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Abstract, The interaction of an internal gravity wave with its evolving critical layer and the sub-
sequent generation of turbulence by overturning waves are studied by three-dimensional numerical
simulations, The simulation describes the flow of a stably stratified Boussinesq fluid between a bot-
tom wavy surface and a top flat surface, both without friction and adiabatic. The amplitude of the
surface wave amounts to about 0.03 of the layer depth. The horizontal flow velocity is negative near
the lower surface, positive near the top surface with uniform shear and zero mean value. The bulk
Richardson number is one. The flow over the wavy surface induces a standing gravity wave causing
a critical layer at mid altitude. After a successful comparison of a two-dimensional version of the
model with experimental observations (Thorpe [21]), results obtained with two different models of
viscosity are discussed: a direct numerical simulation (DNS) with constant viscosity and a large-eddy
simulation (LES) where the subgrid scales are modelled by a stability-dependent first-order closure.
Both simulations are similar in the build-up of a primaty overturning rell and show the expected early
stage of the interaction between wave and critical level. Afterwards, the fiows become nonlinear
and evolve differently in both cases: the flow structure in the DNS consists of coherent smaller-
scale secondary rolls with increasing vertical depth. On the other hand, in the LES the convectively
unstable primary roll collapses into three-dimensional turbulence. The results show that convectively
overturning regions are always formed but the details of breaking and the resulting structure of the
mixed layer depend on the effective Reynolds number of the flow. With sufficient viscous damping,
three-dimensional turbulent convective instabilities are more easily suppressed than two-dimensional
laminar overturning.
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1. Introduction

The generation of turbulence by overturning internal gravity waves is an impor-
tant factor in the microscale dynamics of atmosphere and ocean. For instance, the
mechanism is thought to be the primary cause for clear-air turbulence [15] and for
the occurrence of thin turbulent layers in the free atmosphere [12, 16, 18]. Some
theories and numerical attempts exist to explain how overturning waves are excited,
however, it is not known how these waves break in detail. As possible instability
mechanisms Kelvin—-Helmheltz and convective instabilities are discussed. Another
fundamental mechanism that leads to the breaking of gravity waves is the inter-
action of an internal gravity wave with its critical level. This is the subject of our
study.
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In a shear flow, the critical level is the height where the phase speed of a wave
equals the mean flow speed [2]. The wave propagation is strongly modified due to
the formation of a critical layer: waves above the critical level decay (the trapping
effect of the critical layer) and the wave transfers momentum from below upwards
into the mean motion beneath the critical level. Depending on the excitation energy
of the initial wave field, shear, and stratification of the basic flow, turbulence can
be generated transferring kinetic energy to smaller scales.

The gravity-wave critical-layer interaction is difficult to study observationally
in the free atmosphere because of the broad spectrum of scales which prevents
the observation of isolated events. In the planetary boundary layer some attempts
have been made to demonstrate the critical layer effect [11, 14]. In the laboratory,
the interaction has been observed under controlled conditions by defining one
wavelength and prescribing a mean velocity profile. So far, only a few (mostly
qualitative) observations are known {3, 7, 21].

Thorpe [21] used a simple experiment device: a long rectangular tube, filled
with salt-stratified water. The lower boundary had sinusoidal corrugations which
excited internal gravity waves with zero phase speed in the stratified shear flow.
The shear flow with zero mean was forced by tilting the tube horizontally by
a small angle. Its strength depends on this angle and the time of tilting. As in
other experiments, no wavy motion could be observed above the critical layer. The
vertical propagation of the internal gravity waves was stopped near the critical
layer and regions of reduced density gradients developed over the troughs of the
surface waves. These regions became gravitationally unstable (Kelvin—Helmholtz
instability was not observed). As a test we repeat Thorpe’s experiment numerically.
Although Thorpe’s experiment dealt with salt-stratified water we interpret it in
terms of a thermally stratified medium, because we are ultimately interested in
atmospheric flows.

