp 4- 
t h 4- tp 4- t c = 12An + 18Am + 5Cm = om+ )~m. This time reaches its mini- 
mum top t = 2(0wN) 1/2 for m = mopt = (aN/y)l/'-. Hence, for 0~ - y and N in 
between 100 and 10000 (which is very large in view of the three-dimen- 
sional origin of the problem), the optimum number of processors lies in 
between 10 and 100. Slow communication increases y and hence decreases 
the optimal number of processors. The speed-up factor S = t ~ / t , ,  of the 
parallel algorithm in comparison to the sequential algorithm is S =  
( 15Anm)/(  12An + 18Am + 5Cm).  

5. THE ALGORITHM FOR OTHER BOUNDARY CONDITIONS 

The algorithm becomes simpler when we consider Dirichlet boundary 
conditions 

P0 = 0 ,  PN+I = 0  (5.1) 

at the left and right boundaries, where 

R o = 0 ,  = 0, R. ,+ ,  = 0  (5.2) 
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is used instead of Eq.(3.10). This results in a purely (nonperiodic) 
tridiagonal system for the Rj  which is nonsingular for a >i 2. Hence, the 
computing time to solve the system on m processors is a little less than for 
the periodic system and amounts to t,, = 12An + lOAm + 5Cm. This value 
might be compared with t~ = I O A N  for the sequential algorithm. The time 
t,, is smaller than the computing time 20An + lOAm + 6Cm of Kowalik's 
algorithm (1984). Also the algorithm of Wang (1981) requires more opera- 
tions than ours. Bondeli (1991) does not give the computing time for 
parallel systems. His algorithm is derived for arbitrary positive definite 
tridiagonal systems and requires to solve three tridiagonal systems of rank 
n in step I and one tridiagonal system of rank 2 m -  2 in step 2. Hence, our 
algorithm is more efficient than Bondeli's version for the special case of 
constant coefficients considered in this paper. 

Neumann boundary conditions 

P o = P l ,  PN+I = P u  (5.3) 

can also be implemented using 

r , ,Ro=(1 -12)  Rl, =1o~ 0 -/]n (5.4) 

for the left boundary and 

R , , ( ( a - - 1 ) r , , - r , , + l ) + R , , + l ( ( a - 1 ) r 2 - r 3 ) = f i l , [  ''~ (5.5) 

for the right boundary instead of Eq. (3.10). This results also in a purely 
tridiagonal system for the Rj. It is singular for a -- 2 if Neumann boundary 
conditions apply at both sides. The computing time is roughly (up to order 
A) the same as for the Dirichlet system. 

Shear-periodic boundary conditions prescribe periodicity of complex 
Fourier modes Pi with a complex phase-shift factor W of unit magnitude, 
depending on shear and wave number [Schumann (1985)], so that 

Po = WpN, P^'+I = W - l p l  (5.6) 

This can be taken into account by setting 

Ro = WRm,  ~.lo~ -(,,,) = 1~,, = Wp,, , R , ,+l  W - 1 R I  (5.7) 

instead of Eq. (3.10). The resultant tridiagonal system for the Rj is of the 
periodic structure and is singular for a = 2. It requires a special coding for 
efficient treatment of the complex arithmetic [Schumann (1985)]. 
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6. DISCUSSION AND CONCLUSION 

We have tested the algorithms comparing the solutions to a reference 
solution, given by random numbers (between -0 .5  and 0.5). All computa- 
tions have been carried out in floating point arithmetic with a relative 
accuracy of 2-52-~2.2.10 -~5. For m =  16, n=64,  L =  1, and 2 = 0 ,  the 
maximum deviation between the solutions and the reference solution is 
computed for the periodic case to be 0.7- 10-~'-, and the maximum residual 
with respect to the source values is 0.8-10 -14. The errors decrease with 
increasing 2. Also, the nonsingular Dirichlet system gives somewhat smaller 
errors (0.6.10 -12, 0.8. 10 -~5, respectively, for 2=0) .  

The parallelized algorithm for the periodic system leads to slightly 
(about factor 4) more accurate results than does the standard sequential 
algorithm. A similar experience has been reported by van der Vorst (1987). 
This may be caused by the fact that the systems to be solved on the sub- 
domains use Dirichlet boundary conditions and are nonsingular, therefore, 
even when the original problem is singular. Moreover, for 2"-> 0 the final 
system, Eq. (3.9), is more strongly diagonally dominant than the original 
system of Eqs. (1.3). 

We tested the algorithm for three-dimensional problems with equal 
numbers of grid points in each coordinate. The parallel Poisson solver was 
implemented on a transputer based Parsytec GCel-1024 parallel computer 
utilizing 4, 8 and 16 of its T800 processors. For portable coding ParMacs 
was chosen as the message passing system which is available on most 
parallel computer systems, at least in Europe. The small amount of local- 
memory on each transputer (4 MB) limits the resolution to 643 gridpoints 
on 4 transputers and 1283 gridpoints on 8 and 16 nodes. The efficiency of 
the parallel program is an increasing function on the rank of the system in 
Eq. (3.2) denoted by n. A small ratio m/n reduces the time for solving the 
system in Eq. (3.9), which is the only sequential part of the solver, relative 
to the time used for solving the systems in Eq. (3.2) in parallel. This is an 
essential requirement for a good efficiency of the algorithm. On 4 pro- 
cessors the smallest ratio between m (=4 )  and n (up to 16) achievable was 
1/4 and for this run we found a speed-up of 3.97 for the three-dimensional 
Poisson solver (including the time for fast Fourier transforms in two 
dimensions). This is an efficiency of 99%. For 8 processors and a resolu- 
tion of 1283 points (ratio = 1/2) the speed-up is 7.60 (95 %). On 16 nodes 
the smallest ratio we could realize is 16/8 = 2. For this ratio the speed-up 
is 14.11 (88 %), which is reasonable for this problem size. 

Note that the variants for all boundary conditions result in identical 
algorithms for steps 1 and 3, with the same instructions for all processors. 
Boundary conditions affect only step 2, i.e., the computations on the host 
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processor. Hence, the algorithm is applicable both on MIMD and SIMD 
computers. 

In conclusion, a method has been described to solve the systems of 
tridiagonal linear equations resulting from the Poisson or Helmholtz 
equation on a regular grid in an efficient manner on parallel computers. In 
a future paper we will report on results obtained using this algorithm for 
turbulence simulations. 
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