As the main aim of this paper, we present results of two three-dimensional
numerical simulations of the interaction of a vertically propagating gravity wave
with its critical layer. The simulations differ in the treatment of viscosity in the
flow. We use a direct numerical simulation (DNS) with constant viscosity and a
large-eddy simulation (LES) where the subgrid scales are modelled by a stability-
dependent first-order closure. Hence, the former case simulates a flow at rather
moderate Reynolds number, whereas in the latter case the molecular viscosity 1s
zero and subgrid scale turbulent mixing is limited to local regions with strong
velocity deformation and low Richardson numbers. Two different regimes can be
identified. A laminar breaking apears in the case of DNS where the continuous
rolling-up of density surfaces resembles the mixing. In the LES the breakdown
of the convectively unstable regions occurs immediately after the appearance of
instability and small-scale turbulent motion is generated.

Section 2 introduces the numerical model. The comparison with the experimen-
tal resuits of Thorpe {21] is presented in Section 3. Section 4 discusses the results
of the three-dimensional simulations.



BREAKING OF OVERTURNING GRAVITY WAVES 165

2. Numerical Model

We consider a thermally stably stratified fluid with the temperature ¢ = J¥o+ 0+ 8.
The background temperature ¥, i1s constant, the stratification is characterized by
the mean part © whereas the fluctuations are denoted by 6. The mean part is defined
by the initial background Brunt-Viisili frequency IV as

g do
'190 dz

We define the reference values for lenght, velocity, temperature, and density, as H,
AU, AB©, and py, respectively, where AU and A® are the velocity and temperature
differences across the vertical depth H and pq is the reference density in the model
which uses the Boussinesq approximation. The bulk Richardson number 1s defined
by

N? = (1)

N2 gA®H

RIB:?—W,

(2)

where § = AU/ H is the mean shear. The conservation laws for mass, momentum
and integral energy in curvilinear coordinates read

54
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The Cartesian velocity components u; = (u, v, w) and the temperature perturbation
f) are computed on a terrain following coordinate system in which the curvilinear
coordinates (Z, §, Z) are related to Cartesian coordinates (x, y, z) according to

(z—h)
(H-h)"

T=x, Y=y and zZz=9n(x,z)=H (6)
The Jacobian of the transformation G* = 9%;/9z; is V = (det GY)~1 and h(x)
is the prescribed height of the bottom surface. Details of the implementation of
this coordinate transformation in the numerical code and its solution procedures
are described in Krettenauer and Schumann [2]. The diffusive fluxes are

VF; =-KyV2D;;, VQ;i= '9). (7
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In the case of the DNS, K3 = 1/Re and Ky = 1/RePr with Re = AUH /v and
Pr = v/~, where v and v denote the kinematic viscosity and thermal conductivity.
In the case of the LES, Kpr = v, and Ky = Vyyry /Prigrp- The turbulent viscosity
is determined as a function of the local Richardson number as suggested by Lilly
[10]:

_ Ri
A2)S — 8|41 - R—_l , when  Ri<Ri,=1 ®)

Yurb = I¢
0 otherwise,

where S is the second invariant of the deformation tensor in terrain following
coordinates

11 0

5T 3o (VGu; + VG ;). 9)

S = 2D1‘jDij ) D,‘j =

The mean shear S is subtracted from the local deformation S in Eq. 8 so that the
turbulent diffusivity 1s zero in the unperturbed mean flow and essentially nonzero
only in the perturbated regions where Ri < 1. The mixing scale A is related to the
grid spacings as A = 0.1(Az + Ay + Az)/3. The turbulent Prandtl number is set
to a constant value.

The computational domain covers one wavelength A of the surface undulation
with amplitude §, i.e., h(x) = é cos(2mz/A). Cyclic boundary conditions are used
in the streamwise (z) direction and in the cross-stream (y) direction. Since we are
not interested in resolving the viscous surface layers of the laboratory model, the
boundary conditions

ol ou AU ov NV Fi3)

Iz " 9z H ' 8 ’ 0z (10
are used at the upper and lower surfaces. The normal velocity is zero at the wall
boundaries. Hitherto, the numerical code has been applied to the simulation of flow
over wavy boundaries under convective and neutral conditions and details of the
numerical method are described in ¢.g. [4, 9, 13, 17].

3. Comparison with Measurements for a Weakly Nonlinear Shear Flow

In this section, we compare the results of a two-dimensional DNS with the mea-
surements of Thorpe [21] who observed the internal gravity-wave critical-layer
interaction in the laboratory. In the experiment, the mean velocity was zero and a
uniform shear was induced initially by tilting the tube by the angle « relative to the
horizontal for a time t,. The evolving shear flow, which depends on «, t, and N
according to AU/H = N?t, sin o [20], was weakly nonlinear. The lower undu-
lated surface, consisting of sixteen sinusoidal waves, excited the internal gravity
waves with zero phase speed in the shear flow. The experiments in the salt-stratified
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water took place at Re = AUH /v = 50000 and at a Schmidt number of about
500.

In the simulation, we replace the sixteen floor waves by a single one and cyclic
boundary conditions. In accordance with the experiment, we use A = 1.5625H,
0 = 0.03125H, o = 7.1°, and t, = 3.75 s. The initial velocity distribution and
the mean temperature field are given by

AU O(z) AO (z-0.05H)
U(z) = 7 (z - 0.5H), %0 = do T ,
where A© /¥y = N?H/g. With N = 2.06 s~ ! and H = 0.16 m from the lab-
oratory experiment, the bulk Richardson number is Rig = 1.1. Initial velocity
and temperature fluctuations are set to zero. We resolve the domain by 200 x 128
meshes and achieve the same Reynolds number as in the experiment. We cannot
achieve Schmidt numbers of 500 numerically due to limited computer capacity.
However, the value of Schmidt number is of minor importance in this context since
the flow is only weakly nonlinear [21]. Thus, dynamics at small scales, where the
correct treatment of Schmidt number becomes important, are negligible. Therefore,
we consider the effect of stratification in terms of heat instead of salt and set the
Prandtl number Pr = 1.

In Fig. 1, we compare our results with the observations of Thorpe {21] when
the tube is returned into the horizontal position and the shear flow is no longer
accelerated. In the observations, layers of constant density were marked by adding
dye. These layers have a certain thickness depending on the experimental set-up.
The deformation of these black and white regions illustrates the wave propagation
with time. For a quantitative comparison with the measurements, we plot the
contour lines of the temperature field with a constant increment A = 0.0032A0Q in
such a way that the thickness and the position of the areas between adjacent contour
lines correspond to the biack and white layers documented in the photographs of the
observations. In addition, the most interesting areas in the middle of the numerical
domain are emphasized as in the laboratory experiment.

At the beginning, the lines of constant temperature, i.e. colder (heavier) fluid
is lying in the trough and the fluid gets warmer (lighter) with increasing height.
The mean flow is towards the left near the surface and towards the right at the
top boundary. The overall features of the flow evoluton in the laboratory and in
the numerical simulation are obviously similar. The sinusoidal corrugations at the
bottom surface excite internal gravity waves that propagate vertically towards the
critical level (Fig. 1a). The amplitude of the waves increases with height but falls to
zero at the critical level. No wavy motion is found above this level which acts as an
absorber whereby momentum is transfered to the mean flow causing an advection
in the positive x-direction. Regions of reduced vertical temperature (density) gra-
dients (characterized by thickening of the marked layers) are mainly found above
the trough of the undulating surface (Fig. 1b). Because of the reduced gradients,
the local Richardson number drops and these regions become convectively (grav-

(11)
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Fig. I. Comparison with the observations of Thorpe [21, Fig. 4e, h, j1. Left side: experimental
resulis at ¢t = 4.5s (a), £ = 7.9 s (b}, and t = 10.2 s (¢). Right side: results of the numerical
simulation at corresponding time.

itationally) unstable, where the advection puts colder (heavier) fluid over warmer
(lighter) fluid (Fig. 1¢), which finally leads to the wave breaking. Between these
sites of instability the vertical gradient is enhanced and the black and white areas
over the crest of the undulating surface become thinner, a structure similar to that
found for Kelvin—Helmholtz instability.

Although we have not used the same boundary conditions as in the experiment
(no friction), excellent agreements with the observed flow patterns was obtained.
Obviously, the viscous friction at the top and bottom surface is of minor importance
in this case. The viscous boundary layer thickness at a flat wall grows as (vt)!/2,
i.e. stays below the small value of 0.02H for ¢ < 10.2 s. A slight difference can
be seen between the observed and the computed position of the unstable region.
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In the computations, overturning occurs further to the right and a more unstable
region is visible also on the left side. This may be caused by differences in the
shear profile because we do not simulate the detailed transition from the tilted to
the nontilted tube position. Further tests have shown that the acceleration of the
mean flow below the critical level depends very much on the Reynolds number.
The lower the Reynolds nuumber the weaker is the transfer of momentum to the
mean flow and the smaller the advection causing the breaking.

To conclude we find that our numerical method provides a good reproduction of
Thorpe’s experiment of the formation of a critical level and the onset of overturning
gravity waves in a weakly nonlinear shear flow. Hence, the method is suited for
this kind of studies.

4. Breaking of Internal Gravity Waves

Encouraged by the good performance of the numerical method as shown by the
test presented in the former section (and comparisons to linear solutions), we now
study the turbulent breakup of overturning gravity waves below the critical layer
by means of three-dimensional DNS and LES.

4,1. EXPERIMENTAL SET-UP

We solve the governing equations 3 to 5 for a three-dimensional incompressible
Boussinesq fluid in a computational domain as in the test case before but with a
lateral domain siez of 0.3125H. The characteristic length scale of the expected
three-dimensional structures caused by the breaking is of the order of the thickness
of the resulting mixed layer. This scale is essentially less than a quarter of H. Thus,
the domain is large enough to capture all scales. The finite difference grid is uniform
in all space directions of the transformed coordinates using 150 x 30 x 96 nodes.
The time step is At = 0.005H /AU and both simulations run until t = 40H/AU
which is equal to 20/7 buyonacy periods.

At time ¢ = 0, the fluid is characterized by Eq. 11 for both cases. The mean
flow with constant shear S is towards the left in the lower half and towards the
right in the upper half of the domain such that the fluid speed is zero at z = 0.5H.
The sinusoidal surface excites gravity waves with zero phase speed. Hence, the
critical layer is situated at z = 0.5H. The bulk Richardson number Rig is one.
The ratio of the horizontal wavenumber to the Scorer parameter 27 |U(z)|/AN
is approximately 2 near the bottom and decays with increasing height due to the
linear velocity profile. According to the linear theory of wave motion (e.g. [19]),
internal gravity waves are possible if the ratio is less than 1, i.e. in our specific
case for heights z > 0.2H. The velocity fluctuations are set to zero, but the
temperature field is randomly disturbed initially by random fluctuations with a

volume-averaged variance V62 = 0.001. Some three-dimensional disturbances
are necessary because otherwise the flow would remain in a two-dimensional state
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for all times. It does not matter whether the disturbances are introduced in the
velocity field or in terms of local buyoancy disturbances.

In the case of DNS, we set Kpy = 1/Re = 1/50000 and Pr = 1 in Eq. 7. For
the LES, the eddy viscosities Ky = Ky are calculated by means of Eq. 8 with
Pry,, = 1[8]. Hence, both cases differ only in the subgrid scale model representing
different effective Reynolds numbers.

4.2. RESULTS AND DISCUSSION

For both simulations we produced sequences of picturse showing temperature
contours of the evolving flow. From these sequences we learn that the temporal
development of the wave structure up to the time ¢ =~ 20H /AU is similar in both
cases and essentially analogous to the two-dimensional results shown in Fig. 1: the
flow over the wave surface excites internal gravity waves which propagate upward
and generate regions of reduced (enhanced) stability over the trough (crest) of
the corrugated surface. Above the critical level, no or very small wave motion
is observed. Any initial wave disturbance above that level is damped. Below the
critical level, in the early state, the main effect is the long lasting acceleration
of the mean flow in the positive z-direction. This acceleration is opposite to the
direction of U/ (z) for z < 0.5H (see Fig. 4 below). The disturbed mean flow raises
heavier fluid over lighter one directly beneath the critical level, whereas the mean
advection in the negative z-direction at lower altitudes moves lighter fluid under
heavier one. Between these levels, the fluid stagnates and a convectively unstable
region is formed. This process creates the primary roll which extends over almost
one wavelength A and has a thickness of =~ 0.1H . At the surface, we see isothermals
reflecting the cold fluid, that was initially resting in the troughs, advected in the
negative z-direction with time.

After t = 20H/AU, the flow starts to evolve differently for DNS and LES.
Figure 2 shows contour lines of the instantaneous temperature fields 9/3dp at
t = 24H /AU in a z—z-cross-section in the center plane. In the case with uniform
viscosity, a large region of warmer fluid is advected towards the left under colder
fluid in the middle of the domain below the critical level without any drastic
mixing. On the other hand, in the LES, small parcels from the region of colder
(warmer) fluid have left their origin and sink down (rise up): this is the onset of
the turbulent break-up of the overturning gravity waves. Note that the position and
vertical extension of the breaking area are almost the same in both cases. The DNS
and LES results differ in the inner structure and the degree of chaos of these mixing
layers (see Fig. 3).

In the DNS, the onset of smaller-scale three-dimensional instabilities is damped
by viscous friction. The flow is essentially laminar and the main characteristic of
the breaking is the continuous generation of coherent secondary rolls induced by
shear and the primary roll. This triggers small-scale gravity waves which grow in
amplitude and overturn themselves (Fig. 3a). The secondary rolis have a typical
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Fig. 2. Contour lines of #/#% at t = 24 H /AU for the DNS (a) and the LES (b).

length of about A/3 and they are advected in the negative z-direcction by the mean
flow. Due to the entrainment of fluid from lower altitudes, the mixing layer widens
downwards and covers a vertical depth of ~ H/4 att = 40H/AU.

In the LES, the fluid is less viscous and an overturning wave collapses into three-
dimensional turbulence quickly when the flow becomes convectively unstable.
Betweent = 30 and ¢t = 36 H/AU there is also a tendency to build up a secondary
roll structure but this is destroyed quickly by the mixing. Atthe end of the simulation
we find large areas of reduced vertical density gradients; the flow in the breaking
region is well mixed and only small portions of the fluid are still convectively
unstable (Fig. 3b).

Now, we turn to flow statistics. Figure 4 shows the mean profile (averaged on
planes = const) of the u-velocity and of the local Richardson number, which is
defined as

g 09/0z

R = e (0ujB2)2 + (9]0 °

(12)

at five instants of time for the DNS. The LES profiles are similar, therefore we
only discuss the results for the DNS. Below the critical level = 0.5H, the
mean velocity increases in time; the final maximum speed-up at t = 40H /AU is
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Fig. 3. Contour lines of 9 /0 at t = 40H /AU for the DNS (a) and the LES (b).
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Fig. 4. Mean profiles of the horizontal velocity and the Richardson number at five different
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Fig. 5. Profiles of the kinetic energy E = 0.5(? +v? 4 _wTZ) for the DNS (a) and the LES
{b). Line coding and averaging as in Fig. 4.

0.089AU in the DNS and 0.092AU in the LES. The layer directly influenced by the
momentum transfer between the wave and the mean flow has a thickness of about
H /4. We expect that this layer thickness depends on Rig and possibly on §/H.
Just below the critical level, Ri becomes much larger compared to its initial value
due to the decreasing shear and the increasing stratification at this altitude. The
shear reaches a maximum below the level of maximum acceleration (n ~ 0.4H)
causing decaying Ri. The Richardson number, however, drops below zero at heights
above 0.4 H . There, the shear decays and approaches zero. Therefore, we conclude
that the mixing layer is mainly driven by the wave induced convective instability
and not by a Kelvin—Helmholtz instability. In accordance with the flow picture of
Fig. 2, the ocurrence of negative Ri at t = 24 H/AU indicates the beginning of the
breaking event. -
The profiles of the perturbation kinetic energy £ = 0.5(u? + v2 4+ w'?),
averaged over planes 7 = const, are shown in Fig. 5 for the DNS and LES at
the same instances of time as in Fig. 4. Primed quantities denote deviations from
the average. Hence, they contain both wavy and turbulent fluctuations. For the
present discussion, a differentiation between wavy and turbulent fluctuations is not
necessary, but will be subject of further studies. The kinetic energy E exhibits two
maxima, one near the surface and one below the kinetic level. The first one is caused
kinematically by the laminar flow over the wavy terrain. The second extreme value
is produced dynamically by the breakdown of the vertically propagating internal
gravity wave. It comprises contributions of the variances of v and w, whereas
the variance of the cross-stream component v is roughly one order of magnitude
smaller than /2 (maximum value "2 /u'*> = 0.17 for the LES and 0.09 for the DNS
att = 40H/AU). Hence, the three-dimensionality is more pronounced in the LES
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Fig. 6. Profiles of the momentum flux 7 for the DNS (a) and the LES (b). Line coding and

averaging as in Fig. 4.

than in the DNS. Above the critical level, up to 0.6 H, the variances start to grow
slightly in the early period but return to zero soon at later times. This illustrates
the inhibition of the transmission of the approaching gravity waves through the
forming critical layer.

Despite the two different breaking regimes, the total perturbation energy is near-
ly the same in the two cases. However, the energy evolves somewhat differently in
the breaking area below the critical level: for t > 20H /AU, E increases faster and
then, after breaking, decreases slightly in the LES, whereas it grows continuous-
ly in the DNS owing to the sustained creation of secondary rolls. Obviously, the
three-dimensional mixing in the LES is more effective and leads to a restratification
of the fluid in the mixed layer which limits further mixing. Another remarkable
result is the apparent sinking of the mixed layer due to entrainment at its lower
edge. Sinking of thin turbulent layers has also been observed by radar in the free
atmosphere [16].

One of the most important consequences of the absorption of a wave at the
critical level is the acceleration of the mean flow (see Fig. 4). This acceleration
requires a vertical gradient of the shear stress, because du/0t ~ —07 3z, where
7 is the vertical momentumm flux per unit volume. Idealized waves with infinite
extent have a uniform momentum flux and the gradient is zero, i.e. on the average
the fluid is never forced [5). Figure 6 shows 7 averaged over planes with constant
coordinate 7. Contributions to this flux are the resolved motions, the modelled
fluxes of the frictional stresses, and an additional momentum flux due to pressure
forces at the undulated surface (see [4]). In our simulations, the 7-profiles manifest a
strong vertical structure (Fig. 6). Initially, the vertical flux of horizontal momentum
is constant (zero for LES, slightly negative for DNS). At ¢t = 6H /AU, the 7-
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profile exhibits vertically a wavelike structure. Its amplitude increases with altitude
but strongly decreases to the initial value just below the critical level. Between
z &~ 0.3H and z =~ 0.5H, the gradient is negative and large and causes the
strong acceleration of the mean flow. Due to the wavelike structure of the profiles,
below this region other layers exist with an accelerated or decelerated motion. At
t > 12H/AU, the number of waves has been increased and at t > 24H/AU, 7
is nearly uniform below the critical level. At late times after breaking, the shear
stress is heavily reduced and becomes negative in the formerly forced region. The
reduction is stronger in the LES than in the DNS, again indicating an enhanced
turbulent mixing in the LES.

5. Conclusions

The nonlinear interaction of an internal gravity wave with its evolving critical level
and the generation of a turbulently mixed layer has been investigated by means
of DNS and LES, basically resembling flows with high and low viscosity. The
flow structure in the DNS remains essentially laminar and becomes only weakly
three-dimensional. The mixing takes place as a process of repeated rolling-up of
isothermal (or density) surfaces so that the flow shows permanently overturning
waves which generate vortical motions in a quasi periodic manner without real
turbulence. Because of the weaker effective viscosity, the overturning waves in the
LES break into three-dimensional turbulence resulting in faster mixing than in the
DNS. In both cases, no Kelvin—Helmholtz instability is observed.

Further studies will be devoted to the characteristics of turbulence and their
dependence on the effective Reynolds number of the flow. In addition we plan to
compare our results to recently published findings of Andreassen et al. and Fritts et
al. [1, 6], in particular with respect to the occurrence of organized lateral motions
like streamwise vortices in the mixed region.
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